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Percolation review

I Graph G = (V ,E), p ∈ (0, 1).

I Keep each e ∈ E based on the toss of an
independent p-coin

I Interested in connectivity properties of the
resulting graph:

I Critical value pc :
I p > pc → there exists an infinite

cluster
I p < pc → all clusters are finite

I Crossing probabilities
I Scaling limits

I Leads to better understanding of the
underlying graph G
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Critical bond percolation on a box in Z2 with side-length 1000, conformally mapped

to D. Shown are the clusters which touch the boundary.
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Percolation in fractal carpets

I Can ask the same questions about
percolation in a fractal carpet or gasket

I Answers are quite different than on a planar
lattice because the connectivity of the
graph is different

I Interesting to analyze because percolation
says something about the structure of the
carpet or gasket

I Kumagai, Higuchi-Wu: uniqueness of
infinite cluster at p > pc , CLT for number
of open clusters, etc...

Sierpinski carpet

We will be interested in what happens when the fractal carpet is random.
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Ising model

I Ising model on a graph G = (V ,E) is a
configuration σ ∈ {±}|V |

I Probability of σ is

1

Z exp

β ∑
{x,y}∈E

σxσy


where β is the inverse temperature and Z
is a normalization constant.

I Model for a magnet.

Ising model with + boundary

conditions.

We will be interested in percolation in random fractal carpets which arise from models

like the Ising model.
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FK random cluster representation of the Ising model

I Can sample from an instance of the Ising
model as follows.

I Sample an edge configuration from
the random cluster measure:

1

Z (1− p)|E |−bpbqc , q = 2,

where b = #edges, c = #clusters.
I Color clusters ± with probability 1/2

I Given Ising instance, can sample edges by
opening edges between same spin sites
independently with probability p.

I The clusters can be viewed as a percolation
in the graph formed by the random
collection of edges between same-spin sites.

I Generalizes to q-state Potts models.
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Existence of the continuum limit?

I On Z2, the FK clusters have been shown to converge to CLE16/3

(Kemppainen-Smirnov).

I The full collection of interfaces between ± sites in the Ising model converge to
CLE3 (Benoist-Hongler).

I There should be a coupling of CLE3 and CLE16/3 which satisfy the same
properties:

I CLE16/3 = percolation in the CLE3 carpet
I CLE3 = interfaces between i.i.d. ±-labeled CLE16/3 clusters
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Ising model on box in Z2 of side-length 1000, all + boundary conditions, conformally

mapped to D. Boundary touching + cluster in black.
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Critical bond percolation on box in Z2 of side-length 1000. Shown in black are the

boundary touching clusters.
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Critical bond percolation on box in Z2 of side-length 1000. Clusters are colored

according to an i.i.d. uniform label in [0, 1].
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Critical bond percolation on box in Z2 of side-length 1000. Boundary touching clusters

with label ≤ 1/2 (resp. > 1/2) in red (resp. blue). Blue/red interface in green.
Jason Miller (Cambridge) CLE Percolations December 9, 2016 11 / 25



Part II: SLE and CLE
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Schramm-Loewner evolution (SLE)
I Random fractal curve in a planar domain

I Introduced by Schramm in ’99 to describe
limits of interfaces in discrete models

I Characterized by conformal invariance and
domain Markov property

I Indexed by a parameter κ > 0

I Simple for κ ∈ (0, 4], self-intersecting for
κ ∈ (4, 8), space-filling for κ ≥ 8

I Dimension: 1 + κ/8 for κ ≤ 8

I Some special κ values:

I κ = 2 LERW, κ = 8 UST
I κ = 8/3 SAW
I κ = 3 Ising, κ = 16/3 FK-Ising
I κ = 4 GFF level lines
I κ = 6 Percolation
I κ = 12 Bipolar orientations
I · · ·

Critical percolation, hexagonal lattice

Jason Miller (Cambridge) CLE Percolations December 9, 2016 13 / 25



Schramm-Loewner evolution (SLE)
I Random fractal curve in a planar domain

I Introduced by Schramm in ’99 to describe
limits of interfaces in discrete models

I Characterized by conformal invariance and
domain Markov property

I Indexed by a parameter κ > 0

I Simple for κ ∈ (0, 4], self-intersecting for
κ ∈ (4, 8), space-filling for κ ≥ 8

I Dimension: 1 + κ/8 for κ ≤ 8

I Some special κ values:

I κ = 2 LERW, κ = 8 UST
I κ = 8/3 SAW
I κ = 3 Ising, κ = 16/3 FK-Ising
I κ = 4 GFF level lines
I κ = 6 Percolation
I κ = 12 Bipolar orientations
I · · ·

Critical percolation, hexagonal lattice

Jason Miller (Cambridge) CLE Percolations December 9, 2016 13 / 25



Schramm-Loewner evolution (SLE)
I Random fractal curve in a planar domain

I Introduced by Schramm in ’99 to describe
limits of interfaces in discrete models

I Characterized by conformal invariance and
domain Markov property

I Indexed by a parameter κ > 0

I Simple for κ ∈ (0, 4], self-intersecting for
κ ∈ (4, 8), space-filling for κ ≥ 8

I Dimension: 1 + κ/8 for κ ≤ 8

I Some special κ values:

I κ = 2 LERW, κ = 8 UST
I κ = 8/3 SAW
I κ = 3 Ising, κ = 16/3 FK-Ising
I κ = 4 GFF level lines
I κ = 6 Percolation
I κ = 12 Bipolar orientations
I · · ·

Critical percolation, hexagonal lattice

Jason Miller (Cambridge) CLE Percolations December 9, 2016 13 / 25



Schramm-Loewner evolution (SLE)
I Random fractal curve in a planar domain

I Introduced by Schramm in ’99 to describe
limits of interfaces in discrete models

I Characterized by conformal invariance and
domain Markov property

I Indexed by a parameter κ > 0

I Simple for κ ∈ (0, 4], self-intersecting for
κ ∈ (4, 8), space-filling for κ ≥ 8

I Dimension: 1 + κ/8 for κ ≤ 8

I Some special κ values:

I κ = 2 LERW, κ = 8 UST
I κ = 8/3 SAW
I κ = 3 Ising, κ = 16/3 FK-Ising
I κ = 4 GFF level lines
I κ = 6 Percolation
I κ = 12 Bipolar orientations
I · · ·

Critical percolation, hexagonal lattice

Jason Miller (Cambridge) CLE Percolations December 9, 2016 13 / 25



Schramm-Loewner evolution (SLE)
I Random fractal curve in a planar domain

I Introduced by Schramm in ’99 to describe
limits of interfaces in discrete models

I Characterized by conformal invariance and
domain Markov property

I Indexed by a parameter κ > 0

I Simple for κ ∈ (0, 4], self-intersecting for
κ ∈ (4, 8), space-filling for κ ≥ 8

I Dimension: 1 + κ/8 for κ ≤ 8

I Some special κ values:

I κ = 2 LERW, κ = 8 UST
I κ = 8/3 SAW
I κ = 3 Ising, κ = 16/3 FK-Ising
I κ = 4 GFF level lines
I κ = 6 Percolation
I κ = 12 Bipolar orientations
I · · ·

Critical percolation, hexagonal lattice

Jason Miller (Cambridge) CLE Percolations December 9, 2016 13 / 25



Schramm-Loewner evolution (SLE)
I Random fractal curve in a planar domain

I Introduced by Schramm in ’99 to describe
limits of interfaces in discrete models

I Characterized by conformal invariance and
domain Markov property

I Indexed by a parameter κ > 0

I Simple for κ ∈ (0, 4], self-intersecting for
κ ∈ (4, 8), space-filling for κ ≥ 8

I Dimension: 1 + κ/8 for κ ≤ 8

I Some special κ values:

I κ = 2 LERW, κ = 8 UST
I κ = 8/3 SAW
I κ = 3 Ising, κ = 16/3 FK-Ising
I κ = 4 GFF level lines
I κ = 6 Percolation
I κ = 12 Bipolar orientations
I · · ·

Critical percolation, hexagonal lattice

Jason Miller (Cambridge) CLE Percolations December 9, 2016 13 / 25



Schramm-Loewner evolution (SLE)
I Random fractal curve in a planar domain

I Introduced by Schramm in ’99 to describe
limits of interfaces in discrete models

I Characterized by conformal invariance and
domain Markov property

I Indexed by a parameter κ > 0

I Simple for κ ∈ (0, 4], self-intersecting for
κ ∈ (4, 8), space-filling for κ ≥ 8

I Dimension: 1 + κ/8 for κ ≤ 8

I Some special κ values:

I κ = 2 LERW, κ = 8 UST
I κ = 8/3 SAW
I κ = 3 Ising, κ = 16/3 FK-Ising
I κ = 4 GFF level lines
I κ = 6 Percolation
I κ = 12 Bipolar orientations
I · · ·

Critical percolation, hexagonal lattice

Jason Miller (Cambridge) CLE Percolations December 9, 2016 13 / 25



Schramm-Loewner evolution (SLE)
I Random fractal curve in a planar domain

I Introduced by Schramm in ’99 to describe
limits of interfaces in discrete models

I Characterized by conformal invariance and
domain Markov property

I Indexed by a parameter κ > 0

I Simple for κ ∈ (0, 4], self-intersecting for
κ ∈ (4, 8), space-filling for κ ≥ 8

I Dimension: 1 + κ/8 for κ ≤ 8

I Some special κ values:

I κ = 2 LERW, κ = 8 UST
I κ = 8/3 SAW
I κ = 3 Ising, κ = 16/3 FK-Ising
I κ = 4 GFF level lines
I κ = 6 Percolation
I κ = 12 Bipolar orientations
I · · ·

Critical percolation, hexagonal lattice
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SLEκ

η(t)
gt

η(s)

gt(η(s))

Wt=gt(η(t))

Loewner’s equation: if η is a non self-crossing path in H with η(0) ∈ R and gt is the
Riemann map from the unbounded component of H \ η([0, t]) to H normalized by
gt(z) = z + o(1) as z →∞, then

∂tgt(z) =
2

gt(z)−Wt
where g0(z) = z and Wt = gt(η(t)). (F)

SLEκ in H: The random curve associated with (F) with Wt =
√
κBt , B a standard

Brownian motion. Other domains: apply conformal mapping.
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Simulations due to Tom Kennedy.
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Conformal loop ensembles (CLE)
I Random collection of loops in a planar

domain. Loop version of SLE.

I Introduced by Sheffield in 2006 to describe
scaling limits of all interfaces.

I Indexed by a parameter κ ∈ (8/3, 8)

I Simple for κ ∈ (8/3, 4], self-intersecting for
κ ∈ (4, 8)

I Gasket dimension:
2− (8− κ)(3κ− 8)/(32κ)

I Characterized by conformal invariance and
the restriction property,

κ ∈ (8/3, 4]

I Some special κ values:

I κ = 3 Ising, κ = 16/3 FK-Ising
I κ = 4 GFF level lines
I κ = 6 Percolation
I κ = 8 UST
I · · ·

Critical percolation, hexagonal lattice
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CLE3 CLE4

CLE16/3 CLE6

Simulations due to David B. Wilson.
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Part III: Conformal percolation and
results
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Conformal percolation

I Goals:

I Make sense of CLE16/3 as critical percolation inside of CLE3 carpet
I Show that CLE3 can be constructed by assigning CLE16/3 clusters ± spins

independently with probability 1/2 and then agglomerating same-spin clusters
together

I The same will hold more generally for each CLEκ, κ ∈ (8/3, 4], and the
corresponding CLE16/κ.

I Then we will have made sense of the random cluster representation of the Ising
model in the continuum and, more generally, for all of the Potts models.
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CLE16/3 as percolation in the CLE3 carpet

I Percolation exploration in CLE3 carpet
from x to y

I Jointly explore ± interfaces hit, keep
on left side

I Continuously hitting interfaces ±
interfaces

I Goal: characterize the law of the joint
percolation/Ising exploration

I Conformally invariant and satisfies the
domain Markov property

I Evolves as an SLE3 as it explores ±
interface

I These properties single out SLE3(−3)

I Percolation exploration is its “trunk”

I Theorem: (M, Sheffield, Werner) The
trunk is an SLE16/3(−2/3)
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Convergence of the critical Ising interfaces to CLE3

I Proved by Kemppainen and Smirnov that the FK-Ising clusters converge to CLE16/3

I Know that we can construct Ising from FK-Ising clusters

I Thus, to prove that all of the Ising interfaces converge to CLE3, suffices to show
that the graph of FK-Ising loops converges in strong enough sense to the graph of
CLE16/3 loops.

I This will be in a paper of Duminil-Copin, Tassion, and Wu.

I Combined, this implies that all of the Ising contours converge to CLE3.

(Now
proved in a different way by Benoist-Honger.)
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Other results
I The continuum percolation is still random

given its environment: the CLE16/3 is not
determined by the CLE3

I Generalizes to all CLEκ for κ ∈ (8/3, 4]
and CLE16/κ

I Mathematical derivation that the
scaling limit of the 3-state Potts
model should converge to CLE10/3

and the 4-state Potts model should
converge to CLE4

I First construction of scaling limit of
percolation inside of a fractal gasket

I New proof of the “existence” of CLEκ for
κ ∈ (8/3, 4]. Previous proof was based on
the connection with Brownian loop-soups
(Sheffield-Werner)

I First proof of continuity of SLEκ(ρ) for
ρ < −2

Ising model with + boundary

conditions.
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Proof technique

I Main tool: coupling of SLE with the GFF. Flow lines of the formal vector field e ih/χ

where h is an instance of the GFF and χ > 0 are SLE-type curves

I Provides a framework for coupling many SLE curves together so that it is possible
to grow them in different orders (i.e., they commute)

I The coupling of CLE3 and CLE16/3 turns out to sit exactly in this framework

I The same is true more generally for CLEκ, κ ∈ (8/3, 4] and CLE16/κ, 16/κ ∈ [4, 6)
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I The coupling of CLE3 and CLE16/3 turns out to sit exactly in this framework

I The same is true more generally for CLEκ, κ ∈ (8/3, 4] and CLE16/κ, 16/κ ∈ [4, 6)
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Thanks!
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