
Theorem 3.1.2. For all non-negative measurable functions f, g and all constants

α, β ≥ 0,

(a) µ(αf + βg) = αµ(f) + βµ(g),
(b) f ≤ g implies µ(f) ≤ µ(g),
(c) f = 0 a.e. if and only if µ(f) = 0.

Proof. Define simple functions fn, gn by

fn = (2−nb2nfc) ∧ n, gn = (2−nb2ngc) ∧ n.

Then fn ↑ f and gn ↑ g, so αfn +βgn ↑ αf +βg. Hence, by monotone convergence,

µ(fn) ↑ µ(f), µ(gn) ↑ µ(g), µ(αfn + βgn) ↑ µ(αf + βg).

We know that µ(αfn + βgn) = αµ(fn) + βµ(gn), so we obtain (a) on letting n → ∞.
As we noted above, (b) is obvious from the definition of the integral. If f = 0 a.e.,
then fn = 0 a.e., for all n, so µ(fn) = 0 and µ(f) = 0. On the other hand, if µ(f) = 0,
then µ(fn) = 0 for all n, so fn = 0 a.e. and f = 0 a.e.. �

Theorem 3.1.3. For all integrable functions f, g and all constants α, β ∈ R,

(a) µ(αf + βg) = αµ(f) + βµ(g),
(b) f ≤ g implies µ(f) ≤ µ(g),
(c) f = 0 a.e. implies µ(f) = 0.

Proof. We note that µ(−f) = −µ(f). For α ≥ 0, we have

µ(αf) = µ(αf+) − µ(αf−) = αµ(f+) − αµ(f−) = αµ(f).

If h = f + g then h+ + f− + g− = h− + f+ + g+, so

µ(h+) + µ(f−) + µ(g−) = µ(h−) + µ(f+) + µ(g+)

and so µ(h) = µ(f)+µ(g). That proves (a). If f ≤ g then µ(g)−µ(f) = µ(g−f) ≥ 0,
by (a). Finally, if f = 0 a.e., then f± = 0 a.e., so µ(f±) = 0 and so µ(f) = 0. �

Note that in Theorem 3.1.3(c) we lose the reverse implication. The following result
is sometimes useful:

Proposition 3.1.4. Let A be a π-system containing E and generating E. Then, for

any integrable function f ,

µ(f1A) = 0 for all A ∈ A implies f = 0 a.e..

Here are some minor variants on the monotone convergence theorem.

Proposition 3.1.5. Let (fn : n ∈ N) be a sequence of measurable functions, with

fn ≥ 0 a.e.. Then

fn ↑ f a.e. =⇒ µ(fn) ↑ µ(f).

Thus the pointwise hypotheses of non-negativity and monotone convergence can
be relaxed to hold almost everywhere.
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Proposition 3.1.6. Let (gn : n ∈ N) be a sequence of non-negative measurable

functions. Then
∞
∑

n=1

µ(gn) = µ

( ∞
∑

n=1

gn

)

.

This reformulation of monotone convergence makes it clear that it is the coun-
terpart for the integration of functions of the countable additivity property of the
measure on sets.

3.2. Integrals and limits. In the monotone convergence theorem, the hypothesis
that the given sequence of functions is non-decreasing is essential. In this section we
obtain some results on the integrals of limits of functions without such a hypothesis.

Lemma 3.2.1 (Fatou’s lemma). Let (fn : n ∈ N) be a sequence of non-negative

measurable functions. Then

µ(lim inf fn) ≤ lim inf µ(fn).

Proof. For k ≥ n, we have
inf
m≥n

fm ≤ fk

so
µ( inf

m≥n
fm) ≤ inf

k≥n
µ(fk) ≤ lim inf µ(fn).

But, as n → ∞,

inf
m≥n

fm ↑ sup
n

(

inf
m≥n

fm

)

= lim inf fn

so, by monotone convergence,

µ( inf
m≥n

fm) ↑ µ(lim inf fn).

�

Theorem 3.2.2 (Dominated convergence). Let (fn : n ∈ N) be a sequence of inte-

grable functions with fn → f pointwise as n → ∞. Suppose that, for some integrable

function g
|fn| ≤ g, for all n.

Then f is integrable and µ(fn) → µ(f) as n → ∞.

Proof. The limit f is measurable and |f | ≤ g, so µ(|f |) ≤ µ(g) < ∞, so f is integrable.
We have 0 ≤ g ± fn → g ± f so certainly lim inf(g ± fn) = g ± f . By Fatou’s lemma,

µ(g) + µ(f) = µ(lim inf(g + fn)) ≤ lim inf µ(g + fn) = µ(g) + lim inf µ(fn),

µ(g) − µ(f) = µ(lim inf(g − fn)) ≤ lim inf µ(g − fn) = µ(g) − lim sup µ(fn).

Since µ(g) < ∞, we can deduce that

µ(f) ≤ lim inf µ(fn) ≤ lim sup µ(fn) ≤ µ(f).

This proves that µ(fn) → µ(f) as n → ∞. �
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