Convergence of the SAW on random quadrangulations to $\mathrm{SLE}_{8 / 3}$ on $\sqrt{8 / 3}$-Liouville quantum gravity

Jason Miller
Cambridge

Ewain Gwynne (MIT)

January 24, 2017

Outline

Part I: Planar maps

- Self-avoiding walks (SAW)
- SAWs on random planar maps
- Main scaling limit result

Part II: Liouville quantum gravity

- As a scaling limit / metric space
- Main gluing result

Part III: Proof ideas

Part I: Planar maps

Self-avoiding walk (SAW)

- Invented by Flory in 1953

Self-avoiding walk (SAW)

- Invented by Flory in 1953
- Graph $G=(V, E), x \in V, n \in \mathbf{N}$

Self-avoiding walk (SAW)

- Invented by Flory in 1953
- Graph $G=(V, E), x \in V, n \in \mathbf{N}$
- Uniform measure on non-self-intersecting paths starting from x in G of length n

Self-avoiding walk (SAW)

- Invented by Flory in 1953
- Graph $G=(V, E), x \in V, n \in \mathbf{N}$
- Uniform measure on non-self-intersecting paths starting from x in G of length n
- Basic questions:
- How many are there?
- Is there a scaling limit?

Self-avoiding walk (SAW)

- Invented by Flory in 1953
- Graph $G=(V, E), x \in V, n \in \mathbf{N}$
- Uniform measure on non-self-intersecting paths starting from x in G of length n
- Basic questions:
- How many are there?
- Is there a scaling limit?

SAW in $\mathbf{Z}^{d}, d \geq 3$

- $d \geq 5$: SAW converges to Brownian motion upon performing a diffusive scaling (Hara and Slade, building on work of Brydges and Spencer)

SAW in $\mathbf{Z}^{d}, d \geq 3$

- $d \geq$ 5: SAW converges to Brownian motion upon performing a diffusive scaling (Hara and Slade, building on work of Brydges and Spencer)
- $d=$ 4: same is conjectured to be true but with a log correction in the scaling

SAW in $\mathbf{Z}^{d}, d \geq 3$

- $d \geq$ 5: SAW converges to Brownian motion upon performing a diffusive scaling (Hara and Slade, building on work of Brydges and Spencer)
- $d=$ 4: same is conjectured to be true but with a log correction in the scaling
- $d=3$: scaling limit and scaling factor unknown

SAW in \mathbf{Z}^{2}

- Conjectured by Lawler-Schramm-Werner that the scaling limit is $\mathrm{SLE}_{8 / 3}$

(Tom Kennedy)

SAW in \mathbf{Z}^{2}

- Conjectured by Lawler-Schramm-Werner that the scaling limit is $\mathrm{SLE}_{8 / 3}$
- Supported by extensive numerical evidence (Tom Kennedy)

SAW in \mathbf{Z}^{2}

- Conjectured by Lawler-Schramm-Werner that the scaling limit is $\mathrm{SLE}_{8 / 3}$
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3 / 4}$

SAW in \mathbf{Z}^{2}

- Conjectured by Lawler-Schramm-Werner that the scaling limit is $\mathrm{SLE}_{8 / 3}$
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3 / 4}$
- $\mathrm{SLE}_{8 / 3}$ is singled out by:
- Restriction

- Conjectured by Lawler-Schramm-Werner that the scaling limit is $\mathrm{SLE}_{8 / 3}$
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3 / 4}$
- $\mathrm{SLE}_{8 / 3}$ is singled out by:
- Restriction

Graph $G=(V, E)$.

- Conjectured by Lawler-Schramm-Werner that the scaling limit is $\mathrm{SLE}_{8 / 3}$
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3 / 4}$
- $\mathrm{SLE}_{8 / 3}$ is singled out by:
- Restriction

Graph $G=(V, E)$. SAW on G.

SAW in \mathbf{Z}^{2}

- Conjectured by Lawler-Schramm-Werner that the scaling limit is $\mathrm{SLE}_{8 / 3}$
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3 / 4}$
- $\mathrm{SLE}_{8 / 3}$ is singled out by:
- Restriction

Graph $G=(V, E)$. SAW on G. SAW conditioned to stay in a subgraph is SAW on subgraph.

SAW in \mathbf{Z}^{2}

- Conjectured by Lawler-Schramm-Werner that the scaling limit is $\mathrm{SLE}_{8 / 3}$
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3 / 4}$
- $\mathrm{SLE}_{8 / 3}$ is singled out by:
- Restriction and

Graph $G=(V, E)$. SAW on G. SAW conditioned to stay in a subgraph is SAW on subgraph.

SAW in \mathbf{Z}^{2}

- Conjectured by Lawler-Schramm-Werner that the scaling limit is $\mathrm{SLE}_{8 / 3}$
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3 / 4}$
- $\mathrm{SLE}_{8 / 3}$ is singled out by:
- Restriction and
- Conformal invariance

Graph $G=(V, E)$. SAW on G. SAW conditioned to stay in a subgraph is SAW on subgraph.

SAW in \mathbf{Z}^{2}

- Conjectured by Lawler-Schramm-Werner that the scaling limit is $\mathrm{SLE}_{8 / 3}$
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3 / 4}$
- $\mathrm{SLE}_{8 / 3}$ is singled out by:
- Restriction and
- Conformal invariance

$$
\varphi: U \rightarrow V
$$

conformal.

SAW in \mathbf{Z}^{2}

- Conjectured by Lawler-Schramm-Werner that the scaling limit is $\mathrm{SLE}_{8 / 3}$
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3 / 4}$
- $\mathrm{SLE}_{8 / 3}$ is singled out by:
- Restriction and
- Conformal invariance

SAW in \mathbf{Z}^{2}

- Conjectured by Lawler-Schramm-Werner that the scaling limit is $\mathrm{SLE}_{8 / 3}$
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3 / 4}$
- $\mathrm{SLE}_{8 / 3}$ is singled out by:
- Restriction and
- Conformal invariance
- This talk is about proving a version of this conjecture, but where the underlying graph is a random planar map.

Random planar maps

- A planar map is a finite graph embedded in the plane

Random planar maps

- A planar map is a finite graph embedded in the plane
- Its faces are the connected components of the complement of edges

Random planar maps

- A planar map is a finite graph embedded in the plane
- Its faces are the connected components of the complement of edges
- A map is a quadrangulation (\square) if each face has 4 adjacent edges

Random planar maps

- A planar map is a finite graph embedded in the plane
- Its faces are the connected components of the complement of edges
- A map is a quadrangulation (\square) if each face has 4 adjacent edges
- A \square corresponds to a surface where each face is a Euclidean \square with adjacent faces glued along their boundaries

Random planar maps

- A planar map is a finite graph embedded in the plane
- Its faces are the connected components of the complement of edges
- A map is a quadrangulation (\square) if each face has 4 adjacent edges
- A \square corresponds to a surface where each face is a Euclidean \square with adjacent faces glued along their boundaries
- In this talk, interested in uniformly random \square 's random planar map (RPM).

Random with 25,000 faces

(Simulation due to J.F. Marckert)

Gluing random planar maps to produce a SAW

- Independent, uniform \square 's of the disk with simple ∂ of length $2 n$ and m faces.

Gluing random planar maps to produce a SAW

- Independent, uniform \square 's of the disk with simple ∂ of length $2 n$ and m faces.
- Glue along a $2 \ell<2 n$ segment of their ∂ to get a random \square of \mathbf{D} with simple ∂ of length $2(n-\ell)$ decorated by a simple path.

Gluing random planar maps to produce a SAW

- Independent, uniform \square 's of the disk with simple ∂ of length $2 n$ and m faces.
- Glue along a $2 \ell<2 n$ segment of their ∂ to get a random \square of \mathbf{D} with simple ∂ of length $2(n-\ell)$ decorated by a simple path.
- Conditional law of path given \square is a SAW of length 2ℓ conditioned on having m faces on its left and right sides.

Gluing random planar maps to produce a SAW

- Independent, uniform \square 's of the disk with simple ∂ of length $2 n$ and m faces.
- Glue along a $2 \ell<2 n$ segment of their ∂ to get a random \square of \mathbf{D} with simple ∂ of length $2(n-\ell)$ decorated by a simple path.
- Conditional law of path given \square is a SAW of length 2ℓ conditioned on having m faces on its left and right sides.
- Infinite volume / ∂-length limit of a \square of the disk is a \square of \mathbf{H} (UIHPQ ${ }_{s}$).

Gluing random planar maps to produce a SAW

- Independent, uniform \square 's of the disk with simple ∂ of length $2 n$ and m faces.
- Glue along a $2 \ell<2 n$ segment of their ∂ to get a random \square of \mathbf{D} with simple ∂ of length $2(n-\ell)$ decorated by a simple path.
- Conditional law of path given \square is a SAW of length 2ℓ conditioned on having m faces on its left and right sides.

- Infinite volume / ∂-length limit of a \square of the disk is a \square of \mathbf{H} (UIHPQs).
- Glue independent UIHPQs's to get \square of H decorated by a simple path.
Conditional law of path given \square is a SAW.

Gluing random planar maps to produce a SAW

- Independent, uniform \square 's of the disk with simple ∂ of length $2 n$ and m faces.
- Glue along a $2 \ell<2 n$ segment of their ∂ to get a random \square of \mathbf{D} with simple ∂ of length $2(n-\ell)$ decorated by a simple path.
- Conditional law of path given \square is a SAW of length 2ℓ conditioned on having m faces on its left and right sides.

- Infinite volume / ∂-length limit of a \square of the disk is a \square of \mathbf{H} (UIHPQs).
- Glue independent UIHPQs's to get \square of H decorated by a simple path. Conditional law of path given \square is a SAW.
- Goal: prove scaling limit result for the
 map/path and identify it with chordal $\mathrm{SLE}_{8 / 3}$ on $\sqrt{\frac{8}{3}}$-Liouville quantum gravity.

Random planar map convergence review

General principle: Uniformly random planar \square 's with n faces with distances rescaled by $n^{-1 / 4}$ converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).

Random planar map convergence review

General principle: Uniformly random planar \square 's with n faces with distances rescaled by $n^{-1 / 4}$ converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).
$-\square$ of the sphere \rightarrow Brownian map (Le Gall, Miermont)

Random planar map convergence review

General principle: Uniformly random planar \square 's with n faces with distances rescaled by $n^{-1 / 4}$ converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).

- \square of the sphere \rightarrow Brownian map (Le Gall, Miermont)
$-\square$ of the disk (general boundary) \rightarrow Brownian disk (Bettinelli-Miermont)

Random planar map convergence review

General principle: Uniformly random planar \square 's with n faces with distances rescaled by $n^{-1 / 4}$ converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).

- \square of the sphere \rightarrow Brownian map (Le Gall, Miermont)
- \square of the disk (general boundary) \rightarrow Brownian disk (Bettinelli-Miermont)
$-\square$ of the half-plane \rightarrow Brownian half-plane (Bauer-Miermont-Ray, Gwynne-M.)

Random planar map convergence review

General principle: Uniformly random planar \square 's with n faces with distances rescaled by $n^{-1 / 4}$ converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).

- \square of the sphere \rightarrow Brownian map (Le Gall, Miermont)
$-\square$ of the disk (general boundary) \rightarrow Brownian disk (Bettinelli-Miermont)
$\checkmark \square$ of the half-plane \rightarrow Brownian half-plane (Bauer-Miermont-Ray, Gwynne-M.)

Comment: For maps with ∂, also have convergence of the boundary path in the uniform topology. The overall topology is the Gromov-Hausdorff-Prokhorov-uniform (GHPU) topology (metric space + measure + path).

Metric gluing

- Metric spaces $M_{1}=\left(X_{1}, d_{1}\right), M_{2}=\left(X_{2}, d_{2}\right)$
- $W=X_{1} \sqcup X_{2}, d_{\sqcup}$ induced natural metric on W, \sim an equivalence relation.
- Set

$$
d_{\text {glue }}(x, y)=\inf \left\{\sum_{i=1}^{n} d \sqcup\left(a_{i}, b_{i}\right)\right\}
$$

where the inf is over all sequences with $a_{1}=x, b_{n}=y$, and $b_{i} \sim a_{i+1}$ for each i.
Then ($W, d_{\text {glue }}$) is the metric gluing of M_{1} and M_{2}.
Main example: M_{1}, M_{2} independent instances of the Brownian half-plane identified according to boundary length along their positive boundary rays.

- Metric gluing can be subtle
- Not obvious: gluing of Brownian half-planes is homeomorphic to \mathbf{H} or that the interface between the two Brownian half-plane instances is a non-trivial curve
- Worry: the interface could even degenerate to a point

Main scaling limit result

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the UIHPQ ${ }_{\mathrm{S}}$ converges to the metric gluing of independent Brownian half-plane instances in the GHPU topology. Moreover, the limiting space is homeomorphic to \mathbf{H} and the limiting interface is a non-trivial curve.

Main scaling limit result

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the UIHPQ ${ }_{\mathrm{S}}$ converges to the metric gluing of independent Brownian half-plane instances in the GHPU topology. Moreover, the limiting space is homeomorphic to \mathbf{H} and the limiting interface is a non-trivial curve.

Comments:

Main scaling limit result

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the UIHPQ ${ }_{\mathrm{S}}$ converges to the metric gluing of independent Brownian half-plane instances in the GHPU topology. Moreover, the limiting space is homeomorphic to \mathbf{H} and the limiting interface is a non-trivial curve.

Comments:

- Strategy is universal given certain inputs

Main scaling limit result

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the UIHPQ ${ }_{\mathrm{S}}$ converges to the metric gluing of independent Brownian half-plane instances in the GHPU topology. Moreover, the limiting space is homeomorphic to \mathbf{H} and the limiting interface is a non-trivial curve.

Comments:

- Strategy is universal given certain inputs

- Finite volume version (Gwynne, M.)

Main scaling limit result

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the UIHPQ ${ }_{\mathrm{S}}$ converges to the metric gluing of independent Brownian half-plane instances in the GHPU topology. Moreover, the limiting space is homeomorphic to \mathbf{H} and the limiting interface is a non-trivial curve.

Comments:

- Strategy is universal given certain inputs

- Finite volume version (Gwynne, M.)
- First example of a statistical physics model on a random planar map shown to converge in the GHPU topology.

Main scaling limit result

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the UIHPQ ${ }_{\mathrm{S}}$ converges to the metric gluing of independent Brownian half-plane instances in the GHPU topology. Moreover, the limiting space is homeomorphic to \mathbf{H} and the limiting interface is a non-trivial curve.

Comments:

- Strategy is universal given certain inputs

- Finite volume version (Gwynne, M.)
- First example of a statistical physics model on a random planar map shown to converge in the GHPU topology.
- Second example: percolation (Gwynne, M.). Strategy is very different.

Main scaling limit result

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the UIHPQ ${ }_{\mathrm{S}}$ converges to the metric gluing of independent Brownian half-plane instances in the GHPU topology. Moreover, the limiting space is homeomorphic to \mathbf{H} and the limiting interface is a non-trivial curve.

Comments:

- Strategy is universal given certain inputs
- Finite volume version (Gwynne, M.)
- First example of a statistical physics model on a random planar map shown to converge in the GHPU topology.
- Second example: percolation (Gwynne, M.). Strategy is very different.

- Later: the limiting space/path pair is isometric to chordal $\mathrm{SLE}_{8 / 3}$ on $\sqrt{8 / 3}$-Liouville quantum gravity.

Part II: Liouville quantum gravity

Basic facts

- Suppose h is an instance of the Gaussian free field (GFF) on $D \subseteq \mathbf{C}$ and $\gamma \in(0,2)$

Basic facts

- Suppose h is an instance of the Gaussian free field (GFF) on $D \subseteq \mathbf{C}$ and $\gamma \in(0,2)$
- γ-LQG surface associated with h is the "random Riemann surface" with metric tensor

$$
e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right) \quad \text { where } \quad z=x+i y
$$

Basic facts

- Suppose h is an instance of the Gaussian free field (GFF) on $D \subseteq \mathbf{C}$ and $\gamma \in(0,2)$
- γ-LQG surface associated with h is the "random Riemann surface" with metric tensor

$$
e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right) \quad \text { where } \quad z=x+i y
$$

- Does not make literal sense as h is a distribution, so does not take values at points

Basic facts

- Suppose h is an instance of the Gaussian free field (GFF) on $D \subseteq \mathbf{C}$ and $\gamma \in(0,2)$
- γ-LQG surface associated with h is the "random Riemann surface" with metric tensor

$$
e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right) \quad \text { where } \quad z=x+i y
$$

- Does not make literal sense as h is a distribution, so does not take values at points
- Associated volume form and length measure made sense of by Duplantier-Sheffield

Basic facts

- Suppose h is an instance of the Gaussian free field (GFF) on $D \subseteq \mathbf{C}$ and $\gamma \in(0,2)$
- γ-LQG surface associated with h is the "random Riemann surface" with metric tensor

$$
e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right) \text { where } z=x+i y
$$

- Does not make literal sense as h is a distribution, so does not take values at points
- Associated volume form and length measure made sense of by Duplantier-Sheffield
- $\gamma=\sqrt{8 / 3}$, metric constructed (M.-Sheffield) using QLE $(8 / 3,0)$

Basic facts

- Suppose h is an instance of the Gaussian free field (GFF) on $D \subseteq \mathbf{C}$ and $\gamma \in(0,2)$
- γ-LQG surface associated with h is the "random Riemann surface" with metric tensor

$$
e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right) \text { where } z=x+i y
$$

- Does not make literal sense as h is a distribution, so does not take values at points
- Associated volume form and length measure made sense of by Duplantier-Sheffield
- $\gamma=\sqrt{8 / 3}$, metric constructed (M.-Sheffield) using QLE $(8 / 3,0)$
- $\sqrt{8 / 3}$-LQG surfaces (laws on h) are equivalent to Brownian surfaces:
- $\sqrt{8 / 3}$-sphere $=$ Brownian map
- $\sqrt{8 / 3}$-quantum disk $=$ Brownian disk
- $\sqrt{8 / 3}$-quantum wedge $=$ Brownian half-plane

Basic facts

- Suppose h is an instance of the Gaussian free field (GFF) on $D \subseteq \mathbf{C}$ and $\gamma \in(0,2)$
- γ-LQG surface associated with h is the "random Riemann surface" with metric tensor

$$
e^{\gamma h(z)}\left(d x^{2}+d y^{2}\right) \quad \text { where } \quad z=x+i y
$$

- Does not make literal sense as h is a distribution, so does not take values at points
- Associated volume form and length measure made sense of by Duplantier-Sheffield
- $\gamma=\sqrt{8 / 3}$, metric constructed (M.-Sheffield) using $\operatorname{QLE}(8 / 3,0)$
- $\sqrt{8 / 3}-$ LQG surfaces (laws on h) are equivalent to Brownian surfaces:
- $\sqrt{8 / 3}$-sphere $=$ Brownian map
- $\sqrt{8 / 3}$-quantum disk $=$ Brownian disk
- $\sqrt{8 / 3}$-quantum wedge $=$ Brownian half-plane
- For other $\gamma \in(0,2), \gamma$-LQG arises as the scaling limit of a random planar map decorated with a statistical physics model (peanosphere)

Quantum wedge

- Surfaces with boundary parameterized by H. Two special points: origin and ∞.

Quantum wedge

- Surfaces with boundary parameterized by H. Two special points: origin and ∞.
- Start with a free boundary GFF h on a Euclidean wedge \mathbf{W}_{θ} with angle θ

Quantum wedge

- Surfaces with boundary parameterized by H. Two special points: origin and ∞.
- Start with a free boundary GFF h on a Euclidean wedge \mathbf{W}_{θ} with angle θ
- Change coordinates to \mathbf{H} with $z^{\theta / \pi}$. Yields free boundary GFF on \mathbf{H} plus $Q\left(\frac{\theta}{\pi}-1\right) \log |z|$

Quantum wedge

- Surfaces with boundary parameterized by H. Two special points: origin and ∞.
- Start with a free boundary GFF h on a Euclidean wedge \mathbf{W}_{θ} with angle θ
- Change coordinates to \mathbf{H} with $z^{\theta / \pi}$. Yields free boundary GFF on \mathbf{H} plus $Q\left(\frac{\theta}{\pi}-1\right) \log |z|$
- Defined modulo global additive constant; fix additive constant in canonical way

Quantum wedge

- Surfaces with boundary parameterized by H. Two special points: origin and ∞.
- Start with a free boundary GFF h on a Euclidean wedge \mathbf{W}_{θ} with angle θ
- Change coordinates to \mathbf{H} with $z^{\theta / \pi}$. Yields free boundary GFF on \mathbf{H} plus $Q\left(\frac{\theta}{\pi}-1\right) \log |z|$
- Defined modulo global additive constant; fix additive constant in canonical way
- Parameterize space of wedges by multiple α of $-\log |z|$ or by weight $W=\gamma\left(\gamma+\frac{2}{\gamma}-\alpha\right)$

Quantum wedge

- Surfaces with boundary parameterized by H. Two special points: origin and ∞.
- Start with a free boundary GFF h on a Euclidean wedge \mathbf{W}_{θ} with angle θ
- Change coordinates to \mathbf{H} with $z^{\theta / \pi}$. Yields free boundary GFF on \mathbf{H} plus $Q\left(\frac{\theta}{\pi}-1\right) \log |z|$
- Defined modulo global additive constant; fix additive constant in canonical way
- Parameterize space of wedges by multiple α of $-\log |z|$ or by weight $W=\gamma\left(\gamma+\frac{2}{\gamma}-\alpha\right)$

- $\gamma=\sqrt{8 / 3}, \alpha=\gamma(W=2)$, then the quantum wedge is equivalent to the Brownian half-plane.

$$
h \circ \psi+Q \log \left|\psi^{\prime}\right|
$$

Cutting and gluing operations

- Cut with an independent chordal SLE curve η or
- Weld together according to boundary length
- Abstract measurability result: \mathcal{W}, η are determined by $\mathcal{W}_{1}, \mathcal{W}_{2}$.
- For $\gamma=\sqrt{8 / 3}$, not clear that the welding operation is "compatible" with the metric notion of gluing

Metric gluing theorem

Recall: Weight $W=2$ quantum wedge is equivalent to the Brownian half-plane

Metric gluing theorem

Recall: Weight $W=2$ quantum wedge is equivalent to the Brownian half-plane

Theorem (Gwynne-M.)

Suppose $\mathcal{W}_{1}, \mathcal{W}_{2}$ are independent quantum wedges with weights W_{1}, W_{2}. The metric space obtained by

.

Metric gluing theorem

Recall: Weight $W=2$ quantum wedge is equivalent to the Brownian half-plane

Theorem (Gwynne-M.)

Suppose $\mathcal{W}_{1}, \mathcal{W}_{2}$ are independent quantum wedges with weights W_{1}, W_{2}. The metric space obtained by

Recap

Recap

SAW decorated \square of \mathbf{H}

Recap

Scaling limit

SAW decorated \square of \mathbf{H}

Gluing of Brownian half-planes

Recap

Scaling limit

SAW decorated \square of \mathbf{H}

Gluing of Brownian half-planes

Recap

Scaling limit

SAW decorated \square of \mathbf{H}

Gluing of Brownian half-planes $=$ chordal $\mathrm{SLE}_{8 / 3}$ on $\sqrt{8 / 3}-\mathrm{LQG}$

Recap

Scaling limit

SAW decorated \square of \mathbf{H}
Gluing of Brownian half-planes $=$ chordal $\mathrm{SLE}_{8 / 3}$ on $\sqrt{8 / 3}-\mathrm{LQG}$

Consequence: SAW on random \square 's converges to $\mathrm{SLE}_{8 / 3}$ on $\sqrt{8 / 3}$-LQG

Part III: Proof ideas

Overview

Will focus on the discrete to continuum convergence statement

Overview

Will focus on the discrete to continuum convergence statement

- Goal: show that the discrete graph gluing of two independent UIHPQs's Q_{-}, Q_{+} converges in the limit to the metric gluing of independent Brownian half-planes

Overview

Will focus on the discrete to continuum convergence statement

- Goal: show that the discrete graph gluing of two independent UIHPQs's Q_{-}, Q_{+} converges in the limit to the metric gluing of independent Brownian half-planes
- Strategy: Take two points on the interface at boundary length distance $n^{1 / 2}$,

Overview

Will focus on the discrete to continuum convergence statement

- Goal: show that the discrete graph gluing of two independent UIHPQs's Q_{-}, Q_{+} converges in the limit to the metric gluing of independent Brownian half-planes
- Strategy: Take two points on the interface at boundary length distance $n^{1 / 2}$, show that the limit of the distance between them can be approximated by a path which crosses the interface only finitely many times (not growing with n)

Overview

Will focus on the discrete to continuum convergence statement

- Goal: show that the discrete graph gluing of two independent UIHPQs's Q_{-}, Q_{+} converges in the limit to the metric gluing of independent Brownian half-planes
- Strategy: Take two points on the interface at boundary length distance $n^{1 / 2}$, show that the limit of the distance between them can be approximated by a path which crosses the interface only finitely many times (not growing with n)
- Challenge: Understand the structure of the
 metric along the interface in a precise way

Peeling the UIHPQs

UIHPQ ${ }_{S}$ with marked edge in red.

Peeling the UIHPQs

UIHPQs $_{s}$ with marked edge in red. Reveal the \square adjacent to the marked edge.

Peeling the UIHPQs

UIHPQs with marked edge in red. Reveal the \square adjacent to the marked edge.

Peeling the UIHPQs

UIHPQ $_{s}$ with marked edge in red. Reveal the \square adjacent to the marked edge.

Peeling the UIHPQs

UIHPQ $_{s}$ with marked edge in red. Reveal the \square adjacent to the marked edge. Exact formulas for the probability of each possibility.

Peeling the UIHPQs

UIHPQ $_{s}$ with marked edge in red. Reveal the \square adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQs.

Peeling the UIHPQs

UIHPQ $_{s}$ with marked edge in red. Reveal the \square adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ . Probability disconnect k_{1} edges on the left and k_{2} edges on the right is $\cong k_{1}^{-5 / 2} k_{2}^{-5 / 2}$.

Peeling the UIHPQs

UIHPQ $_{s}$ with marked edge in red. Reveal the \square adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ . Probability disconnect k_{1} edges on the left and k_{2} edges on the right is $\cong k_{1}^{-5 / 2} k_{2}^{-5 / 2}$. Metric ball exploration targeted at ∞ via peeling.

Peeling the UIHPQs

UIHPQ $_{s}$ with marked edge in red. Reveal the \square adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ . Probability disconnect k_{1} edges on the left and k_{2} edges on the right is $\cong k_{1}^{-5 / 2} k_{2}^{-5 / 2}$. Metric ball exploration targeted at ∞ via peeling.

Peeling the UIHPQs

UIHPQ $_{s}$ with marked edge in red. Reveal the \square adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ . Probability disconnect k_{1} edges on the left and k_{2} edges on the right is $\cong k_{1}^{-5 / 2} k_{2}^{-5 / 2}$. Metric ball exploration targeted at ∞ via peeling.

Peeling the UIHPQs

UIHPQ $_{s}$ with marked edge in red. Reveal the \square adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ . Probability disconnect k_{1} edges on the left and k_{2} edges on the right is $\cong k_{1}^{-5 / 2} k_{2}^{-5 / 2}$. Metric ball exploration targeted at ∞ via peeling.

Peeling the UIHPQs

UIHPQ $_{s}$ with marked edge in red. Reveal the \square adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ . Probability disconnect k_{1} edges on the left and k_{2} edges on the right is $\cong k_{1}^{-5 / 2} k_{2}^{-5 / 2}$. Metric ball exploration targeted at ∞ via peeling.

Peeling the UIHPQs

UIHPQ $_{s}$ with marked edge in red. Reveal the \square adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ . Probability disconnect k_{1} edges on the left and k_{2} edges on the right is $\cong k_{1}^{-5 / 2} k_{2}^{-5 / 2}$. Metric ball exploration targeted at ∞ via peeling.

Peeling the UIHPQs

UIHPQ $_{s}$ with marked edge in red. Reveal the \square adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ . Probability disconnect k_{1} edges on the left and k_{2} edges on the right is $\cong k_{1}^{-5 / 2} k_{2}^{-5 / 2}$. Metric ball exploration targeted at ∞ via peeling.

Peeling the UIHPQs

UIHPQ $_{s}$ with marked edge in red. Reveal the \square adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ . Probability disconnect k_{1} edges on the left and k_{2} edges on the right is $\cong k_{1}^{-5 / 2} k_{2}^{-5 / 2}$. Metric ball exploration targeted at ∞ via peeling.

Peeling the UIHPQs

UIHPQ $_{s}$ with marked edge in red. Reveal the \square adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ . Probability disconnect k_{1} edges on the left and k_{2} edges on the right is $\cong k_{1}^{-5 / 2} k_{2}^{-5 / 2}$. Metric ball exploration targeted at ∞ via peeling.

Peeling the UIHPQs

UIHPQ $_{s}$ with marked edge in red. Reveal the \square adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ . Probability disconnect k_{1} edges on the left and k_{2} edges on the right is $\cong k_{1}^{-5 / 2} k_{2}^{-5 / 2}$. Metric ball exploration targeted at ∞ via peeling. Can control precisely the ∂-length.

Glued peeling cluster

$$
Q_{\text {zip }}
$$

Consider two UIHPQs's glued together.

Glued peeling cluster

$$
Q_{\text {zip }}
$$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth.

Glued peeling cluster

$$
Q_{\text {zip }}
$$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. Strategy: Dominate it from above by the "glued peeling cluster."

Glued peeling cluster

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. Strategy: Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in $Q_{ \pm}$.

Glued peeling cluster

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. Strategy: Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in $Q_{ \pm}$.

Glued peeling cluster

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. Strategy: Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in $Q_{ \pm}$.

Glued peeling cluster

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. Strategy: Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in $Q_{ \pm}$.

Glued peeling cluster

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. Strategy: Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in $Q_{ \pm}$.

Glued peeling cluster

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. Strategy: Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in $Q_{ \pm}$.

Glued peeling cluster

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. Strategy: Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in $Q_{ \pm}$.

Glued peeling cluster

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. Strategy: Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in $Q_{ \pm}$.

Glued peeling cluster

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. Strategy: Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in $Q_{ \pm}$.

Glued peeling cluster

$$
Q_{\text {zip }}
$$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. Strategy: Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in $Q_{ \pm}$.

Glued peeling cluster

$$
Q_{\text {zip }}
$$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. Strategy: Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in $Q_{ \pm}$.

Glued peeling cluster

$$
Q_{\text {zip }}
$$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. Strategy: Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in $Q_{ \pm}$.

Glued peeling cluster

$$
Q_{\text {zip }}
$$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. Strategy: Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in $Q_{ \pm}$.

Glued peeling cluster

$$
Q_{\text {zip }}
$$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. Strategy: Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in $Q_{ \pm}$.

Controlling the glued peeling cluster

- Recall: Glued peeling cluster \geq metric ball

Controlling the glued peeling cluster

- Recall: Glued peeling cluster \geq metric ball
- ∂-length and area harder to control due to to the upward jumps in boundary length

Controlling the glued peeling cluster

- Recall: Glued peeling cluster \geq metric ball
- ∂-length and area harder to control due to to the upward jumps in boundary length
- Theorem: (Gwynne, M.) For each $p \in[1,3 / 2)$, the p th moment of the number of edges cut off from ∞ by the n-layer glued peeling cluster is $\lesssim n^{2 p}$.

Controlling the glued peeling cluster

- Recall: Glued peeling cluster \geq metric ball
- ∂-length and area harder to control due to to the upward jumps in boundary length
- Theorem: (Gwynne, M.) For each $p \in[1,3 / 2)$, the p th moment of the number of edges cut off from ∞ by the n-layer glued peeling cluster is $\lesssim n^{2 p}$.
- Theorem: (Gwynne, M.) Same holds for the ∂-length of the glued peeling cluster.

Controlling the glued peeling cluster

- Recall: Glued peeling cluster \geq metric ball
- ∂-length and area harder to control due to to the upward jumps in boundary length
- Theorem: (Gwynne, M.) For each $p \in[1,3 / 2)$, the p th moment of the number of edges cut off from ∞ by the n-layer glued peeling cluster is $\lesssim n^{2 p}$.
- Theorem: (Gwynne, M.) Same holds for the ∂-length of the glued peeling cluster.
- Corollary: (Gwynne, M.) The interface is non-degenerate in the subsequential limit.

Controlling the glued peeling cluster

- Recall: Glued peeling cluster \geq metric ball
- ∂-length and area harder to control due to to the upward jumps in boundary length
- Theorem: (Gwynne, M.) For each $p \in[1,3 / 2)$, the p th moment of the number of edges cut off from ∞ by the n-layer glued peeling cluster is $\lesssim n^{2 p}$.
- Theorem: (Gwynne, M.) Same holds for the ∂-length of the glued peeling cluster.
- Corollary: (Gwynne, M.) The interface is non-degenerate in the subsequential limit.
- Proof idea: Recursive moment bounds for ∂-length and edges cut off from ∞.

Controlling the glued peeling cluster

- Recall: Glued peeling cluster \geq metric ball
- ∂-length and area harder to control due to to the upward jumps in boundary length
- Theorem: (Gwynne, M.) For each $p \in[1,3 / 2)$, the p th moment of the number of edges cut off from ∞ by the n-layer glued peeling cluster is $\lesssim n^{2 p}$.
- Theorem: (Gwynne, M.) Same holds for the ∂-length of the glued peeling cluster.
- Corollary: (Gwynne, M.) The interface is non-degenerate in the subsequential limit.

- Proof idea: Recursive moment bounds for ∂-length and edges cut off from ∞.

Caraceni-Curien also studied SAWs on random \square 's and used the glued peeling cluster.
Controlled the $p=1$ moment of the set of edges cut off from ∞.

Finishing the proof

Recall: goal is to show that a geodesic connecting ∂ points of ∂ distance $n^{1 / 2}$ from each other can be approximated by a path which crosses the interface at most a finite number of times (not growing with n).

$$
Q_{\mathrm{zip}}
$$

Finishing the proof

- Consider glued peeling clusters at dyadic scales

Finishing the proof

- Consider glued peeling clusters at dyadic scales

Finishing the proof

- Consider glued peeling clusters at dyadic scales

Finishing the proof

- Consider glued peeling clusters at dyadic scales

Finishing the proof

- Consider glued peeling clusters at dyadic scales

$$
Q_{\text {zip }}
$$

Finishing the proof

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good $(K>1)$ if the $Q_{\text {zip }}$ distance between any point on the inner and any point on the outer ∂ is at least $1 / K$ times the length of a path which crosses the interface at most once.

Finishing the proof

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good $(K>1)$ if the $Q_{\text {zip }}$ distance between any point on the inner and any point on the outer ∂ is at least $1 / K$ times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing $K>1$ large enough, we can cover the interface by K-good annuli with high probability.

Finishing the proof

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good $(K>1)$ if the $Q_{\text {zip }}$ distance between any point on the inner and any point on the outer ∂ is at least $1 / K$ times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing $K>1$ large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of $Q_{z i p}$ is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.

Finishing the proof

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good $(K>1)$ if the $Q_{\text {zip }}$ distance between any point on the inner and any point on the outer ∂ is at least $1 / K$ times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing $K>1$ large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of $Q_{z i p}$ is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.

Finishing the proof

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good $(K>1)$ if the $Q_{\text {zip }}$ distance between any point on the inner and any point on the outer ∂ is at least $1 / K$ times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing $K>1$ large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of $Q_{z i p}$ is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.

Finishing the proof

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good $(K>1)$ if the $Q_{\text {zip }}$ distance between any point on the inner and any point on the outer ∂ is at least $1 / K$ times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing $K>1$ large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of $Q_{z i p}$ is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.

Finishing the proof

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good $(K>1)$ if the $Q_{\text {zip }}$ distance between any point on the inner and any point on the outer ∂ is at least $1 / K$ times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing $K>1$ large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of $Q_{z i p}$ is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.

Finishing the proof

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good $(K>1)$ if the $Q_{\text {zip }}$ distance between any point on the inner and any point on the outer ∂ is at least $1 / K$ times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing $K>1$ large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of $Q_{z i p}$ is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.
- Theorem (Gwynne, M.) There exists $\alpha \in(0,1)$ such that the subsequentially limiting geodesics a.s. spend at most α-fraction of their time in the interface.

Finishing the proof

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good $(K>1)$ if the $Q_{\text {zip }}$ distance between any point on the inner and any point on the outer ∂ is at least $1 / K$ times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing $K>1$ large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of $Q_{z i p}$ is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.
- Theorem (Gwynne, M.) There exists $\alpha \in(0,1)$ such that the subsequentially limiting geodesics a.s. spend at most α-fraction of their time in the interface.

- Consequence: The subsequentially limiting metric is equivalent to the metric gluing of Brownian half-planes.

Finishing the proof

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good $(K>1)$ if the $Q_{\text {zip }}$ distance between any point on the inner and any point on the outer ∂ is at least $1 / K$ times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing $K>1$ large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of $Q_{z i p}$ is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.
- Theorem (Gwynne, M.) There exists $\alpha \in(0,1)$ such that the subsequentially limiting geodesics a.s. spend at most α-fraction of their time in the interface.

- Consequence: The subsequentially limiting metric is equivalent to the metric gluing of Brownian half-planes.

Remark: arguments are delicate as the interface has $n^{1 / 2}$ edges while the geodesic has $n^{1 / 4}$.

Thanks!

