Convergence of the SAW on random quadrangulations to ${\rm SLE}_{8/3}$ on $\sqrt{8/3}\text{-Liouville}$ quantum gravity

Jason Miller

Cambridge

Ewain Gwynne (MIT)

January 24, 2017

Outline

Part I: Planar maps

- Self-avoiding walks (SAW)
- SAWs on random planar maps
- Main scaling limit result

Part II: Liouville quantum gravity

- As a scaling limit / metric space
- Main gluing result

Part III: Proof ideas

Part I: Planar maps

Invented by Flory in 1953

- Invented by Flory in 1953
- Graph G = (V, E), $x \in V$, $n \in \mathbf{N}$

- Invented by Flory in 1953
- Graph G = (V, E), $x \in V$, $n \in \mathbb{N}$
- Uniform measure on non-self-intersecting paths starting from x in G of length n

- Invented by Flory in 1953
- Graph G = (V, E), $x \in V$, $n \in \mathbb{N}$
- Uniform measure on non-self-intersecting paths starting from x in G of length n
- Basic questions:
 - How many are there?
 - Is there a scaling limit?

- Invented by Flory in 1953
- Graph G = (V, E), $x \in V$, $n \in \mathbb{N}$
- Uniform measure on non-self-intersecting paths starting from x in G of length n
- Basic questions:
 - How many are there?
 - Is there a scaling limit?

► d ≥ 5: SAW converges to Brownian motion upon performing a diffusive scaling (Hara and Slade, building on work of Brydges and Spencer)

SAW in \mathbf{Z}^d , d > 3

- ► d ≥ 5: SAW converges to Brownian motion upon performing a diffusive scaling (Hara and Slade, building on work of Brydges and Spencer)
- d = 4: same is conjectured to be true but with a log correction in the scaling

SAW in \mathbf{Z}^d , d > 3

- ► d ≥ 5: SAW converges to Brownian motion upon performing a diffusive scaling (Hara and Slade, building on work of Brydges and Spencer)
- d = 4: same is conjectured to be true but with a log correction in the scaling
- d = 3: scaling limit and scaling factor unknown

 Conjectured by Lawler-Schramm-Werner that the scaling limit is SLE_{8/3}

- Conjectured by Lawler-Schramm-Werner that the scaling limit is SLE_{8/3}
- Supported by extensive numerical evidence (Tom Kennedy)

- Conjectured by Lawler-Schramm-Werner that the scaling limit is SLE_{8/3}
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3/4}$

SAW in plane - 1,000,000 steps (Tom Kennedy)

- Conjectured by Lawler-Schramm-Werner that the scaling limit is SLE_{8/3}
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3/4}$
- ▶ $SLE_{8/3}$ is singled out by:
 - Restriction

SAW in plane - 1,000,000 steps
for the stand
Er man
the England
and the second
- A Drag
and the second s
and for
الجرية
(Tom Kennedy)

- Conjectured by Lawler-Schramm-Werner that the scaling limit is SLE_{8/3}
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3/4}$
- ▶ $SLE_{8/3}$ is singled out by:
 - Restriction

Graph G = (V, E).

- Conjectured by Lawler-Schramm-Werner that the scaling limit is SLE_{8/3}
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3/4}$
- ▶ $SLE_{8/3}$ is singled out by:
 - Restriction

Graph G = (V, E). SAW on G.

- Conjectured by Lawler-Schramm-Werner that the scaling limit is SLE_{8/3}
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3/4}$
- ▶ $SLE_{8/3}$ is singled out by:
 - Restriction

Graph G = (V, E). SAW on G. SAW conditioned to stay in a subgraph is SAW on subgraph.

- Conjectured by Lawler-Schramm-Werner that the scaling limit is SLE_{8/3}
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3/4}$
- ▶ $SLE_{8/3}$ is singled out by:
 - Restriction and

Graph G = (V, E). SAW on G. SAW conditioned to stay in a subgraph is SAW on subgraph.

- Conjectured by Lawler-Schramm-Werner that the scaling limit is SLE_{8/3}
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3/4}$
- SLE_{8/3} is singled out by:
 - Restriction and
 - Conformal invariance

Graph G = (V, E). SAW on G. SAW conditioned to stay in a subgraph is SAW on subgraph.

- Conjectured by Lawler-Schramm-Werner that the scaling limit is SLE_{8/3}
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3/4}$
- $SLE_{8/3}$ is singled out by:
 - Restriction and
 - Conformal invariance

- Conjectured by Lawler-Schramm-Werner that the scaling limit is SLE_{8/3}
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3/4}$
- $SLE_{8/3}$ is singled out by:
 - Restriction and
 - Conformal invariance

- Conjectured by Lawler-Schramm-Werner that the scaling limit is SLE_{8/3}
- Supported by extensive numerical evidence (Tom Kennedy)
- Conjectured scaling factor: $n^{-3/4}$
- SLE_{8/3} is singled out by:
 - Restriction and
 - Conformal invariance
- This talk is about proving a version of this conjecture, but where the underlying graph is a random planar map.

A planar map is a finite graph embedded in the plane

- A planar map is a finite graph embedded in the plane
- Its faces are the connected components of the complement of edges

- A planar map is a finite graph embedded in the plane
- Its faces are the connected components of the complement of edges
- A map is a quadrangulation (□) if each face has 4 adjacent edges

- A planar map is a finite graph embedded in the plane
- Its faces are the connected components of the complement of edges
- A map is a quadrangulation (□) if each face has 4 adjacent edges
- A □ corresponds to a surface where each face is a Euclidean □ with adjacent faces glued along their boundaries

- A planar map is a finite graph embedded in the plane
- Its faces are the connected components of the complement of edges
- A map is a quadrangulation (□) if each face has 4 adjacent edges
- A □ corresponds to a surface where each face is a Euclidean □ with adjacent faces glued along their boundaries
- ► In this talk, interested in uniformly random □'s random planar map (RPM).

Random \Box with 25,000 faces

(Simulation due to J.F. Marckert)

Independent, uniform □'s of the disk with simple ∂ of length 2n and m faces.

- Independent, uniform □'s of the disk with simple ∂ of length 2n and m faces.
- Glue along a 2ℓ < 2n segment of their ∂ to get a random □ of D with simple ∂ of length 2(n − ℓ) decorated by a simple path.

- Independent, uniform □'s of the disk with simple ∂ of length 2n and m faces.
- Glue along a 2ℓ < 2n segment of their ∂ to get a random □ of D with simple ∂ of length 2(n − ℓ) decorated by a simple path.
- Conditional law of path given □ is a SAW of length 2ℓ conditioned on having m faces on its left and right sides.

- Independent, uniform □'s of the disk with simple ∂ of length 2n and m faces.
- Glue along a 2ℓ < 2n segment of their ∂ to get a random □ of D with simple ∂ of length 2(n − ℓ) decorated by a simple path.
- Conditional law of path given □ is a SAW of length 2ℓ conditioned on having m faces on its left and right sides.
- Infinite volume / ∂-length limit of a □ of the disk is a □ of H (UIHPQ_S).

- Independent, uniform □'s of the disk with simple ∂ of length 2n and m faces.
- Glue along a 2ℓ < 2n segment of their ∂ to get a random □ of D with simple ∂ of length 2(n − ℓ) decorated by a simple path.
- Conditional law of path given □ is a SAW of length 2ℓ conditioned on having m faces on its left and right sides.
- Infinite volume / ∂-length limit of a □ of the disk is a □ of H (UIHPQ_S).
- Glue independent UIHPQ_S's to get □ of H decorated by a simple path.
 Conditional law of path given □ is a SAW.

 $Q_{\rm zip}$

- Independent, uniform □'s of the disk with simple ∂ of length 2n and m faces.
- Glue along a 2ℓ < 2n segment of their ∂ to get a random □ of D with simple ∂ of length 2(n − ℓ) decorated by a simple path.
- Conditional law of path given □ is a SAW of length 2ℓ conditioned on having m faces on its left and right sides.
- Infinite volume / ∂-length limit of a □ of the disk is a □ of H (UIHPQ_S).
- Glue independent UIHPQ_S's to get □ of H decorated by a simple path.
 Conditional law of path given □ is a SAW.
- ► Goal: prove scaling limit result for the map/path and identify it with chordal SLE_{8/3} on √⁸/₃-Liouville quantum gravity.

 $Q_{\rm zip}$

Random planar map convergence review

General principle: Uniformly random planar \Box 's with *n* faces with distances rescaled by $n^{-1/4}$ converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).
General principle: Uniformly random planar \Box 's with *n* faces with distances rescaled by $n^{-1/4}$ converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).

• \Box of the sphere \rightarrow Brownian map (Le Gall, Miermont)

General principle: Uniformly random planar \Box 's with *n* faces with distances rescaled by $n^{-1/4}$ converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).

- \Box of the sphere \rightarrow Brownian map (Le Gall, Miermont)
- ▶ □ of the disk (general boundary) → Brownian disk (Bettinelli-Miermont)

General principle: Uniformly random planar \Box 's with *n* faces with distances rescaled by $n^{-1/4}$ converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).

- \Box of the sphere \rightarrow Brownian map (Le Gall, Miermont)
- ▶ □ of the disk (general boundary) → Brownian disk (Bettinelli-Miermont)
- ► □ of the half-plane → Brownian half-plane (Bauer-Miermont-Ray, Gwynne-M.)

General principle: Uniformly random planar \Box 's with *n* faces with distances rescaled by $n^{-1/4}$ converge to Brownian surfaces in the Gromov-Hausdorff-Prokhorov topology (metric space + measure).

- \Box of the sphere \rightarrow Brownian map (Le Gall, Miermont)
- ▶ □ of the disk (general boundary) → Brownian disk (Bettinelli-Miermont)
- ▶ \Box of the half-plane \rightarrow Brownian half-plane (Bauer-Miermont-Ray, Gwynne-M.)

Comment: For maps with ∂ , also have convergence of the boundary path in the uniform topology. The overall topology is the Gromov-Hausdorff-Prokhorov-uniform (GHPU) topology (metric space + measure + path).

Metric gluing

• Metric spaces $M_1 = (X_1, d_1), M_2 = (X_2, d_2)$

▶ $W = X_1 \sqcup X_2$, d_{\sqcup} induced natural metric on W, ~ an equivalence relation.

Set

$$d_{\text{glue}}(x,y) = \inf \left\{ \sum_{i=1}^n d_{\sqcup}(a_i,b_i) \right\}$$

where the inf is over all sequences with $a_1 = x$, $b_n = y$, and $b_i \sim a_{i+1}$ for each *i*. Then (W, d_{glue}) is the metric gluing of M_1 and M_2 .

Main example: M_1 , M_2 independent instances of the Brownian half-plane identified according to boundary length along their positive boundary rays.

- Metric gluing can be subtle
- Not obvious: gluing of Brownian half-planes is homeomorphic to H or that the interface between the two Brownian half-plane instances is a non-trivial curve
- Worry: the interface could even degenerate to a point

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the $UIHPQ_S$ converges to the metric gluing of independent Brownian half-plane instances in the GHPU topology. Moreover, the limiting space is homeomorphic to **H** and the limiting interface is a non-trivial curve.

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the UIHPQ_S converges to the metric gluing of independent Brownian half-plane instances in the GHPU topology. Moreover, the limiting space is homeomorphic to **H** and the limiting interface is a non-trivial curve.

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the UIHPQ_S converges to the metric gluing of independent Brownian half-plane instances in the GHPU topology. Moreover, the limiting space is homeomorphic to **H** and the limiting interface is a non-trivial curve.

Comments:

Strategy is universal given certain inputs

 $Q_{\rm zid}$

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the UIHPQ_S converges to the metric gluing of independent Brownian half-plane instances in the GHPU topology. Moreover, the limiting space is homeomorphic to **H** and the limiting interface is a non-trivial curve.

- Strategy is universal given certain inputs
- Finite volume version (Gwynne, M.)

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the UIHPQ_S converges to the metric gluing of independent Brownian half-plane instances in the GHPU topology. Moreover, the limiting space is homeomorphic to **H** and the limiting interface is a non-trivial curve.

- Strategy is universal given certain inputs
- Finite volume version (Gwynne, M.)
- First example of a statistical physics model on a random planar map shown to converge in the GHPU topology.

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the UIHPQ_S converges to the metric gluing of independent Brownian half-plane instances in the GHPU topology. Moreover, the limiting space is homeomorphic to **H** and the limiting interface is a non-trivial curve.

- Strategy is universal given certain inputs
- Finite volume version (Gwynne, M.)
- First example of a statistical physics model on a random planar map shown to converge in the GHPU topology.
- Second example: percolation (Gwynne, M.). Strategy is very different.

Theorem (Gwynne-M.)

Graph gluing of two independent instances of the UIHPQ_S converges to the metric gluing of independent Brownian half-plane instances in the GHPU topology. Moreover, the limiting space is homeomorphic to **H** and the limiting interface is a non-trivial curve.

- Strategy is universal given certain inputs
- Finite volume version (Gwynne, M.)
- First example of a statistical physics model on a random planar map shown to converge in the GHPU topology.
- Second example: percolation (Gwynne, M.). Strategy is very different.
- ▶ Later: the limiting space/path pair is isometric to chordal $SLE_{8/3}$ on $\sqrt{8/3}$ -Liouville quantum gravity.

Part II: Liouville quantum gravity

Suppose h is an instance of the Gaussian free field (GFF) on $D \subseteq \mathbf{C}$ and $\gamma \in (0, 2)$

- ▶ Suppose *h* is an instance of the Gaussian free field (GFF) on $D \subseteq \mathbf{C}$ and $\gamma \in (0, 2)$
- ▶ γ-LQG surface associated with h is the "random Riemann surface" with metric tensor

$$e^{\gamma h(z)}(dx^2 + dy^2)$$
 where $z = x + iy$

- Suppose h is an instance of the Gaussian free field (GFF) on $D \subseteq \mathbf{C}$ and $\gamma \in (0, 2)$
- ▶ γ-LQG surface associated with h is the "random Riemann surface" with metric tensor

$$e^{\gamma h(z)}(dx^2 + dy^2)$$
 where $z = x + iy$

▶ Does not make literal sense as *h* is a distribution, so does not take values at points

- Suppose h is an instance of the Gaussian free field (GFF) on $D \subseteq \mathbf{C}$ and $\gamma \in (0, 2)$
- γ-LQG surface associated with h is the "random Riemann surface" with metric tensor

$$e^{\gamma h(z)}(dx^2 + dy^2)$$
 where $z = x + iy$

- Does not make literal sense as h is a distribution, so does not take values at points
- Associated volume form and length measure made sense of by Duplantier-Sheffield

- ▶ Suppose *h* is an instance of the Gaussian free field (GFF) on $D \subseteq \mathbf{C}$ and $\gamma \in (0, 2)$
- γ-LQG surface associated with h is the "random Riemann surface" with metric tensor

$$e^{\gamma h(z)}(dx^2 + dy^2)$$
 where $z = x + iy$

- Does not make literal sense as h is a distribution, so does not take values at points
- Associated volume form and length measure made sense of by Duplantier-Sheffield

 γ = √8/3, metric constructed (M.-Sheffield) using QLE(8/3,0)

- ▶ Suppose *h* is an instance of the Gaussian free field (GFF) on $D \subseteq \mathbf{C}$ and $\gamma \in (0, 2)$
- γ-LQG surface associated with h is the "random Riemann surface" with metric tensor

$$e^{\gamma h(z)}(dx^2 + dy^2)$$
 where $z = x + iy$

- Does not make literal sense as h is a distribution, so does not take values at points
- Associated volume form and length measure made sense of by Duplantier-Sheffield
- ▶ $\gamma = \sqrt{8/3}$, metric constructed (M.-Sheffield) using QLE(8/3,0)
- ▶ $\sqrt{8/3}$ -LQG surfaces (laws on *h*) are equivalent to Brownian surfaces:
 - $\sqrt{8/3}$ -sphere = Brownian map
 - $\sqrt{8/3}$ -quantum disk = Brownian disk
 - $\sqrt{8/3}$ -quantum wedge = Brownian half-plane

- ▶ Suppose *h* is an instance of the Gaussian free field (GFF) on $D \subseteq \mathbf{C}$ and $\gamma \in (0, 2)$
- γ-LQG surface associated with h is the "random Riemann surface" with metric tensor

$$e^{\gamma h(z)}(dx^2 + dy^2)$$
 where $z = x + iy$

- Does not make literal sense as h is a distribution, so does not take values at points
- Associated volume form and length measure made sense of by Duplantier-Sheffield
- ▶ $\gamma = \sqrt{8/3}$, metric constructed (M.-Sheffield) using QLE(8/3,0)
- ▶ $\sqrt{8/3}$ -LQG surfaces (laws on *h*) are equivalent to Brownian surfaces:
 - $\sqrt{8/3}$ -sphere = Brownian map
 - $\sqrt{8/3}$ -quantum disk = Brownian disk
 - $\sqrt{8/3}$ -quantum wedge = Brownian half-plane
- For other *γ* ∈ (0, 2), *γ*-LQG arises as the scaling limit of a random planar map decorated with a statistical physics model (peanosphere)

► Surfaces with boundary parameterized by H. Two special points: origin and ∞.

- ► Surfaces with boundary parameterized by H. Two special points: origin and ∞.
- ▶ Start with a free boundary GFF *h* on a Euclidean wedge \mathbf{W}_{θ} with angle θ

- Surfaces with boundary parameterized by H. Two special points: origin and ∞.
- Start with a free boundary GFF h on a Euclidean wedge W_θ with angle θ
- ► Change coordinates to H with z^{θ/π}. Yields free boundary GFF on H plus Q(^θ/_π-1) log |z|

- Surfaces with boundary parameterized by H. Two special points: origin and ∞.
- Start with a free boundary GFF h on a Euclidean wedge W_θ with angle θ
- Change coordinates to H with z^{θ/π}. Yields free boundary GFF on H plus Q(^θ/_π−1) log |z|
- Defined modulo global additive constant; fix additive constant in canonical way

- Surfaces with boundary parameterized by H. Two special points: origin and ∞.
- Start with a free boundary GFF h on a Euclidean wedge
 W_θ with angle θ
- Change coordinates to H with z^{θ/π}. Yields free boundary GFF on H plus Q(^θ/_π−1) log |z|
- Defined modulo global additive constant; fix additive constant in canonical way
- ▶ Parameterize space of wedges by multiple α of $-\log |z|$ or by weight $W = \gamma(\gamma + \frac{2}{\gamma} - \alpha)$

Surfaces with how

- Surfaces with boundary parameterized by H. Two special points: origin and ∞.
- Start with a free boundary GFF h on a Euclidean wedge W_θ with angle θ
- Change coordinates to H with z^{θ/π}. Yields free boundary GFF on H plus Q(^θ/_π−1) log |z|
- Defined modulo global additive constant; fix additive constant in canonical way
- Parameterize space of wedges by multiple α of $-\log |z|$ or by weight $W = \gamma(\gamma + \frac{2}{\gamma} - \alpha)$
- $\gamma = \sqrt{8/3}$, $\alpha = \gamma$ (W = 2), then the quantum wedge is equivalent to the Brownian half-plane.

Cutting and gluing operations

- \blacktriangleright Cut with an independent chordal ${\rm SLE}$ curve η or
- Weld together according to boundary length
 - Abstract measurability result: W, η are determined by W_1, W_2 .
 - For $\gamma = \sqrt{8/3}$, not clear that the welding operation is "compatible" with the metric notion of gluing

Metric gluing theorem

Recall: Weight W = 2 quantum wedge is equivalent to the Brownian half-plane

Metric gluing theorem

Recall: Weight W = 2 quantum wedge is equivalent to the Brownian half-plane

Theorem (Gwynne-M.)

Suppose W_1, W_2 are independent quantum wedges with weights W_1, W_2 . The metric space obtained by identifying the positive ray of W_1 with the positive ray of W_2 has the law of a quantum wedge of weight $W_1 + W_2$. The interface between W_1 and W_2 has the law of an $SLE_{8/3}(W_1 - 2; W_2 - 2)$.

Metric gluing theorem

Recall: Weight W = 2 quantum wedge is equivalent to the Brownian half-plane

Theorem (Gwynne-M.)

Suppose W_1, W_2 are independent quantum wedges with weights W_1, W_2 . The metric space obtained by identifying the positive ray of W_1 with the positive ray of W_2 has the law of a quantum wedge of weight $W_1 + W_2$. The interface between W_1 and W_2 has the law of an $SLE_{8/3}(W_1 - 2; W_2 - 2)$.

Consequence: if we metrically glue two instances of the Brownian half-plane, the interface between them is exactly a chordal ${\rm SLE}_{8/3}$.

Consequence: SAW on random \Box 's converges to SLE_{8/3} on $\sqrt{8/3}$ -LQG

Convergence of the SAW on \square 's to SLE(8/3)
Part III: Proof ideas

Will focus on the discrete to continuum convergence statement

Will focus on the discrete to continuum convergence statement

► Goal: show that the discrete graph gluing of two independent UIHPQs's Q₋, Q₊ converges in the limit to the metric gluing of independent Brownian half-planes

Will focus on the discrete to continuum convergence statement

- ► Goal: show that the discrete graph gluing of two independent UIHPQ₅'s Q₋, Q₊ converges in the limit to the metric gluing of independent Brownian half-planes
- Strategy: Take two points on the interface at boundary length distance n^{1/2},

Will focus on the discrete to continuum convergence statement

- ► Goal: show that the discrete graph gluing of two independent UIHPQ_S's Q₋, Q₊ converges in the limit to the metric gluing of independent Brownian half-planes
- Strategy: Take two points on the interface at boundary length distance $n^{1/2}$, show that the limit of the distance between them can be approximated by a path which crosses the interface only finitely many times (not growing with n)

Will focus on the discrete to continuum convergence statement

- ► Goal: show that the discrete graph gluing of two independent UIHPQ₅'s Q₋, Q₊ converges in the limit to the metric gluing of independent Brownian half-planes
- Strategy: Take two points on the interface at boundary length distance $n^{1/2}$, show that the limit of the distance between them can be approximated by a path which crosses the interface only finitely many times (not growing with n)
- Challenge: Understand the structure of the metric along the interface in a precise way

UIHPQ_S with marked edge in red.

UIHPQ₅ with marked edge in red. Reveal the \Box adjacent to the marked edge.

UIHPQ₅ with marked edge in red. Reveal the \Box adjacent to the marked edge.

UIHPQ₅ with marked edge in red. Reveal the \Box adjacent to the marked edge.

UIHPQ₅ with marked edge in red. Reveal the \Box adjacent to the marked edge. Exact formulas for the probability of each possibility.

UIHPQ₅ with marked edge in red. Reveal the \Box adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ₅.

UIHPQ₅ with marked edge in red. Reveal the \Box adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ₅. Probability disconnect k_1 edges on the left and k_2 edges on the right is $\cong k_1^{-5/2} k_2^{-5/2}$.

UIHPQ₅ with marked edge in red. Reveal the \Box adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ₅. Probability disconnect k_1 edges on the left and k_2 edges on the right is $\cong k_1^{-5/2} k_2^{-5/2}$. Metric ball exploration targeted at ∞ via peeling.

UIHPQ₅ with marked edge in red. Reveal the \Box adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ₅. Probability disconnect k_1 edges on the left and k_2 edges on the right is $\cong k_1^{-5/2} k_2^{-5/2}$. Metric ball exploration targeted at ∞ via peeling.

UIHPQ₅ with marked edge in **red**. Reveal the \Box adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ₅. Probability disconnect k_1 edges on the left and k_2 edges on the right is $\cong k_1^{-5/2} k_2^{-5/2}$. Metric ball exploration targeted at ∞ via peeling.

UIHPQ₅ with marked edge in **red**. Reveal the \Box adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ₅. Probability disconnect k_1 edges on the left and k_2 edges on the right is $\cong k_1^{-5/2} k_2^{-5/2}$. Metric ball exploration targeted at ∞ via peeling.

UIHPQ₅ with marked edge in **red**. Reveal the \Box adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ₅. Probability disconnect k_1 edges on the left and k_2 edges on the right is $\cong k_1^{-5/2} k_2^{-5/2}$. Metric ball exploration targeted at ∞ via peeling.

UIHPQ₅ with marked edge in **red**. Reveal the \Box adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ₅. Probability disconnect k_1 edges on the left and k_2 edges on the right is $\cong k_1^{-5/2} k_2^{-5/2}$. Metric ball exploration targeted at ∞ via peeling.

UIHPQ_S with marked edge in red. Reveal the \Box adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ_S. Probability disconnect k_1 edges on the left and k_2 edges on the right is $\cong k_1^{-5/2} k_2^{-5/2}$. Metric ball exploration targeted at ∞ via peeling.

UIHPQ_S with marked edge in red. Reveal the \Box adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ_S. Probability disconnect k_1 edges on the left and k_2 edges on the right is $\cong k_1^{-5/2} k_2^{-5/2}$. Metric ball exploration targeted at ∞ via peeling.

UIHPQ_S with marked edge in red. Reveal the \Box adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ_S. Probability disconnect k_1 edges on the left and k_2 edges on the right is $\cong k_1^{-5/2} k_2^{-5/2}$. Metric ball exploration targeted at ∞ via peeling.

UIHPQ₅ with marked edge in **red**. Reveal the \Box adjacent to the marked edge. Exact formulas for the probability of each possibility. Unexplored region is a UIHPQ₅. Probability disconnect k_1 edges on the left and k_2 edges on the right is $\cong k_1^{-5/2}k_2^{-5/2}$. Metric ball exploration targeted at ∞ via peeling. Can control precisely the ∂ -length.

Jason Miller (Cambridge)

Consider two UIHPQs's glued together.

 $Q_{\rm zip}$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth.

 $Q_{\rm zip}$

Consider two UIHPQ_S's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. **Strategy:** Dominate it from above by the "glued peeling cluster."

 $Q_{\rm zip}$

Consider two UIHPQ₅'s glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. **Strategy:** Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in Q_{\pm} .

Jason Miller (Cambridge)

Glued peeling cluster $Q_{\rm zid}$ Q_+ Q_{-}

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. **Strategy:** Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in Q_{\pm} .

 $Q_{\rm zip}$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. **Strategy:** Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in Q_{\pm} .

 $Q_{\rm zip}$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. **Strategy:** Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in Q_{\pm} .

 $Q_{\rm zip}$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. **Strategy:** Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in Q_{\pm} .

 $Q_{\rm zip}$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. **Strategy:** Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in Q_{\pm} .

 $Q_{\rm zip}$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. **Strategy:** Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in Q_{\pm} .

 $Q_{\rm zip}$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. **Strategy:** Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in Q_{\pm} .

 $Q_{\rm zip}$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. **Strategy:** Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in Q_{\pm} .

 $Q_{\rm zip}$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. **Strategy:** Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in Q_{\pm} .
$Q_{\rm zip}$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. **Strategy:** Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in Q_{\pm} .

Convergence of the SAW on \Box 's to SLE(8/3)

 $Q_{\rm zip}$

Consider two UIHPQs's glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. **Strategy:** Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in Q_{\pm} .

 $Q_{\rm zip}$

Consider two UIHPQ₅'s glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. **Strategy:** Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in Q_{\pm} .

 $Q_{\rm zip}$

Consider two UIHPQ₅'s glued together. Cannot explore the metric ball along the interface using peeling in a tractable manner because it will cross back and forth. **Strategy:** Dominate it from above by the "glued peeling cluster." Usual metric exploration but we add in the holes cut off from ∞ in Q_{\pm} .

▶ **Recall:** Glued peeling cluster ≥ metric ball

- ▶ **Recall:** Glued peeling cluster ≥ metric ball
- ∂-length and area harder to control due to to the upward jumps in boundary length

- ▶ **Recall:** Glued peeling cluster ≥ metric ball
- ∂-length and area harder to control due to to the upward jumps in boundary length
- ▶ **Theorem:** (Gwynne, M.) For each $p \in [1, 3/2)$, the *p*th moment of the number of edges cut off from ∞ by the *n*-layer glued peeling cluster is $\leq n^{2p}$.

- ▶ **Recall:** Glued peeling cluster ≥ metric ball
- ∂-length and area harder to control due to to the upward jumps in boundary length
- ▶ **Theorem:** (Gwynne, M.) For each $p \in [1, 3/2)$, the *p*th moment of the number of edges cut off from ∞ by the *n*-layer glued peeling cluster is $\leq n^{2p}$.
- ► Theorem: (Gwynne, M.) Same holds for the ∂-length of the glued peeling cluster.

- ▶ **Recall:** Glued peeling cluster ≥ metric ball
- ∂-length and area harder to control due to to the upward jumps in boundary length
- ▶ **Theorem:** (Gwynne, M.) For each $p \in [1, 3/2)$, the *p*th moment of the number of edges cut off from ∞ by the *n*-layer glued peeling cluster is $\leq n^{2p}$.
- ► Theorem: (Gwynne, M.) Same holds for the ∂-length of the glued peeling cluster.
- Corollary: (Gwynne, M.) The interface is non-degenerate in the subsequential limit.

- Recall: Glued peeling cluster ≥ metric ball
- ∂-length and area harder to control due to to the upward jumps in boundary length
- ▶ **Theorem:** (Gwynne, M.) For each $p \in [1, 3/2)$, the *p*th moment of the number of edges cut off from ∞ by the *n*-layer glued peeling cluster is $\leq n^{2p}$.
- ► Theorem: (Gwynne, M.) Same holds for the ∂-length of the glued peeling cluster.
- Corollary: (Gwynne, M.) The interface is non-degenerate in the subsequential limit.
- ► Proof idea: Recursive moment bounds for ∂-length and edges cut off from ∞.

- **Recall:** Glued peeling cluster \geq metric ball
- \triangleright ∂ -length and area harder to control due to to the upward jumps in boundary length
- **Theorem:** (Gwynne, M.) For each $p \in [1, 3/2)$, the *p*th moment of the number of edges cut off from ∞ by the *n*-layer glued peeling cluster is $\leq n^{2p}$.
- Theorem: (Gwynne, M.) Same holds for the ∂ -length of the glued peeling cluster.
- Corollary: (Gwynne, M.) The interface is non-degenerate in the subsequential limit.
- Proof idea: Recursive moment bounds for ∂ -length and edges cut off from ∞ .

 $Q_{\rm zid}$ Q_+

Caraceni-Curien also studied SAWs on random \Box 's and used the glued peeling cluster. Controlled the p = 1 moment of the set of edges cut off from ∞ .

 Q_{-}

Recall: goal is to show that a geodesic connecting ∂ points of ∂ distance $n^{1/2}$ from each other can be approximated by a path which crosses the interface at most a finite number of times (not growing with n).

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good (K > 1) if the Q_{zip} distance between any point on the inner and any point on the outer ∂ is at least 1/K times the length of a path which crosses the interface at most once.

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good (K > 1) if the Q_{zip} distance between any point on the inner and any point on the outer ∂ is at least 1/K times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing K > 1 large enough, we can cover the interface by K-good annuli with high probability.

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good (K > 1) if the Q_{zip} distance between any point on the inner and any point on the outer ∂ is at least 1/K times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing K > 1 large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of Q_{zip} is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good (K > 1) if the Q_{zip} distance between any point on the inner and any point on the outer ∂ is at least 1/K times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing K > 1 large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of Q_{zip} is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good (K > 1) if the Q_{zip} distance between any point on the inner and any point on the outer ∂ is at least 1/K times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing K > 1 large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of Q_{zip} is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good (K > 1) if the Q_{zip} distance between any point on the inner and any point on the outer ∂ is at least 1/K times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing K > 1 large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of Q_{zip} is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good (K > 1) if the Q_{zip} distance between any point on the inner and any point on the outer ∂ is at least 1/K times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing K > 1 large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of Q_{zip} is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good (K > 1) if the Q_{zip} distance between any point on the inner and any point on the outer ∂ is at least 1/K times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing K > 1 large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of Q_{zip} is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.
- Theorem (Gwynne, M.) There exists α ∈ (0,1) such that the subsequentially limiting geodesics a.s. spend at most α-fraction of their time in the interface.

 Q_{-}

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good (K > 1) if the Q_{zip} distance between any point on the inner and any point on the outer ∂ is at least 1/K times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing K > 1 large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of Q_{zip} is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.
- Theorem (Gwynne, M.) There exists α ∈ (0,1) such that the subsequentially limiting geodesics a.s. spend at most α-fraction of their time in the interface.
- Consequence: The subsequentially limiting metric is equivalent to the metric gluing of Brownian half-planes.

- Consider glued peeling clusters at dyadic scales
- Call a scale K-good (K > 1) if the Q_{zip} distance between any point on the inner and any point on the outer ∂ is at least 1/K times the length of a path which crosses the interface at most once.
- Theorem (Gwynne, M.) Choosing K > 1 large enough, we can cover the interface by K-good annuli with high probability.
- Consequence: The subsequentially limiting metric of Q_{zip} is bi-Lipschitz equivalent to the metric gluing of Brownian half-planes.
- Theorem (Gwynne, M.) There exists α ∈ (0,1) such that the subsequentially limiting geodesics a.s. spend at most α-fraction of their time in the interface.
- Consequence: The subsequentially limiting metric is equivalent to the metric gluing of Brownian half-planes.

 $Q_{\rm zip}$

Remark: arguments are delicate as the interface has $n^{1/2}$ edges while the geodesic has $n^{1/4}$.

Thanks!