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PREFACE

Quite apart from the fact that percolation theory had its origin
in an honest applied problem (see Hammersley and Welsh (1980)), it is
a source of fascinating problems of the best kind a mathematician can
wish for: problems which are easy to state with a minimum of preparation,
but whose solutions are (apparently) difficult and require new methods.
At the same time many of the problems are of interest to or proposed
by statistical physicists and not dreamt up merely to demonstrate
ingenuity.

Progress in the field has been slow. Relatively few results have
been established rigorously, despite the rapidly growing Titerature
with variations and extensions of the basic model, conjectures,
plausibility arguments and results of simulations. It is my aim to
treat here some basic results with rigorous proofs. This is in the
first place a research monograph, but there are few prerequisites; one
term of any standard graduate course in probability should be more
than enough. Much of the material is quite recent or new, and many of
the proofs are still clumsy. Especially the attempt to give proofs
valid for as many graphs as possible led to more complications than
expected. I hope that the Applications and Examples provide justifi-
cation for going to this level of generality. I taught a graduate
course on this material at Cornell University in Spring 1981, but the
beginning of the monograph was a set of notes for a series of lectures
at Kyoto University, Japan, which I visited in summer 1981 on a
Fellowship of the Japan Society for the Promotion of Science.

I am indebted to a large number of people for helpful discussions.
I especially value various suggestions made by J.T. Cox, R. Durrett,
G.R. Grimmett and S. Kotani. I also wish to thank members of the
Department of Mathematics at Kyoto University, and in particular
my host, Professor S. Watanabe, for their hospitality and for giving me
the opportunity to try out a first version of these notes in their
seminar. Last but not least, I am grateful to the National Science



Foundation and the Japan Society for the Promotion of Science for
their financial support during my work on this monograph.

The reader should be aware of the fact that some standard nota-
tion is defined only in the Index of Symbols at the end.

Ithaca, New York, July 1982
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1. INTRODUCTION AND SUMMARY.

The earliest example of percolation was discussed in
Broadbent (1954) and Broadbent and Hammersley (1957) as a model for
the spread of fluid or gas through a random medium. The fluid, say,
spreads through channels; fluid will move through a channel if and
only if the channel is wide enough. There is therefore no randomness
in the motion of the fluid itself, such as in a diffusion process, but
only in the medium, i.e., in the system of channels. Broadbent and
Hammersley modeled this as follows. The channels are the edges or bonds
between adjacent sites on the integer lattice in the plane, ‘Ez. Each
bond is passable (blocked) with probability p(q =1 - p), and all
bonds are independent of each other. Llet Pp denote the corresponding
probability measure for the total configuration of all the bonds. One
is now interested in probabilistic properties of the configuration of
passable bonds, and, especially in the dependence on the basic
parameter p of these properties. Broadbent and Hammersiey began
with the question whether fluid from outside a large region, say outside
|x] < N , can reach the origin. This is of course equivalent to asking
for the probability of a passable path]) from the origin to |x| > N.
For v e I?, let W(v) be the union of all edges which belong to a
passable path starting at v. This is the set of all points which can
be reached by fluid from v. It is called the open component or cluster
of v. W(v) is empty iff the four edges incident on v are blocked. If
we write W for W(0), then the above question asks for the behavior
for large N of

(1.1) P, {0 {x| >N} # 0} .

1 This is a path made up of passable edges between neighbors of
Zz. Two successive edges of the path must have a vertex of 122 in
common. Precise definitions are given in later chapters.



The Timit of (1.1) as N > = equals
(1.2) 8(p) := Pp{# W=},
where #W denotes the number of edges in W. It is immediate that

8(0) = 0, 6(1) =1 and that p > 6(p) 1is non-decreasing. Therefore
the so called critical probability

(1.3) sup{p : 8(p) = 0}

Py *

is such that 8(p) =0 for p < Py, and 8(p) > O for

P > py . Broadbent and Hammersley (1957) , Hammersley (1957), and
Hammersley (1959) made the remarkable discovery that Py lies
strictly between 0 and 1, and in fact

(1.4)

>

< py 21 -

|

2. The exact

value of X 1is unknown, but one trivially has A < 3. Thus, there are
two regions for the parameter p with drastically different behavior of
the system. For p < pH no infinite clusters are formed. For

P > Py there is a positive probability of an infinite cluster. 1In
fact, Harris (1960) proved that with probability one there is a unique
infinite cluster, when p > Py (see also Fisher (1961)). The
existence of a threshold value such as Py was well known in many

where A 1is the so-called connectivity constant of Z

models of statistical mechanics, in particular in the Ising model for
magnetism. Moreover the proof of (1.4) involved a Peierls argument -
i.e., a counting of certain paths and contours - quite familiar to
students of critical phenomena. As a consequence much of the work on
percolation theory has and is being done by people in statistical
mechanics, in the hope that the percolation model is simple enough to
allow explicit computation of many quantities which are hard to deal
with in various other models for critical phenomena. Despite the
considerable activity in the field, as witnessed by the recent survey
articles of Stauffer (1979), Essam (1980), Hammersley and Welsh (1980),
Wierman (1982a), few mathematically rigorous results have been obtained.
In this monograph we want to present those results which can be proved
rigorously. As our title indicates we expect that the stress on rigour
will appeal more to the mathematician than the physicist. Even



mathematicians will surely become impatient with the unpleasant details
of many a proof; it often happened to the author while writing the
proofs. What is worse though, there are quite a few phenomena about
which we cannot (yet?) say much, if anything, rigorously. This mono-
graph will therefore not go as far as physicists would iike.

We stressed above the interest for statistical mechanics of perco-
lation theory, because that seems the most important area of application
for percolation theory. There are, however, other interpretations and
applications of percolation theory such as the spread of disease in an
orchard; the reader is referred to Frisch and Hammersley (1963) for a
1ist of some of these.

In the remaining part of this introduction we want to summarize
the results and questions which are treated here. Much of the early
work dealt with the determination of the critical probability Py
defined above. Harris (1960) improved the lower bound in (1.4) to
Py > %- . Sykes and Essam (196?) gave an ingenious, but incomplete,
argument that Py should equal 5 - No progress on this problem seems
to have been made between 1964 and the two independent articles
Seymour and Welsh (1978) and Russo (1978). These articles introduced
two further critical probabilities:

(1.5) Py = sup {p : Ep{#W} < o}

and 1)

(1.6) P = sup {p : Tim TO((n,n),1,p) = 0} .
where

(1.7) TO((n,n),1,p) = Pp { 3 passable path in [o,n] x [0,3n]

connecting the left and right edge of this
rectangle} .

1) pg appears explicitly only in Seymour and Welsh (1978) and is

defined slightly differently from (1.6). However, it turns out that
under certain symmetry conditions the two definitions lead to the same
pg. For our treatment (1.6) is the more useful definition.
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Py separates the p-values where the expected size of the cluster of

the origin is finite and infinite, respectively. Pg concerns the
possibility of crossing large rectangles. For p < Pg the probability
of a passable horizontal crosssing of a rectangle of size n x 3n

tends to zero, while such crossings occur with a probability bounded

away from zero - at least along a subsequence of n's - if p > Ps-
Seymour and Welsh and Russo proved various relations between Py» Pp

and Pg which finally enabled Kesten (1980a) to prove Py = Pr = Pg = %—.
This will be a special case of the main theorem in Ch. 3 .

The problem discussed so far is called the bond-percolation problem
for Z?. To describe the contents of Theorems 3.1 and 3.2 somewhat
more, we observe first that one can easily replace '122 by any
infinite graph G . One obtains bond-percolation on G , by choosing
the edges of G independently of each other as passable or blocked.

In this case the clusters W(v) can be defined as above. Another
variant of the model is site-percolation on G . One now divides

the sites, rather than the bonds into two classes. Usually these are
named "occupied" and "vacant". Again the classifications of the sites
are random and independent of each other. The occupied cluster of

v, W(v), will now be defined as the union of all edges and vertices,
which can be reached from v by a path on G which passes only through
occupied sites. In both bond- and site-percolation one often allows
different probabilities for different bonds to be passable, or sites

to be occupied. Normally, one only allows a finite number of parameters;
the graph and the pattern of probabilities assigned to the bonds or edges
are taken periodic. For instance, Sykes and Essam (1964) considered

the bond-problem on ZZ in which each horizontal (vertical) bond is
passable with probability Phor (pvert.)' In all cases the first
question is when percolation occurs, i.e., for which values of the
parameters do infinite clusters arise? In only very few cases has one
been able to determine this "percolative region" in the parameter space
explicitly. These were all derived heuristically already by Sykes and
Essam (1964). Theorem 3.1 contains a rigourous confirmation of most of
the Sykes and Essam work. This includes the triangular site problem
(with one parameter; the critical probability equals %), the two
parameter bond-problem on Z@ mentioned above (percolation occurs

iff Phor * Pyart > 1) and a two parameter bond-problem on the
triangular and hexagonal lattice. (Wierman (1981) gave the first
rigorous treatment of the one-parameter case; Sykes and Essam allow
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three different probabilities for different bonds, but our method
requires too much symmetry to be applicable to the original three
parameter problem).

Theorems 3.1 and 3.2 only apply to so called matching pairs of
graphs G and q* in the plane with one of the coordinate-axes as
symmetry axis and certain relations between ¢ and Q* . Moreover
these theorems only yield explicit answers in the few examples
mentioned above. In other cases the best one can obtain from the
theorems is some generalized form of the result
(1.8) Py = Py = Pg s
and even this often requires extra work. We generalize Russo (1981) in
demonstrating (1.8) for a two-parameter site-problem on Z@ , and a
one-parameter site-problem on the diced lattice.

The emphasis in the recent physics 1literature has shifted to
power laws or scaling laws. In one-parameter problems, many quantities
show some kind of singular behavior in their dependence on the basic
parameter p, as p approaches Py Many people believe, and numerical
evidence supports them, that the singular behavior will be 1ike that
of powers of |p-pH] (see Stauffer (1979), Essam (1980)). More
specifically, one expects that (see p.422 for Ep)

(1.9) o(p) ~ Clo-p)® . p ¥ by

-yt
(1.10) EpU#Ws 0 <=3~ C [ppyl™ L p > gy s

for some positive constants C, C,,B,yt , where the plus (minus)

in (1.10) refers to the approach ﬂof P-Py to zero from the positive
(negative) side. The meaning of (1.9) or (1.10) is still somewhat
vague. It may mean that the ratio of the left and right hand side tends
to one, but its meaning may be as weak as convergence of the ratio of
the logarithms of the left and right hand side to one. In addition there
is the belief that the exponents B and vy are universal, that is,
that their values depend only on the dimension of the graph G , but

are (practically) the same for a large class of graphs. The numerical
evidence presently available does not seem to rule this out (see

Essam (1980), Appendix 1). We still seem to be far removed from proving
any power law. The best results known to us are presented in Ch. 8.



There we prove power estimates of the form

3 B2
(1.11) Cilp-py) < 0(p) < Colp-py) © » P > by

Y -y
1 2
(1.12) Cy [p-pyl

< E {0 <= < Gy |popy]

for s%?e positive Ci’ B, and vy
on Z

Another function which is expected to have a power law is the
second derivative of A(p), where A(p) is the average number of
clusters per site under P_ (see Ch. 9 for a precise definition). The
arguments of Sykes and Essam (1964) for determining Py referred to
above were based on this function A(p). On the basis of analogy with
statistical mechanics they assumed that p - A(p) has only one
singularity and that it is located at p = Py- In Sect. 9.3 we show
that for bond- and site-percolation A(.) 1is twice continuously
differentiable on [0,1] , including at py and that it is analytic

for p # Py - However, we have been unable to show that A(.) has a
singularity at Py-

i for bond- or site-percolation

The values for B and By s OF 1 and Yos in
(1.11) and (1.12) obtained from our proof are still very far
apart. The difficulty Ties in part in finding good estimates for

(1.13) Pyn < M <}

for large n and p < Py» but close to Py- This problem is
treated (in a multiparameter setting) in Ch. 5, where it is shown that
for p < P (1.13) decreases exponentially in n, i.e., that (1.13)
is bounded by

(1.14) C;(p) exp - Cy(p) n

This estimate works for all graphs, but unfortunately only up to
Pr - Only for those graphs for which we know that Pr = Py can
this estimate be used for deriving power laws, and even then, it leads
to poor estimates of 81 and Yi oo because the estimate for
Cz(p) in Ch. 5 1s a very rough one.

Some results on the behavior of (1.13) for p > py and the

continuity of ©(.) are in Sect. 5.2 and 5.3.



In Ch. 10 we prove that
(1.15) py(#) > py(Q)

for certain graphs G, ¥, with ® a subgraph of ( . Here
pH(Q) is the critical probability Py for site-percolation on G .
A different class of problems is treated in Ch. 11, which deals
with random electrical networks. For simplicity we restrict discussion
here to a bond-problem on Zﬂ . Assume each bond between two vertices
of B@ is a resistor of 1 ohm with probability p, and removed from
the graph with probability q =1 - p (equivalently we can make it an
insulator with infinite resistance with probability q). Let Bn be
the cube

B, = {x = (x(1),...,x(d)): 0 < x(i) <n, 1<i<d)

and

Al = {x: xe Bn,x(1) = n}

its left and right face respectively. Finally, let Rn be the
electrical resistance of the random network in Bn, between Ag and

A: . We are interested in the behavior of nd'ZRn as n -+ o

for various p. (see Ch. 11 for the motivation of the power of n). This
leads to the introduction of a further critical probability PR

Various definitions are possible; we expect that they all lead to the

same value of PR - Here we only mention

d-ZR < OO} - -I}

(1.76) PR = inf {p : Pp{ Timsup n n

It is immediate from the definitions that R, =« infinitely often
a.s. [Pp] when p < pg (and in fact for all d we show that
R == : eventually a.s. [Pp] when p < ps). We also show

PR £ 7 SO that



For d = 2 we show that actually
(1.18)

so that there still is only one critical probability. The last equality
in (1.18) is obtained from the existence of a constant C > 0 such
that for p > %- one has

(1.19) Pp{for all large n there exist Cn disjoint
passable paths in [0,n]x[0,3n] connecting the
left and right edge of this rectangle} = 1.

When we compare (1.19) with the definition
for bond-percolation on 12 , not only is

—~

1.6) of pg we see that
the separation point
between the p-values for which there does not or does exist a single
passable crossing of a large rectangle, but once p gets above this
separation point, there are necessarily very many disjoint passable
crossings.

N —

We conclude this monograph with a 1ist of some unsolved problems
in Ch. 12.

For the expert we briefly point out which parts ofi this monograph
have not appeared in print before; we also 1ist some of the important
topics which have been omitted. New are the determination in Ch. 3
of the percolative region in some multiparameter percolation problems,
an improved lower bound for the cluster size distribution in the
percolative region in Sect. 5.2, the strict inequalities in Sect. 10.2
(even though a special case of this has been proven recently by
Higuchi (1982)) and the treatment of random electric networks in Ch. 11.
As for restrictions and omissions, we are dealing only with Bernoulli
percolation on the sites or bonds of an undirected graph. Thus we do
not discuss mixed bond- site problems (about which 1ittle is known
so far), but also omit "directed percolation problems" for which
Durrett and Griffeath (1983) recently have obtained many new results,
and we also omit any discussion of models in which the bonds or sites
are not independent. Thus there is no mention of the Ising model, even
though Kasteleyn and Fortuin (1969) proved an exact relation between
the Ising model and percolation. As far as we are aware this relation-
ship has enhanced people's intuitive understanding of both models, but
it has not helped in proving new results about either model. Another
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area that is essentially untouched is percolation in dimension > 3.
Except in Ch. 5 the methods are strictly two-dimensional. Recently
Aizenman (1982) and Aizenman and Frohlich (1982) have dealt with random
surfaces. These may be the proper dual for bond percolation on IE3 and
may lead to a treatment of percolation problems in dimension three.

We have also left out the central 1imit theorems for various
percolation-theoretical functions of Branvali (1980), Cox and
Grimmett (1981), Newman (1980) and Newman and Wright (1981).

Finally, we mention a new and highly original proof of Russo (1982)

for the equality py = pg , which is known to imply py =-% for
bond-percolation on ZZ- . Russo's proof uses less geometry than

ours and may be useful for problems in higher dimensions. We stuck

with the more geometric proof of Theorems 3.1 and 3.2 because so far
it is the only method of proof which we know how to jack up to obtain
the power estimates (1.11) and (1.12). Also the geometric method of

proof seems to be the only suitable one for obtaining the strict
inequalities of Sect. 10.2.
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2. WHI PHS WE CONSIDER?

This chapter discusses the graphs with which we shall work, as
well as several graph-theoretical tools. Except for the basic defini-
tions in Sect. 2.1-2.3 the reader should skip the remaining parts of
this chapter until the need for them arises.

2.1 Periodic graphs.

Throughout this monograph we consider only graphs which are imbed-
ded in Rd for some d < . Only when strictly necessary shall we
make a distinction between a graph and its image under the imbedding.
Usually we denote the graph by G, a generic vertex of G by u, v or
w (with or without subscripts), and a generic edge of G by e, f or

g (with or without subscripts). "Site" will be synonymous with "vertex",
and "bond" will be synonymous with "edge". The collection of vertices
of G will always be a countable subset of Rd . The collection of

edges of G will also be countable, and each edge will be a simple arc
- that is, a homeomorphic image of the interval [0,1] - in Rd, with
two vertices as endpoints but no vertices of G in its interior. 1In
particular we take an edge to be closed, i.e., we include the endpoints
in the edge. If e 1is an edge, then we denote its interior, i.e., e
minus its endpoints, by e. We shall say that e 1is incident to v if
v is an endpoint of e. We only allow graphs in which the endpoints of
each edge are distinct; thus we assume

(2.1) G contains no loops.

We shall, however, allow several edges between the same pair of distinct
vertices.

The notation

v1(}v2 or equivalently VZQV]

will be used to denote that vy and v, are adjacent or neighbors on G.
This means that there exists an edge of (¢ with endpoints Vi and

V2.
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A path on G will be a sequence r = (vO,e],...,e ,vv) with
VgV, vertices of G and €1s--58 edges of G such that €41
is an edge with endpoints v, and Vil We call Vo (Vv) the first
or initial (last or final) vertex of r and say that r ds a path from
Vo to v, The path r s called self-avoiding if all its vertices
are distinct. Unless otherwise stated all paths are tacitly taken to be
self-avoiding. In the few cases where we have to deal with paths which
are not necessarily self-avoiding we shall call them paths with possible
double points. If G 1is any graph then we can always turn a path with
possible double points r = (vo,e1,...,ev,vv) into a self-avoiding sub-
path r with the same initial and final vertex as r. This is done by
the process of loop-removal which works as follows: Let o be the

smallest index for which there exists a T, > e with V.. *® vp
1 1
From the possible T with this property choose the largest one. Form

the path ry = (vo,e1,...,vp] = vT],eT]+1,vT]+],...,ev,vv) by removal
of the "loop (vp1,ep1+1,vp]+],...,eT1). The piece (vO,...,vp1
r is free of double-points and,by the maximality of s it is not hit
again by the remaining piece (e

) of

T1+],...,e\),v\)) of ry- Thus, if r

still has a double point there have to exist Ty < Py < Ty with

vV =V . Again we choose the smallest such o
Py To 2

T, for that P> and remove from r the piece (vpz,epz+],...,eT2)

to obtain another subpath ro of ry- Ve continue in this way until we

arrive at a path ¥ without double points. One easily verifies that re-

moval of a loop neither changes the first nor the last vertex of a path.
In addition to (2.1) we shall almost always impose the conditions

(2.2)-(2.5) below on our graphs:

and then the largest

(2.2) G is imbedded in Rd in such a way that each coordinate
vector of Rd is a period for the image.

By (2.2) we mean that v ¢ RY s a vertex of (the image of) G Iiff
d

v+ k;€s 1s a vertex of G for all k, € Z, where £, denotes the
1

ith coordinate vector of Rd. Also, e © Rd is an edge of (the image

d
of) G iff e+ ) k;€; s an edge for all k; e Z.
1

(2.3) There exists a z < = such that there are at most =z
edges of G incident to any vertex of (.
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(2.4) A1l edges of G have finite diameter. Every compact set of
Rd intersects only finitely many edges of G.

(2.5) G 1is connected.

Of course (2.5) means that for every pair of vertices Vis Yy of G
there exists a path on G from vy to Vo
Def. 1. A periodic graph G 1is a graph which is imbedded in some Rd,
d < =, such that (2.1)-(2.5) hold. ///

The name "periodic graph" is a bit of a misnomer. It is really
the imbedding which is periodic. It will be obvious from Ch. 3 that our
percolation problems depend only on the abstract structure of the graph
G, and not on its imbedding. For the proofs it is often advantageous to
change the imbedding from a standard one, by mapping Rd onto itself
by an affine isomorphism. As stated, this does not effect the percola-
tion theory problems. We illustrate with some standard examples.

Examples.

(i) One of the most familiar graphs is the simple quadratic lat-
tice. It is imbedded in Rz ; its vertex set is Z? , and the edges are
the straight-line segments between (11,12) and (i]t1,12) and between
(11,12) and (11,12i1), 11,12 e Z . Thus, two vertices (1],12) and
(j1,j2) (ir,jr e Z) are neighbors iff

(2-6) I-i]"j]l + Iiz'jzl = 1.

Figure 2.1 QO

This is a periodic graph, and we denote it by QO throughout this mono-
graph.
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(ii) For bond-percolation on 22 one wants to use the graph
which is obtained by adding diagonals to alternating squares in QO.

Figure 2.2

The formal description for this imbedding 1in R2 is that the vertex
set is Z° , and two vertices v = (11,12) and w = (j],jz) (ir’jr e 1)
are neighbors iff (2.6), or (2.7) below holds.

(2.7) |i]—j]| = }iz—jzl =1 and i+, is odd or i,-i, is even.

Under this imbedding we do not have a periodic graph, because the periods
are only 251 and 2&2, where £ = (1,0), £y = (0,1) are the coordinate
vectors of R". For our purposes the preferred imbedding, which does
give us a periodic graph, is obtained by translating the coordinate sys-
tem in Fig. 2.2 by the vector (%~,%), rotating it over 45° and changing
the scale by a factor v2. This gives us the periodic graph which we
shall call Q], and which is drawn in Fig. 2.3.

Figure 2.3 q]
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The vertices of Q1 are located at the points (1]-+%312) and

(11,12-+%J, 11,12 e Z . Two vertices v = (v(1),v(2)) and

w = (w(1),w(2)) are adjacent iff

(2.8)  v(1) =w(1) € Z,v(2).w(2) € Z +& and |v(2)-w(2)] = 1
or

(2.9)  v(2) =w(2) € Z,v(1)w(1) ¢ Z +5 and [v(1)-w(1)] = 1
or

(2.10) V)W) = [v(2)-w(2)] = %

(i11) Another familiar example is the socalled triangular lattice:
Divide RZ into equilateral triangles by means of the horizontal lines

x(2) = %—/?, k € Z, and lines under an angle of 60° or 120° with the

first coordinate-axis through the points (k,0), k € Z , sce Fig. 2.4.

L
NN

Fiqure 2.4

The vertices of the graph are the vertices of the equilateral triangles,
and two such vertices are adjacent iff they are vertices of one and the
same triangle. Even though the vector (1,0) is a period for this im-
bedding, the vector (0,1) 1is not. However, if we change the vertical
scale by a factor 1//3 we obtain a periodic graph in R2 . We denote
it by J. Its vertices are located at all points of the form (11,12)
or (1'1+]§,1'2+Jz—), 1'1,1'2 € Z ; each vertex has six neighbors. The six
neighbors of the vertex v are

(2.11) v (1,0), vH (.35 VH (D) S

N —

1 1)

V+(']90)3V+(" ),V+("2-,—§-.

N —

3

N[ —t
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An amusing imbedding for the same graph - which we shall not use - is
illustrated in Fig. 2.5. It shows that we can view QO of ex. (i) as a
subgraph of J

Figure 2.5

(iv) Another graph which we shall use for occasional iilustrations
is the hexagonal or honeycomb Tattice. The usual way to imbed the hexa-
gonal Jattice is such that its faces are regular hexagons as illustrated
in Fig. 2.6. The vertices are at the points

((ky +5)/3+ cos(T+200) 3(k, + ) + sin(Z+21),

k],k2 eZ, %=0,1, 0<Jj<5.

Figure 2.6 Hexagonal or honeycomb lattice
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The origin is in the center of one of the hexagons and the periods are
(/3,0) and (0,3). We shall usually refer to this imbedding of the
hexagonal lattice, even though it does not satisfy (2.2). We leave it
to the reader to change scale so that (2.2) does become true.

(v) Our final example is the diced lattice, which is somewhat Tess
familiar. We obtain it from the hexagonal lattice with vertices as in
the last example by adding for each k1,k2,£ a vertex at
((k]4~%)/§,3(k2-+%£)) (the center of one of the regular hexagons in Fig.
2.6) and connecting it to the three vertices

((ky+5 )/3+cos(6+2—gl) 3(ky+5) +sin(E+ 2T”)), i =1.3,5.

This is illustrated in Fig. 2.7. The periods of this imbedding are again
(/3,0) and (0,3).

KA

Figure 2.7 The diced lattice. It is obtained from

the hexagonal lattice (solid Tines) by
adding the dashed edges.

2.2 Matching pairs.

With the exception of Ch. 5 we shall restrict ourselves to a spec-
ial class of graphs imbedded in the plane. This class was introduced by
Sykes and Essam (1964) and will be described in this section.

Def. 2. A mosaic 7 1is a graph imbedded in R2 such that (2.1) and
(2.4) hold, such that any two edges of % are either disjoint or
have only one or two endpoints in common (these common endpo1nts are
necessarily vertices of %), and such that each component of R \7

is bounded by a Jordan curve made up of a finite number of edges of 7.
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Comments.

(i) A graph which can be imbedded in R? such that any two edges
can have only endpoints in common is called planar. Thus, any mosaic is
a planar graph. If a planar graph 7 dis imbedded in such a way, then
one calls each component of RZ\WE a face of 7.

(ii1) The precise meaning of a "curve made up of edges of 7" is as
follows: Let CIFRERFLN be edges of 7 given by the homeomorphisms
¢ [0,1] » Rd , and such that

(2.12) 65(1) = 0:,7(0),

i.e., the final point of e, equals the initial point of €41 A curve
J made up from @15.-rs8 5 OF obtained by (successively) traversing a
piece of ey.e,,....e  1» and a piece of e, is a curve which can be
represented by a map ¢:[0,1] » Rd

0<a<1,0<bx<1:

of the following form: for some

' 1
o(@a+v(l-a)t) , 0<t<s,
pE) =9 b t-1 L T By < v,
v-1 v=-1
\ ¢V(vb(t-'i;—)) > Tposteld

The Tlast requirement of Def. 2 is that for each face F of 7 there
exist edges CIEPRRELN satisfying (2.12) and with the final point of

e, equal to the initial point of e and such that the curve J made
up of all of e;.e,,....e and all of e, is a Jordan curve with

F = 1nt(J)1). In this case we call J the perimeter of F and the end-
points of the e, the vertices on the perimeter of F. In particular

each face of a mosaic is bounded.

Def. 3. Let F be a face of a mosaic 7. Close-packing F means add-
ing an edge to 7 between any pair of vertices on the perimeter on F
which are not yet adjacent.

Comment.
(iii) Without loss of generality we shall choose the interiors of
new edges in the imbedding inside F when we close-pack a face F. We
shall actually construct them even more carefully in Comments 2.3 (i),

1) If J 1is a Jordan curve in R2 then RZ\J consists of a bounded

com?o?ent denoted by int(J) and an unbounded component denoted by
ext(dJd).
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(1), (v) and 2.4 (iii) when we imbed Gpy, -

Def. 4. Let 7 be a mosaic and & a subset of its collection of faces.
The matching pair (Q,Q*) of graphs based on (7,%) 1is the following
pair of graphs: G 1is the graph obtained from 7 by close-packing all
faces in d. Q* is the graph obtained from 7 by close packing all
faces not in d&.

Comments.

(iv) If (q,q*) is a matching pair based on (7%,¥) then m,
G and Q* all have the same vertex set.

(v) If (Q,Q*) is based on (7,3), then (Q*,Q) is a matching
pair based on (Wqu), where 3* is the collection of faces of 7 which
are not in 3. Thus we can think of G as (Q*)*.

(vi) &=0 or &= collection of all faces of 7 are allowed in
Def. 2. Therefore any mosaic 7% equals the first graph of some match-
ing pair - the one based on (7,0). Compare Ex. (i) below.

(vii) In a matching pair usually at least one of the graphs G or
Q* is not planar. However, if we add the edges to 7 in conformity with
Comment (iii), then an edge e of G and an edge e* of Q* can inter-
sect only at endpoints of these edges which are necessarily vertices of
7 (unless e and e coincide). Two edges e and e, of G can
have an intersection which is not an end-point of both of them only if
e and e, are edges whose interiors lie in the same face F of 7,
which is close-packed in G. In this situation any pair of the endpoints
of e, and e, are neighbors on G (because F is close-packed).

*
The same comment applies to two edges e: and e, of Q*.

Examples.

(i) Let M= QO’ as defined in Ex. 2.1*(1). If we take =0,
then the complementary collection of faces, & , consists of all squares
into which the plane is divided by the lines x(1)=k and x(2)=%

(k,2 € Z). The matching pair (Q,Q*) based on (7,%) in this case is
described by @ = QO = 7 and Q* is the graph zith vertex set Z?
while (11,12) and (j],jz) are adjacent on G iff (2.6) holds or

(2.13) 11371 = 157351 = 1.

The graphs ( and Q* are illustrated in Fig. 2.8. G* is obtained by
adding all "diagonals" to %O.
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Fiqure 2.8

(i1) Again take 7 = QO as above, but this time take & to be
tEe collection of unit squares (i],i]+1) X(12,12+1) with 1]+12 even.
& will consist of the unit sauares (11,1]+1) X(12,12+1) with i1+12
odd. G will be the graph of Fig. 2.2, Q* will be a similar graph but
now with the diagonals in the set of unit squares which is empty in G.
(The formal description is as for G in Ex. 2.1 (ii) but with odd and
even interchanged in (2.7).) Fig. 2.9 shows a picture of the matching

pair (Q,Q*) in this example.

Figure 2.9 G*

]

Clearly G and Q* are isomorphic as graphs. Such a pair is called
self-matching.

(iii) Any triangular face is already close-packed. Thus if %
has only triangular faces, then for every choice of & the matching
pair based on (7,3%) is G =7, Q* = 7. Such a pair is again self-
matching. An example of this situation is 7 = 3, the triangular lattice
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of ex. 2.1 (iii). Another example for such an 7 1is the centered quad-

. . . 2 N A PO
ratic lattice. Its vertex set is Z~ U {(11+—2—,12+7). 1.1, € Z) .

Figure 2.10 The centered quadratic lattice

Two vertices (11,12), (31,32) with ir’Jr e Z are adjacent iff (2.6)

e o1 1 N
holds; (11,12) and (J]-+2,32-+2) are adjacent iff

(2.14) i] =3y, or J]+] and 12 = j2 or j2+1.

This graph is not the same as Q* in Ex. 2.2 (1) because the present
7 has vertices at the centers of all the squares, while Q* of Ex. 2.2
(1) does not.

(iv) The following example illustrates the gain of generality of
allowing multiple edges between the same vertices. The vertex set is
222 u {1‘1 +—;—,1'2} (i.e., we increase the vertex set Zz by adding a
vertex in the middle of each horizontal 1ink). The following will be
the edges in 7: any vertical link between ( ,12) and (11,12+1); the
horizontal 1links between (1],12) and (1] 2 2), and two extra edges
between (11,12) and (11+1,12), one running in each of the squares
above and below the line x(2)=' (see Fig. 2.11). The vertices
(1 2,12) belong to two tr1angu1ar faces. If we take for I the
co]]ect1on of all other faces, i.e., the quadrilaterals, then Q = M,
while ( gains the diagonals in each of the quadrilaterals. If we re-
move one of the edges from (1],12) to (i]+1,12) from G, to obtain
a graph without multiple edges, t hen the resulting graph, G' say, con-
tains the configurations of Fig. 2.12.
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Figure 2.11 Illustration of multiple
edges . 7

Figure 2.12

Two edges intersect in their interior, but they do not seem to belong to
a close-packed face of a mosaic. Thus it seems impossible to view G'
as one of a matching pair. Nevertheless, for the site-percolation prob-
Tem G' 1is equivalent to ¢ (see Ch. 3). It therefore seems of some
use to allow multiple edges.

. 2.3 Planar modifications of matching pairs.

For many proofs it is a great convenience to work with planar
graphs. The main advantage is that a self-avoiding path
r = (vo,e1,...,ev,vv) on a planar graph truly has no self intersections.
I.e., even though "r is self-avoiding" in our terminology only means
that all v; are different, on a planar graph this also implies that
e; cannot intersect ej for j > 1 wunless Jj = i+1, and then eiﬂej
= { vy } = the common endpoint of e, and ej. This is obvious from
the fact that on a planar graph two distinct edges can only intersect in
a common endpoint. In view of these considerations we introduce planar

modifications sz and Q;l of a matching pair G and Q*, as well as
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planar modificition W$2 of a mosaic 7. For our purposes G and G ")
(as well as G and Q 2) will be practically interchangeable (see
Lemma 2.1). Let (G, Q ) be a matching pair based on (7%,%). We then
construct Qpl as follows: Its vertex set is the vertex set of G

plus one additional vertex in each face F of & The added vertex in-
side F will be called the central vertex of F. Two vertices v and
w of qu will be adjacent on sz iff v and w are adjacent on

7, or if one of them is the central vertex of some F ¢ & and the other
is on the perimeter of the same face F. The edge set of G I} there-
fore consists of the edge set of 7 plus, for each F e &, edges be-

tween the central vertex of F and all the vertices on the perimeter
of &

Comments.

(i) In order to show that ng is indeed planar we give an im-
bedding in R2 "explicitly". Let F e & be a face with perimeter J.
There then exists a homeomorphism ¢ from F := F U J onto the closed
unit disc (by Theorem VI.17.1 of Newman (1951) or by the Riemann mapping
theorem, Hille (1962), Theorem 17.5.3). Let Vi 1 <i<v be the ver-
tices of G (or 7)) on J and Wi = (v ), 1 <i<v their images
on the unit circle. Then place the central vertex of F at (O), and
take for the edge from the central vertex to Vs the inverse image under
y of the ray from 0 to Wi We can use this construction at the same
time to obtain a pleasant imbedding for G ditself. We merely take for
the edge between Vs and vj, two non-adjacent vertices on J, the in-
verse image of the Tine segment from W, to wj. This gives us a simul-
taneous imbedding of G and ka such that the edge of G from Vs
to Vj intersects the edges of qu from v and vj to the central
vertex only in Vi and Vj‘ Also if e, and e, are two edges of G
in the face F, with endpoints Vis Vo and Vas Vygs respectively, then
e, can intersect €, in a point different from Vas Vg only if the
four points Vy-v, are distinct, and Vs Y separate Vgs Vg ON d.
In other words, each of the two arcs of J between V3 and Vg must
contain one of vy and Vo

(ii) Note that we inserted a central vertex in every face F ¢ d,
even if F 1is a triangle, i.e., bounded by three edges, or a "lens",
i.e., bounded by two different edges with the same pair of endpoints.
Such faces contain no ‘extra edges in G when compared to 7, but these

faces become different after close-packing (compare Ex.2.3 (iii) below)./
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Qp% is defined and constructed in exact1y the same way as sz
above; we merely have to replace G by Q and & by 3 throughout.
In particular Q;Q has only central vertices in faces*of 3 , but not
in faces of & A more explicit notation would be (G )pz' This is not
the same as (Qpl)*, the latter being the second graph of the matching
pair (ng,(qu)*) based on (sz,ﬂ). In these notes we shall never

* J* 11 al *
use (qu) and QPQ will always stand for (G )

Pe
is the graph whose vertex (edge) sets is the union of the
*
vertex (edge) sets of ng and sz. Thus W$£ has a central vertex
added in each face of 7.

Comments.

(iii) If G is periodic, we want to take ng also periodic.
To see that this can be done observe first that if F is any face of
7 and X € R2 a point in F then x+k]e1+k e2 ¢ F if k1,k2 e Z,
not both zero. For, otherwise, there would exist a continuous path from
x to x+k]e1+k2e2 which does not intersect any edge of 7. Extending
this path periodically would give an unbounded path in F, so that the
face F of % would have to be unbounded. But all faces of 7 are
the interiors of Jordan curves, and hence bounded. This proves the ob-
servation. It follows that for any face F ¢ &, all the faces F+k]e]
+k2e2, k1,k2 e ZZ , are pairwise disjoint. Since G 1is periodic, F ¢ &
implies that this whole class belongs to & As a result & can be
written as a disjoint union of classes 31, each 31 of the form
{F. +k1e1+k2 5" k],k2 e Z} and all faces in one 31 disjoint from each
other. If we now add a central vertex in Fi’ and edges from this cen-
tral vertex to the vertices on the perimeter of F , then we can repeat
this construction periodically in every face F, +k1e1+k e Since all
these faces are disjoint these constructons do not 1nterfere with each

other and the resulting sz is periodic.
. (iv) Two central vertices are never adjacent. This holds on sz
sz and W$2.

(v) The imbedding of Comments (1) and (iii) can be extended to
give a simultaneous 1mbedd1ng of G 0g’ sz and W%Q An edge e of
ng and an edge e of Q can 1ntersect only in a*common endpoint,
which is necessarily a vertex of 7, unless e and e coincide (com-
pare Comment 2.2 (vii)). We can even imbed (, g*, sz’ 9;2
simultaneously. In this case any edge e of ( belongs to the closure

F of some face F of &. (See Comment 2.2 (iii).) On the other hand,

3

and sz
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any edge e* of Q will either be also an edge of G or E* c F*
for some face F ¢ 3 Therefore an edge e of G and an edge e
of sz which do not coincide can again intersect only in a common end-
point which is a vertex of 7.

(vi) Any face F € & of 7 becomes triangulated in G Dy’ Sim-
ilarly for F ¢ 3 in Q pg” A1l faces of W%z are “tr1ang1es", i.e.,
are bounded by a Jordan curve made up from three edges of W%z'

Examples.

(i) Let (M3 = (QO,Q) and (Q,Q*) the matching pair based
. . . _ - . *
on this as in Ex. 2.2 (i). Then ng =G = QO 7 while sz W%z
is the centered quadratic lattice of Ex. 2.2 (iii).

(1) For M & G, G asin Ex. 2.2 (i) G, and G are

PR
obtained by adding a vertex to 7 at each point (1‘1 +%,1’2+]§) with
11+12 = even and odd, respectively, and connecting it by an edge to the
vertices (i1,15), (11+1,15), (i141,1,41), (i,,1,41).

pL Q’pSZ,
Figure 2.13

(iii) If m= 3 (see Ex. 2 1 (ii1)), the triangular lattice, and
& =0, then Qp G =3, but Q = W%Q has a central vertex placed in
each triangle, and this is connected by an edge to each of the three
vertices of the triangle. /1]

*We must gow turn to the relationship between G and G g - as well
as G and sz - in the context of percolation. For reasons to be
explained in Sect. 3.1 we restrict ourselves to site percolation. In
the remainder of this section (q,q*) is a matching pair, based on (7,3).

*
Def. 5. An occupancy configuration for % or G or G is a map w
from their common vertex set into {-1,+1}. ///
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Usually we call a vertex v with w(v) = +1 occupied, and with
w(v) = -1 vacant. Thus, an occupancy configuration is merely a parti-
tion of the vertices into occupied and vacant ones. We shall a]ways ex-
tend such a configuration to an occupancy configuration for W%Q

qu or Q ") (in obvious terminology) by setting
(2.15) w(v) = +1 for every central vertex v of an F ¢ &,
(2.16) w(v) = -1 for every central vertex v of an F ¢ 3.

Thus, we always take central vertices of Qp occupied and of
Q ) vacant. (We only make an exception to this rule in Sect. 10.2 and
3 where the exception will be explicitly pointed out.)

Definitions 6 and 7 below refer to a fixed occupancy configuration
w, but usually we suppress the dependence on w from the notation.

Def. 6. An occupied path on Q(Q ) is a path on Q(Q ) all of whose

vertices are occupied. A vacant gath on Q (Q ) is a path on
*
Q*(sz) all of whose vertices are vacant. ///

The following lemma will allow us to go back and forth between
* *
paths on G and sz (or G and ng).

Lemma 2.la. Let r = (vo,e1,v],...,ev,vv) be an occupied path on sz
Then there exists an occupied path ¥ on G whose vertices are exactly
the non-central vertices of r, and they occur in the same order in ¥

as in r. Moreover, if

(2.17) diameter (e) < p for all edges e of G and sz

then

(2.18) for each point x of ¥ there exists a vertex y of
r with |x-y| <A .

Lemma 2.1b. Let ¥ = (Vo,é],...,ép,vp) be an occupied path on G. Then
there exists an occupied path r on Qp& (as well as on W%Q) from
Vo Lo Vp. The non-central vertices of r form a subset of the ver-
tices of t, and occur in the same order in r as in ¥. Moreover if

(2.17) holds, then

(2.19) for each point y of r there exists a vertex x of
¥ such that |x-y| <A .



Proof of Lemma 2.%a. Let v, ,v. ,...,V. with i, < i, < ... < i

ig” 1y 10 0 1 0
be all the vertices of r which are not central vertices of sz. Since
by construction Qpi has no edges between two central vertices, there

cannot be two successive central vertices in r (cf. Comment 2.3 (iv)).

Consequently, iy <1, Tii71y < 2 and 1, > v-1. If Tipq 7 1j+1 then
we simply connect Vij and Vij+] = Vi by the edge eij+] from r.
In this case we take ej+1 = e 4 If 1j+1 = 1j+2, then i+ is

J
a central vertex of some face F of % and Vi and Vi +2 are both

J
vertices of G on the perimeter of F. Moreover the face F must be

close-packed in G, so that there is an edge & of G contained in

j+
the closure of F which connects Vi and Vi = Vi 42 - We define
J jt1 J
Vj = Vi and take r = (vo,e],...,eo,vp). It is easy to see that ¥

satisfies the requirements of the lemma. We merely remark that ¥ is
self-avoiding (recall our convention that a path should be self-avoid-
ing). To see this note that the Vj form a subset of the vertices of
the self-avoiding path r, and therefore are distinct. The vertices of
¥ are the non-central vertices of r, in their original order. ¥ is
automatically occupied, since all its vertices are also vertices of the
occupied path r. Finally, (2.17) implies (2.18) because any point x
of ¥ Tlies on some edge éi of ¥, and by virtue of (2.17) lies within
A from Vi, which is also a vertex of r.

Proof of Lemma 2.1b. This proof is almost the reverse of that of Lemma
2.1a. We now insert central vertices whenever necessary. More precisely,
if éi is an edge of G, but not of ka’ then its interior must 1ie

in a close-packed face F and its endpoints Vi—1 and Vi must lie

on the perimeter of F. Let c be the central vertex of F and e',

e" the edges of sz between V. ; and c, and between c and Vis
respectively. We now replace the edge éi by e', c, e". If éi is
already an edge of ng, then of course it need not be replaced. We

make all the necessary replacements for i = 1,...,p0, and denote the re-
sulting sequence of vertices and edges of sz by r = (vo,e],...,ev,vv)
The Vj consists of the Vi in their original order, with some central
vertices of qu interpolated and Vo = VO’ v, = Vp. ATl vy are auto-
matically occupied by virtue of (2.15) and the fact that ¥ was an
occupied path. If r 1Jtself is not self-avoiding we make it self-avoid-
ing by loop-removal without changing its first or last point, as des-
cribed in Sect. 2.1. The resulting path satisfies all requirements.
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For (2.19), observe that each edge in the final path has at least one
endpoint which is not a central vertex, and hence also belongs to ¥. [ ]

Def. 7. W(v) = W(v.w), the occupied cluster or occupied component of v
on G 1is the union of all edges and vertices of G which belong to an
occupied path on G with initial point v. ///

v is assumed to be a vertex of G 1in Def. 7. If v 1is vacant
W(v)
W(v)

¢. If v 1is occupied, but all its neighbors are vacant, then
{v}.
We define the occupied cluster wpﬁ(v) = wpz(v,w) of v on Qpﬁ
by replacing G by ng in the above definition. No confusion with
the occupied cluster of v on W$2 can arise because the latter equals
W__(v). In fact, by virtue of (2. 16), an occupied path on W%Q cannot

pL
contain any central vertices of ng, and therefore is an occupied path

on sz itself. Lemma 2.1 therefore has the following corollary.

Corollary 2.1. For any vertex v of §

(2.20) wpz(v) = W(v) U {all edges of sz from a central vertex
of Qpﬁ to some vertex w e W(v)}.

Consequently, if (2.17) holds, then

(2.21) W Clwp2 < {x:|x-w| < A for some w e W}.
Proof: If w is a non-central vertex of sz which can be connected

to v by an occupied path on ng, then it is also connected to v by
an occupied path on G, and vice versa, by virtue of Lemma 2.1a and 2.1b,
respectively. Thus the non-central vertices of W b2 are precisely the
vertices of W. Since central vertices only have non-central neighbors
on Qpl (see Comment 2.3 (iv)) one easily sees that the central vertices
of wp2 are precisely those vertices which are adjacent to some (non-
central) vertex of W (recall that v 1is a vertex of G, hence non-
central) (2.20) is immediate from this, while (2.21) follows from (2.17)

and (2.20). ]
Remark.

One can define a planar modification for certain graphs G which
are not necessarily one of a matching pair. It seems that many per-
colation results will go through for such graphs. Specifically, let 7

be a mosaic and F a face of 7 with perimeter J. Let G .,G, be

1’ k
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pairwise disjoint sets of vertices on J, such that no two vertices of
Gi separate two of Gj__on J, when 1 # j. Assume that G 1is formed
by adding an edge in F between any pair of vertices which belong to
the same Gi’ and that these edges are added such that an edge between
two vertices of Gi does not intersect an edge between two vertices of
Gj for i # j. For example if F 1is an octagon as in Fig. 2.14a, then
G] (Gz) might be the top (bottom) four vertices, and G would have

Figure 2.14a 7 Figure 2.14b G

edges in F as indicated in Fig. 2.14b. Such edges could be added in
many faces. To form a planar modification - call it Qpl again - one
would now insert one central vertex Vi in F for each Gi' In ng
Vi would be connected by an edge to each vertex in Gi but to no other
vertices. For the situation illustrated in Fig. 2.14a and b we would

end up with the situation of Fig. 2.14c. If we take all central vertices

Figure 2.14c sz corresponding to the
G of Figure 2.14b.

occupied as in (2.15), then Lemmas 2.1a and b and Cor. 2.1 remain valid
(with only trivial changes in their proofs). As in the case when G

is one of a matching pair this will allow us to reduce site-percolation
problems on G +to equivalent ones on sz. Even though there is no
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*
obvious analogue of G  for the more general graphs of this remark, we
can apply much of the succeeding directly to qu. Indeed ng is pla-
nar, and a mosaic. Thus G 2 is one of a pair of matching graphs,
based on (sz’¢) (see Comment 2.2 (vi)). Moreover, if we view G
as based on (Qp2,¢), then (sz)pl

matching pair of graphs apply to sz .

pL
= sz‘ Thus results for one of a

2.4 Separation theorems and related point-set topological results.

In this section we formulate some purely graph-theoretical, or
point-set topological nature which will play a fundamental role. Their
contents are easily acceptable intuitively, but their proofs are some-
what involved. For this reason we postpone the proof of Prop. 2.1-2.3
to the Appendix. In this section (Q,Q*) is again a matching pair of
graphs, based on (7,3). First we need the definition of the boundary
of a set on a graph.

Def. 8. Let A be a subset of a graph #. Its boundary on ¥ 1is the
set
9A = {v: v a vertex of ¥ outside A, but there exists a
vertex w ¢ A such that viw}.

The notation ©3A does not indicate any dependence on H. However,
if H] and Hz are two graphs such that A can be viewed as a subset
of both of them then the boundary of A may be different on H] and on
uz. If necessary we shall indicate on which graph the boundary is to be
taken. Often it will be clear from knowing the set A which boundary
is intended. E.g. W(v) 1is defined as a cluster on G, and correspond-
ingly oW will always mean the boundary of W on G. On the other
hand awpl means the boundary of W

) on Wbl’ and not on Qpl, in
Prop. 1.

Def. 9. Let ¥ be a graph imbedded in R2 and A C-RZ. A circuit

on H surrounding A is a Jordan curve on ¥ made up of edges of ¥
which contains A in its interior (cf. Comment 2.2(ii)). We call the
circuit occupied (vacant) if all vertices of ¥ on the circuit are oc-
cupied (vacant).

The following proposition is a version of Theorem 4 in Whitney
(1933); it is of fundamental importance in the development of percolation
theory.

Proposition 2.1. Let awpg(v) be the boundary of wpl(v) on W%Q. If
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wpg(v) is non-empty and bounded and (2.3)-(2.5) hold with G replaced
by 7, then there exists a vacant circuit Jp2 on W$2 surrounding
wpz(v) and such that all vertices of W$2 on Jpg belong to W

pSL(V).

Corollary 2.2. If W(v) is non-empty and bounded and (2.3)-(2.5) hold,
*
then there exists a vacant circuit J on G surrounding W(v).

The proof of this corollary is also in the appendix. We stress
that W(v) is a subset of G while the surrounding circuit is on Q*.
It is easy to see that there does not have to exist a circuit on G 1it-
self surrounding W. E.g., if (Q,Q*) is the matching pair of ex.2.2(i)
and

" +14F v(1) = v(2) (v = (v(1),v(2)))
W s -1 otherwise,

Figure 2.15 v is occupied iff v 1lies
on one of the dashed 45° lines.

then W(0) = {0}, but no vacant path on G surrounds the origin.

Proposition 2.2. Let J be a Jordan curve on 7 (and hence also on G
and on Q*) which consists of four closed arcs A],AZ,A3,A4 with dis-
joint interiors, and such that A, and A3 each contain _at Teast one
vertex of 7. Assume that one meets these arcs in the order A],AZ,A3,
A4 as one traverses J in one direction. Then there exists a path r
on G inside J :=J U int(J1) from a vertex on Ay fo_a vertex on
A3, and with all vertices of r in i\A1 U A, occupied, if and only if

there does not exist a vacant path r on G inside J\A1 U A3 from




a vertex of A2 to a vertex of A4.])

The next proposition is a cornerstone of the development in these
notes. Some form of it has been used by many authors. In its simplest
form it says that among all occupied paths connecting the left and right
edge of a rectangle there exists a unique lowest one. This has often
been taken for granted. Harris (1960) quotes a general theorem from top-
ology to prove this for bond-percolation on Zz . We do, however, need
a more general result, and this is not valid on all graphs. We there-
fore give a proof of Prop. 2.3 in the Appendix, which closely follows
Lemma 1 of Kesten (1980a). An examination of the proof will show that it
is crucial that sz is planar.

Some preparation concerning symmetry axes of a graph, and a partial
ordering of paths is needed first.

Def. 10. Let # be a graph imbedded in R2 . The Tline L: x(1) = a
is an axis of symmetry for # if H 1is invariant under the reflection

of L which takes y = (y(1),y(2)) to (2a-y(1),y(2)). Similarly if
L 1is a vertical line of the form x(2) = a.

Comments.

(i) L s an axis of symmetry for ¥ iff the image under the im-
bedding of each vertex and edge of ¥ goes over into the image under the
imbedding of a vertex and edge, respectively, under reflection in L.

It would therefore be more accurate, but also more cumbersome to call L
an axis of symmetry for the imbedding of ¥, rather than for H.

As we pointed out after Def. 2.1 of a periodic graph,percolation
problems depend only on the abstract structure of the graphs, and not on
their imbedding. Just as one can sometimes change an imbedding to obtain
a periodic one, one can sometimes change an imbedding to make one of the
coordinate-axes an axis of symmetry. E.g. neither of the coordinate-
axes is an axis of symmetry for the imbedding of Fig. 2.5 for the trian-
gular lattice, while both of them are for the imbedding of Fig. 2.4.
Even though we require in several theorems that the graph is imbedded
periodically and with a coordinate axis as symmetry axis, what really
counts is that the graph can be imbedded such that it has these proper-
ties.

(ii) Assume L is an axis of symmetry for Gog, and e an edge

o

1) When A 1is an arc we use A to denote A minus its endpoints.
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of qu which intersects L 1in a point m. Denote by & the reflec-
tion of e din L. Then @& 1is also an edge of sz which intersects
L in m. We shall show that exactly one of the four following cases
must obtain:

(a) e lieson L,

(b) e has both endpoints, but no other points on L, and these points
on L are the only common points of e and e,

(c) e has exactly one endpoint, but no other points on L, and this
point on L is the only common point of e and &,
(d) e intersects L only in one point m which is not an endpoint,
e 1is symmetric with respect to L, i.e., e coincides with &, and m
is the midpoint of e.

To see this assume first that intersects L also in another

in m and m' # m. Then either
and & and they have no further
points in common (case (b)) or e and & also have an interior point
in common, in which case they coincide and case (a) obtains (recall that
qu is planar and e is a simple arc). Next consider the situation where
e intersects L only in m. If m 1is an endpoint of e then we are
in case (c), because e and & must lie on opposite sides of L.
Finally if the common point m of e and €& is an interior point of
either one of them then they must again coincide, and case (d) obtains.

A good illustration of this situation is provided by the triangu-
lar lattice of Fig. 2.4. The lines x(1) = k, k ¢ Z are axes of symme-
try; half the horizontal edges are in case (d), while the other half
and all non-horizontal edges are in case (c).

point m' # m. Then e intersects

M m @

m and m' are common endpoints of

(iii) In most of our theorems we shall deal with a matching pair
of periodic graphs (Q,Q*) based on (%,3) for which x(1) = 0 and/or
x(2) = 0 is an axis of symmetry. In the proofs we shall work with the
planar modifications sz and le’ and it will be necessary that these
graphs too have x(1) = 0 and/or x(2) = 0 as axis of symmetry, in addi-
tion to the properties of Comments 2.3(i),(iii) and (v). This can be
achieved as follows. If L1: x(1) = 0 dis an axis of symmetry and
Fed is a face of 7 which intersects L1, then F is symmetric with
respect to L]. We then chggfe the homeomorphism ¢ on F of Comment
2.3 (i) such that y(X) = y(x), where X is the reflection of x in
L1. A map ¢ with this symmetry property obviously exists; simply con-
struct ¢ on F N {x(1) > 0} such that F N {x(1) = 0} ds mapped into
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{x{1) = 0} and then reflect in L] (see Newman (1951), ex. VI.18.2.
Alternatively one can use the Schwarz reflection principle, Rudin (1966),
Theorem 11.17. We can then extend the construction for F periodically
to faces F+k]e1+k2e2 as in Comment 2.3 (iii). This method will take
care of the faces in any class 3; of Comment 2.3 (ii1) which contains
an F which intersects L1 . If none of the faces in 31 intersect L],
then 31 contains a face F in {0 < x(1) < 1} and we can choose ¥
symmetric with respect to x(1) = %— on ?’U{F+—gl}. This can then again be
extended periodically to F+k1e]+k2e2 and to F+zle]+22e2, ki’ zj e Z.
The same method works if LZ: x(2) = 0 1is an axis of symmetry. It even
works if both L] and L2 are axes of symmetry: In’Eﬂjs last case U
also has to satisfy w(X) = y(x) as well as (%) = U(x), where % is
the reflection of x in LZ' If F intersects L1 and L2 we can
construct such a homeomorphism y on F by first constructing y on
F (1) > 0,x(2) > 0} and then reflecting firit in L, and then in Ly
From now on we shall assume that if (G,G ) are periodic and sym-
mitric with respect to L] and/or LZ’ then the same holds for qu’
ng. In addition we can and shall assume the properties of Comments
2.2 (vii), 2.3 (i) and (v). 11/
Now assume that Liz x(1) = a5 i=1,2 are two vertical axes of
symmetry for Qpi with a; < a,. Let J be a Jordan curve in R2
consisting of four closed non-empty arcs B1,A,BZ,C with disjoint in-
teriors and occurring in this order as J is traversed in one direction.
Also assume that

(2.22) For i =1,2, B, s a curve made up from edges of th,
or Bi Ties on Li and J lies in the half plane
(-1 (x(1)-2;) < o.

(A typical case will be that J is the perimeter of a rectangle with
its left edge B] and right edge 82 on an axis of symmetry.) We shall
consider paths r = (vo,e],...,ev,vv)

tions (2.23)-(2.25) below.

on G which satisfy the condi-

pL

(2.23) (v],ez,...,ev_],vv_]) < int(J).

(2.24) e has exactly one point in common with J. This lies
in B] and is either Vg» Or in case B1 c3L1, it may
be the midpoint of ey
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(2.25) e, has exactly one point in common with J. This lies
in B2 and is either v, or in case 82 C3L2, it may
be the midpoint of e,

Note that if B] = L1, then (2.24) implies that ey has to be in case
(c) or case (d) of Comment 2.4 (ii). If case (d) occurs then

Vg € ext(J), because Vi € int(J) 1lies to the right of L1 and Vo
must be the reflection of vy in Ll' A similar comment applies to v,

In several applications it will be necessary to restrict the loca-
tion of r further. If S is a subset of R2 ,» then r &S will mean
that all edges and vertices of r 1lie in S. To avoid (mild) complica-
tions we shall only consider situations with
(2.26) B] n 82 ns-= 9.

For an r satisfying (2.23)-(2.25) we write My for the unique
point of e, on Js my is either the initial point Vo of r or the
midpoint of e. We shall also write ei for the closed segment of e,
from m to vy We define m, and e¢ similarly, and put
r' = (mo,ei,v],...,vv_1,e¢,mv). r' may not be an honest path on pr’
because ei and/or e¢ may only be half an edge, while my and/or m,
may not be a vertex of qu. Nevertheless, in an obvious sense, r' has
no double points (see the beginning of Sect. 2.3), and the curve on
Qpl made up from ei,ez,...,ev_1,e¢ is a simple arc in 1int(Jd), except
for its endpoints my and m, which Tie in B] and 82, respectively.
Thus r' divides 1int(J) 1into two components (Newman (1951), Theorem
V.11.8). On various occasions we shall use r (or r') to denote a
path as well as to denote the curve made up from the edges of r (or
r'). This abuse of notation is not likely to lead to confusion. For
instance the components of int(J) mentioned above will be called the
components of int(J)\r'. In this notation we have

int(I\r = int(IN\r'

since r differs from r' by the piece of e from Vo to My s exclud-
ing My and the piece of e, from m, to vy,s excluding m,,- These
pieces of e, and e, are either empty or lie to the left of Ly and

right of L,, respectively. In either case they are contained in ext(J).
2

Def. 11. Let J,B
G

1’A’BZ and C be as above and let r be a path on

bl satisfying (2.23)-(2.25). Then J (r) denotes the component of
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int(J)\r which has A in its boundary, and J+(r) the component of
int(J)\r which has C 1in its boundary.

To be even more explicit, J (r) (J+(r)) is the interior of the
Jordan curve consisting of r' followed by the arc of J from m, to
my which contains A(C).

Def. 12. If J,B],A,B2 and C are as above and rs r2 are two paths

on ng satisfying (2.23)-(2.25) tﬁen we sag that r precedes ros
and denote this by ry <r,, iff J (r]) <J (rz).

Proposition 2.3. Assume that (2.3)-(2.5) hold with G replaced by 7
and that L. x(1) = a:s i=1,2 are axes of symmetry for Qpl’ with

a; < a,. Let J be a Jordan curve consisting of four closed non-empty
arcs B],A,B2 and C as above satisfying (2.22). Let S be any sub-
set of RZ such that (2.26) holds. Denote by ® = R(S,w) the collection
of all occupied paths r on sz which satisfy (2.23)-(2.25) and r < S.
If R# @ then it has a unique element R = R(S,w) which precedes all
others. Any occupied path r on sz which satisfies (2.23)-(2.25)

and r ©S also satisfies

(2.27) r 1T <3NR) and RNT €T (r).

Finally, let ry be a fixed path on sz satisfying (2.23)-(2.25) and
o S (no reference to its occupancy is made here). Then, whether

R = rg or not depends only on the occupancies of the vertices of sz
in the set

(2.28) (3‘(r0) Uv, uv,) ns,

where Vi =@ if Bi is made up from edges of Wbﬁ’ while

Vi = {v: v a vertex of Qpi such that its reflection V¥

in L; belongs to Eh(ro) and such that

e N j'CZE;(rO) NS for some edge e of Qp2 between
v and v} , 1i=1,2,

in case Bi Ties in Li but is not made up from edges of W%Q.
Another way to express the last conclusion is that for fixed r
the function of w

0’

(2.29) I[R(w) exists and equals ro]
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depends only on the values of w(v) for v a vertex of G . in the
set (2.28). In many applications of this proposition S will be all
of R2 , and the restriction r S will be vacuous in such applica-

tions. However (2.26) requires that B] and B2 be disjoint for the
choice S = R2

2.5 Covering graphs.

Fisher (1961) and Fisher and Essam (1961) observed that a bond-
percolation problem on a graph G 1is equivalent to a site-percolation
problem on another graph, the socalled covering graph a of G. We can
only make this precise after the introduction of the relevant probabil-

ity measures in Sect. 3.1. Here we only give the purely graph theoreti-
cal relation between G and G.

Def. 13. Let G be any graph. The vertex set of the covering graph
G s in a 1-1 correspondence with the edge set of G. If V] # Vz are
two vertices of G corresponding to the edges e, and e, of G re-
spectively, then there is one (no, two) edge of G between Vl and
VZ, if and only if e and e, have one (no, two) endpoints in common.

Comments.

(i) Some people use the term line graph instead of covering graph.

(ii) If G 1is imbedded in Rd and e 1is an edge of G, viewed
as an arc in Rd , then we can choose the vertex V of @ correspond-
ing to e as a point of e. In explicit examples there is often a spec-
jal choice of ¥ - such as the midpoint of e - and choice of edges be-
tween neighbors on @ - such as line segments - which lead to a nice
embedding of G (cf. Ex. 2.5 (i) below).

(iii) Let r = (vo,e],...,ev,vv) be a path on G with possible

~

double points and let Vi be the vertex of G corresponding to e..

~ i
Then there exists an edge éi of G between Vi—1 and Vi, because

e 1 and e; have the endpoint Vi in common. Therefore
v o= (V],éz,...,év,vv) is a path with possible double points on G. If

the Vi are chosen as points on €, as in Comment 2.5 (i) above, then

¥ runs from a point of e to a point at e, Conversely if
P = (Vo,é1,...,év,vv) is a path on G, with possible double points, and
e; the edge of G corresponding to Vi, then e, and LI have a

common endpoint, v; say, on G. Then for a suitable choice of the end-

points v, and v, of e, and e respectively, (vo,e],...,ev,vv)

is a path with possible double points on G. If Vi is a point of e;
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as in Comment 2.5 (i), then r 1is a path from an endpoint~of e to an
endpoint of e, This relation between paths on G and G 1is the basis
for the equivalence of bond-percolation on G and site-percolation on

é (see Prop. 3.1).

Examples.
(i) Let G be the hexagonal or honeycomb lattice, imbedded in
RZ  as described in ex. 2.1 (iv) (see Fig. 2.6). If we place the ver-
tices of @ at the midpoints of the edges of G, and connect neighbors
on @ by straight 1ine segments for the edges, then we see that é is
the Kagomé lattice. See Fig. 2.16.

-
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hexagonal lattice, G ,
Kagome Tattice, @ .

The faces of 5 are regular hexagons and equilateral triangles inter-
spersed between them.

(ii) The covering graph of the graph QO in Ex. 2.1 (i) is the
graph Q] of Ex. 2.1 (i1) (see Fig. 2.3).

2.6 Dual graphs.

Hammersley (1959), Harris (1960) and Fisher (1961) made heavy use
of the socalled dual graphs in their treatment of some bond problems.
The role of the dual graph is taken over by the second graph in a
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matching pair in our treatment, so that we shall be very brief on dual
graphs. Assume that G 1is a mosaic. We then take the vertex set of
the dual graph, Qd, in 1-1 correspondence with the collection of faces
of G. 1In an imbedding of ( each such face F 1is a Jordan domain and
we place the corresponding vertex v* of Qd somewhere inside F. The
edge set of Qd is in 1-1 correspondence with the edge set of (. Each
edge of G Tlies in the perimeter of exactly two faces of G. If e
1ies in the perimeter of F] and F2, and v: and v; are the ver-
tices of Qd corresponding to F] and FZ’ respectively, then there

is an edge of Qd between Vi and ) associated to e. If the peri-
meters of F] and F2 hive v eSges in common, then there will be v
dlstinct egges between vy and Vo Qd has no other edges, so that

vy and v, are neighbors if and only if they 1lie in adjacent faces of
G (i.e., faces whose perimeters have an edge in common). In an imbed-
ding of G we shall draw the edges of Qd such that an edge e* of
Qd intersects the unique edge e of ( with which it is associated
but no other edges of G. One can show that if ( 1is a mosaic with
dual Qd, then the covering graphs @ and Gd of G and Qd’ respec-
tively, form a matching pair. We shall not prove this, but it is easily
verified for the few instances where we use dual graphs.

Examples.

(i) Take for G the simple quadratic lattice QO of Ex. 2.1 (i).
For its dual Qd choose a vertex at the center of each square face of
G; for the edges of Qd choose the line segments between the centers
of adjacent square faces of QO (see Fig. 2.17). Qd is clearly iso-
morphic with QO, in fact it is obtained by translating QO by the
vector (%~,%&. We say that QO is self-dual.
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Figure 2.17 ——= G = QO , —-= =G
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(ii) Let G be the triangular lattice imbedded in RZ such
that each face is an equilateral triangle, as in Fig. 2.4, Ex. 2.1 (iii).
Choose the vertex of Qd corresponding to such an equilateral triangle
at its center of gravity, i.e., the intersection of the bisectors of
the sides of the triangle. For the edges of Qd take line segments
along these same bisectors, and connecting the centers of gravity of

adjacent triangles. Qd is now a copy of the hexagonal lattice of Ex.
2.1 (iv).

Figure 2.18 — = G , the triangular lattice,
- --= Gy, the hexagonal lattice.
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3. PERIODIC PERCOLATION PROBLEMS .

3.1. Introduction of nrobability. Site vs bond problems.

Let G be a graph satisfying (2.1)-(2.5) with vertex set U and
edge set € . The most classical percolation model is the one in
which all bonds of ¢ are randomly assigned to one of two classes,
all bonds being assigned independently of each other. This is called
bond-percolation, and the two kinds of bonds are called the passable
or open bonds and the blocked or closed bonds. Instead of partitioning
the bonds one often partitions the sites into two classes. Again all
sites are assigned to one class or the other independently of each
other. One now speaks of site-percolation and uses occupied and

vacant sites to denote the two kinds of sites. The crucial require-
ment in both models is the independence of the bonds or sites, respec-
tively. This makes the states of the bonds or sites into a family of
independent two-valued random variables. Accordingly the above models
are called Bernoulli-percolation models.

Formally one describes the models as follows. One denotes the
possible configurations of the bonds (sites) by +1 and -1 with
+1 standing for passable (occupied) and -1 for blocked (vacant).
The configuration space for the whole system is then

) = {-1, = T{-1,+]
(3.1) [-1,411 or @ = I-1,41)

2

A generic point of @, 1is denoted by w = {w(e)}e e and for the

o-field Be in Qe we take o-field generated by the cylinder sets
of R i.e. the sets of the form

(3.2) {w: w(e1) S EREEE w(en) = en} s e'i e , € = +].

For the probability measure on ﬁe' we choose a product measure

3.3) P T u.
( e T, Ye

M i

where Ha is defined by
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(3.4) ue{w(e) =+1} =1 - ue{w(e) = -1} = p(e)

for some 0 < p(e) < 1. One defines @, and P, by replacing &
and e by U and v , respectively, in (3.2) - (3.4).

let we 9 . The open cluster W(e) = W(e,w) of an edge e is
the union of all edges and vertices which belong to some path
r = (vo,e]=e,...,ev,vv) on G , with e, = e and al1l e, passable.
(We lose nothing by taking the r self-avoiding.)
For the site problem and w e Q@ we defined the occupied cluster
W(v) = W(v,w) of a vertex v 1in Def. 2.7. We can of course use
this same definition with "occupied" replaced by "open" to define
W(v) in the bond-problem. This is what we used in the introduction,
but for the comparison of bond and site-problems it is convenient
to have W(e) available. Of course for the bond-problem
(3.5) W(v) = u W(e)

e incident
to v

so that there is a close relation between W(e) and W(v). We shall
use

(3.6) #W(e) and  #UW(v)

to denote the number of edges in W(e) and the number of vertices in
W(v). The principal questions in percolation theory concern the
distribution of #W, in particular the dependence of this distribution
on the parameters p(e) and p(v) of P. and Py . Of special
interest are the percolation probabilities

ee(e): = Pg{#W(e) = o} and
eb(v): = PU{#W(V) = w}.

The description in this section nowhere refers to the embedding
of G in Rd. It is therefore clear that the distribution of #W
and all related quantities in percolation theory depend only on the
abstract structure of (G, i.e., on U and €& and the adjacency
relationship. The embedding merely helps us to visualize the situation
and to give economical proofs.

Before narrowing down the model further we show that a bond-
percolation problem on @ 1is equivalent to a site~percolation problem
on @, the covering graph of ¢ (see Def. 2.13). For instance the
distribution of # W(e) for an edge e of the simple quadratic

lattice G of Ex. 2.1 (i) will be the same as that of # W(v)



when v is the vertex of the graph G of Ex. 2.1 (ii) which corres-
ponds to e (q] = QO) , and when the probability measures on Gg and
Gy are suitably related. In general, let ¢ be a graph with covering
graph G. Temporarily write a tilde over the entitities introduced
above to denote the correspond1ng entity for q (e.g. éﬂ s 5~) .
Denote by v(e) the vertex of Q associated to the edge e of g
(see Def. 2.13). We then have the following nroposition.

Proposition 3.1. Let G be a graph with covering graph § . Define
the map ¢ : q5+ ét by

(3.7) o(w)(v(e)) = wle) , ece€.

Then ¢ is 1-1 onto éﬂ , and for any e €€, we 98

~

(3.8) f e Wle,w) if and only if v(f) € W(v(e) , &(w)).

Moreover, if ﬁi is defined by

(3.9) Pi = 1 u~
veu v
with
(3.10) G~{w(v) = +1} = u _{w(e) = 1} = p(e)

whenever v = v(e) , then for all n < o
(3.11) ﬁi{#W(V(e)) = n} = P {#H(e) = nl.

Proof: f e W(e,w) iff there exists a path r = (vo,e1,...,ev,vv)

on G with wle;) =1 and e, =e, e =f . Foranysuch r Tlet
r = (v ],e1 ..,v ) be a path with possible double points with
Vi = (e ) assoc1ated to r as in Comment 2.5(iii). Then, by (3.7)

o (w) (v ) (w)(V(ei)) =1 so that f e W(e,w) implies

v, = vley) = V() e W(vys0(w) = H(v(e), ¢(w))

The other direction of (3.8) is proved in the same way.

Now Tet C be a fixed union of n distinct edges of ¢
containing e and such that for each edge f ¢ C there exists a
path r = (vo,e1,...,ev,vv) with possible double points on G with

e, = e, e = f . Then W(e.w) = C occurs iff

(3.12) w(f)=1 for all feC, but w(g)=-
for all edges g of ¢ with one endpoint in C , but
g not belonging to C.
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Indeed the first requirement of (3.12) says that each edge in C
belongs to W(e,w) , while the second requirement says that no other
edges f belong to W(e,w) , for any path from e to an edge outside
C has to contain an edge outside C with one endpoint in C. Next
let C be the union of all vertices C(f), feC, and all edges of

~ ~

G between any two such vertices.C is contained in ¢ and contains
exactly the n distinct vertices v(f) , f e C, including of course
v(e). Moreover W(v(e), w) = C iff

(3.13)  w(w) =1 forall weC, but w(u) = -1 for all
vertices u of é adjacent to a vertex in C , but not
belonging to c

One easily sees that g has an endpoint in C but does not be]oqg

to C iff C(g) is adjacent to some vertex of E , but Q(g) ¢ C.

From this it is easy to see that

(3.14) Pe {W(e) = C} = Py {W(v(e)) = C3
if one takes 5ﬂ as in (3.9), (3.10) . But
(3.15) {#4(e) = n} = y {W(e) = C}
#C=n

with the union in the right hand side of (3.15) being over all C
of the type considered above and containing n edges. Similarly
(3.16)  {#W(v(e)) = n} = _U {W(v(e)) = C}

. #C=n
and each C in the right hand side of (3.16) is the image of a unique
C in the right hand side of (3.15). The last statement is easily
verified by means of Comment 2.5(iii). (3.11) now follows from
(3.14)-(3.16). [

Because of Prop. 3.1 we shall restrict ourselves henceforth to

site-percolation. The subscripts U wused in this section therefore
become superfluous and will be dropped from now on. We remark that

we cannot use a similar procedure to translate a site-percolation

problem on every graph G to a bond-percolation problem on another
graph, because G may not be a covering graph of any other graph.

(If g = W for some graph ¥ , and ¥ has any vertex with three distinct
edges e,,e,,e, incident to it, then G(e]), G(ez) and G(e3) are

the vertices of a "triangle" in g. Thus the graph QO of Ex. 2.1

(i) - which has no triangles - is not a covering graph.) On the other
hand, there seems to be no way to go from site-percolation on ¢ to
bond-percolation on Q .
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3.2. Periodic site-percolation.

Let ¢ be a periodic graph, imbedded in Rd , With vertex set
U  {see Def. 2.1). We consider a periodic partition of U into
A sets hj,..., L, , i.e., we assume

A
A
(3.17) LN =, i, v=U L ,
J i=1 i
and (with 51,...,£d the coordinate vectors of Rd)
d
(3.18) Ve Ui iff v+ jE} kjgj € Ui s

1<i<x, kj e Z.

(In typical examples the Ui will only have periods which are mult-
iples of g],...,gd and one has to change scale to obtain (3.18);
see Ex. 3.2(i) below). We take, as in Sect 3.1

=H_’
(3.19) f = I{-1,+1}

and 8 the o-field generated by the cylinder sets in Q . We shall
restrict ourselves to probability measures on ® which are specified
by A parameters as follows: Let

(3.20) P = [0,17"

and

(3.21) p=(p(1),....p(2)) e @
Then take

(3.22) Pp = vgh Uy s

where

(3.23) pv{w(v)=1} = 1-uv{w(v)=—1} = p(i) if ve Uys i<ih .

A probability measure of this form will be called a (A-parameter)
periodic probability measure. Henceforth we shall consider only

periodic probability measures on periodic graphs. E_ will denote
expectation with respect to P_.

Examples.
(1) Let QO be the periodic graph of Ex. 2.1(i), the simple
quadratic lattice. Take X = 2, U] = {(1],12): 11+12 is even} ,

UZ = {(i],iz): i]+i2 is odd}. As it stands, this does not satisfy
(3.18). However, we only have to make a change of scale to put the

example in periodic form. We changeithe jmbedding so that the vertex
originally at (11,12) is now at (7%-, 7%-), and similarly
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"multiply the edges by a factor L (11- jg) and ({l- ig) are
p-y 2 . 2 ’2 2 ,2
i i

neighbors iff (2.6) holds. U] now becomes {(7%-, 7§-) :i1+12 is
even} and similarly for Uz

fp(1)

p(2) (1)

olp(1) p(2) (1)

Figure 3.1 Two-parameter site-percolation on Z?.
The p-value next to a vertex gives the

probability of being occupied for that
vertex.

(ii) We describe this example as a bond-problem, because the
transcription to a site-problem on the covering graph is more compli-
cated. In this example we allow three parameters. For G we take
the triangular lattice of Ex. 2.1(iii). We now consider the parti-
tion of its bonds into the three sets

(3.24) 8j = {bonds along the lines under an angle (j—])%;
with the first coordinate axis}, j=1,2,3,

and take each bond in Ej open with probability p(j). The

description in (3.24) presupposes that § is imbedded in R2 as
in Fig. 2.4

Figure 3.2 The p-value next to an edge gives the
probability of that edge being passable.
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To transcribe this to a periodic site-problem, we have to assign

probability p(j) of being occupied to a vertex of @ corresponding

to an edge e in €&, . We also have to change scale as in the

description of J in Ex. 2.1 (iii) to obtain a periodic problem. ///
Define W(v) = W(v,w) as in Def. 2.7 with "v occupied"

being interpreted as "w(v) = +1", and set

(3.25) 8(p,v) = Pp{#w(v) = »}

The X parameter periodic site-percolation problem is to determine
the percolative region in PK , i.e., to determine the set

(3.26) fper: 6(p,v) >0 for some v} .

If p(i) >0 for i<1i<2A then 6(p,v) >0 for some v iff
8(p,v) > 0 for all v by the FKG inequality (see Broadbent and
Hammersley (1957) and Sect. 4.1. below). Therefore the intersection of
the set (3.26) with {p: p(i) >0 for 1 < i <A} 1is independent

of v ; it equals the set

(3.27) {pep,: p(i) >0 for 1 <14 <A and
8(p,v) >0 for all v}.

In the next section we formulate our principal result describing the
percolative region, while Sect. 3.4 applies this theorem to give
explicit answers in a number of examples. These answers had all been
conjectured already in Sykes and Essam (1964).

3.3. Crossing probabilities and the principal theorem on

percolative regions.

Let ¢ be a graph imbedded in Rd which satisfies (2.1)-(2.5).

We consider blocks B in Rd of the form

d

(3.28) B=1I [ai’bi] = {x=(x(1),...,x(d): aigx(i)gpi,1§j§d}
1

Def. 1. An i-crossing (on ) of B is a path (vo,e],...,ev,vv)
(on ) which satisfies])

(3.29) (v1,e2,...,ev_],vv_]) is contained in B =
(a1,b]) X...X(ad,bd)

N We use standard interval notation for segments of edges. E.g. in
(3.30) (c],v1] denotes the piece of e, between g1 and vy
excluding % but including vy - Similarly for the segment

[v,_758,) of e in (3.31) .
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(3.30) e intersects the face {x(i) = ai} nB-=
[a]’b]]x"'x[ai—1’b1-1]X{ai}X[ai+1’bi+1]x"'x[ad’bd]
[e]
of B 1in some point 2 such that (51,v]] cB.

and

(3.31) e, intersects the face {x(i) = bi} NB of B in

]
some point ¢, such that [vv_],cv) < B.

Comments .

(i) Note that (3.29)-(3.31) require all but the first and
final edge of an i-crossing (vo,e1,...,ev,vv) of B, as well as the
segments (c],v]] and [vv_],cv) of the first and final edge to lie
in the interior of B. When d =2 , i.e. B 1is a rectangle in the
plane, then we shall call a T-crossing (2-crossing) a horizontal
(vertical) crossing of B. In this case the continuous curve made
up from [c1,v]] s €55...5e ,  and [Vv—1’cv-1] is a crosscut of
B (in the terminology of Newman (1951), Ch. V.11.). Finally note
that the initial and final point Vo and Vv of a crossing of B

can lie in E or in Fr (B) or outside B.

(i) An i-crossing r of B 1is minimal in the sense that no
subpath of the crossing with fewer edges than r s still an
j-crossing. One does, however, have the following obvious monotonicity
property. If [a%,b%] c [ai’bi] but [aj’bj] c [aj,bj] for j#1,
then an i-crossing (vo,e1,...,ev,vv) of B =rm[a.,b.] contains
a subpath (Va’eu+1""’e8’v8) which is an i-crossing of B'= H[aj,bj]-
Def. 2. An i-crossing (VO’e]""’ev’Vv) of B 1is called an
occupied (vacant) i-crossing if all its vertices are occupied (vacant).

Comments .

(iii) When we shall use vacant crossings we shall usually be
dealing with a matching pair of graphs (¢ and G*. We shall then
be interested in occupied crossings on ( and vacant crossings on
G* - /117
Now let P_ be a XA-parameter periodic probability measure,
as in Sect. 3.2. Especially important for us will be the probability
that there exists an i-crossing of a block with the "lower left"
corner at the origin. Formally we define these as follows.
Def. 3. The crossing probability in the i-th direction of
[O,n1] X ... X [O,nd] (on g) s
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(3.32) o(n;i,p) = c(?}i,p,q) = P { 3 an occupied i-crossing
on G of [O,n]] X ...0x [O,nd]} .

The analogous quantity for vacant crossings on G* will be written
as

(3.33)  o*(n3i,p) = o*(n3i,p,G) = o(n;i,T-p,G*) = Pp{ 3 a vacant

i-crossing on G* of [O,nl] X .. X [O,nd]}

(n here stands for (n],...,nd).)
Comments .

(iv) In (3.33) T1-p stands for the A-vector
(1-p(1),1-p(2)5...,1-p(X)) , while (G,g*) is a matching pair, based
on (m,¥) say. Recall that MsG and G* have the same vertex set
in this case (Comment 2.2 (iv)). Thus Pp as defined by (3.21)-
(3.23) is simultaneously a probability measure on the occupancy
configurations on q1, on G* and on 7 . The second equality in
(3.33) is immediate from

(3.34) Pp{v is vacant} = 1-p(i) = Pi;p{v is occupied} , v e Ui'

(see (3.22), (3.23)).

(v) It is immediate from Def. 3.1, 3.2 and Comment 3.3(ii)
that o(n;i,p) is decreasing in n, but increasing in each n,
with jJ #1 . ///

The remainder of this section gives the formulation of our
principal theorems on the percolative region. These deal only with
graphs imbedded in the plane. (G, G*) will be a matching pair of
periodic graphs imbedded in RZ ,and P_ will be a A-parameter
probability measure. W*(v) = W*(v,w) will denote the vacant cluster
of v on G , i.e.,the union of all edges and vertices of G* which
belong to a vacant path on G* with initial point v. The following
conditions A and B will be used. They are viewed as conditions
on the parameter point Po for fixed G, G* and U},..., hA .
Condition A relates the probabilities of an occupied crossing on G
with those of a vacant crossing on G* . Condition B is a relation
between horizontal crossings (i.e., crossings in the 1-direction)
with vertical crossings (i.e., crossings in the 2-direction).

Condition A. There exists a 0 <3¢ f_%- » an integer n, anc
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vectors1) o= (p1,02),5* = (01,p2) such that for i =1 or i=2
(3.35) a(n; i,p,) > s implies 0*(5-5;1'4: ) >8,
0’ =2 0’ =
whenever nl,n2 2."0 s
and also for j=1 or j=2
(3.36)  o*(mj.py) 25 implies o(n-p™i5,p,) > 6
whenever NysNy > ng
Condition B. There exist numbers & >0, 0 < aj, b, <w, j=1,2,
and sequences = (n 22) 2> 1,{ = (mz1’m22 }2 > 1 such that
(3.37) nzj + oo mzj > 35 L >, j=1,2
and

(3.38) U(”z; 1,p0) > 8, c((a]nzl,aznzz) ,po) > 8

{3.39) c*(m2;1,p0) > 8 ((b1m21 bzmgz); 2,p0) > 6.

One more definition and a bit of notation.
Def. 4 We call the Tine L : x(1) =a or x(2)=a an axis of
symmetry for the partition 1:1,..., UA_ of the vertices of ¢ if
each 1% is invariant under reflection in the line L.

Comment .
(vi) If Pp is given by (3.22), (3.23) and x(1) = a is an

axis of symmetry for ¢ and for U1,..., UA then for v=(v(1),v(2))

(3.40) Pp{v = (v(1),v(2)) is occupied} = PpKZa—v(1),v(2)) is

occupied}

for any pe®, . Similarly if x(2) = a is an axis of symmetry for

G and  Li,..., L. /17
When dealing with A-parameter problems O(T) will denote

the A-vector all of whose components equal zero (one). For p e PA’

and real t, tp has components tp(1),...,tp(A). Also, for

pl’pH €P>\
(3.41) p' < <p" means p'(i) <p"(i) , 1i<i<hr.

Unfortunately the following two theorems have a forbidding appear-
ance. Nevertheless they allow the determination of the percolative
1) The o; and p? can take negative values.
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region in several examples, as we demonstrate in the next section.
Theorem 3.1. Let (G,G*) be a matching pair of periodic graphs
imbedded in RZ and Upseres 1y 2 periodic_partition of the vertices
of G such that one of the coordinate axis is an axis of symmetry for
G» G* and the partition U,..., L. Let Py ¢ ® be such that

A

(3.42) 0 <<py<<T

and such that Condition A or Condition B 1is satisfied. Then
(i) for all vertices v of ¢ (and hence of ¢*)

(3.43) P {#W(v) = =} = P {#W*(v) = «} = 0
pO pO
but
(3.44)  E_ {#W(V)} = E_ {#W*(v)} = =
Po Po

Also, for every square Sy = {(x1,x2) : lx1] <N |le < N}

(3.45) Pp { 3 an occupied circuit on G surrounding SN and d
0
a vacant circuit on G* surrounding SN} =1.
(i1) for any p' << Py
(3.46) Pp.{#W(v) =} =0, Pp.{#w*(v) = w} >0

and
(3.47) Pp.{ 3 exactly one infinite vacant cluster on ¢*} = 1
and
(3.48) ED.{#W(V)} < o,

(ii1) fgr any p" > > Pq
(3.49) Pp"{#W(v) = o} >0, Pp“{#W*(v) = oo}

H
o

and
(3.50) Pp”{ 3 exactly one infinite occupied cluster on G} =1

and
(3.51) Ep"{#W*(V)} < ®

Theorem 3.2. Let ¢, g* and Uyaeses Uy be as in Theorem 3.1.

Assume there exist constants 0 < a}.,...,dj <o, j=1,2,3, and

LS

for each p ¢ PA with 0 <<p<<71 a function h : (0,1] » (0,1]

and an "o (h and nO may depend on p) such that for n >n

and 0 <x <1

0
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(3.52) c((n,a1n);1,p) > x implies o((azn,a3n);2,p) > h(x) >0
(3.53) c((n,b]n);z,p) > x implies 0((b2n,b3n);1,p) > h(x) >0,
(3.54) o*((n,c;n)31,p) > x implies o*((c, n,cqn)s2,p) > h(x) >0,
and

(3.85)  o*({n,dn);2,p) > x implies o*((d,n.dsn);1,p) > h(x) >0 .
For Py € Py choose

(3.56) t, = inf{t > 0: tp1 e P

0 , limpsup o((n,a1n);1,tp]) >0

A
or Timsup 0((n,b1n); 2,tp1) > 0}
n-oo

provided the set in the right hand side of (3.56) is nonempty. If

0 < < pO o= tOp1 <<T1 ,

then condition B holds for Py * and consequently also (3.43) -

(3.51) .

The proof of these theorems will be given in Ch. 7 after the

necessary machinery has been developed.
In all examples of the next section the following corollary

applies. Let G, G* and h],..., L, be as in Theorem 3.1. Set

A

(3.57) 8 ={pye P, : 0 << Py < < T and Condition A

or Condition B holds for po}

and

> = [Rn! .ot
(3.58) ®_=1{p'e PA' P! < < py for some Py € SN

P+ = {p" ¢ PA: p" > > Pg for some pO e 8}
Corollary 3.1. Let (g, ¢*) and h],..., hA be as in Theorem 3.1.
If.

A e

(3.59) (0,1)" cp_Us uw,

then the percolative regions for (¢ and G* in (0,1)A are P,
and P , respectively (i.e., for 0 < <p < <71 infinite occupied

clusters on ( (infinite vacant clusters on (*) occcur iff
p £ 63+(P_) .
It is reasonable to call § the critical surface in the cases

where Cor. 1 applies.
3.4 Critical probabilities. Applications of the principal

theorems.
The FKG inequality implies (see Sect. 4.1) that if ¢ is



connected, and if
(3.60) Pp{v is occupied} > 0 for all vertices of G ,

then 6(p,v) >0 for some v iff @(p,v) >0 for all v. Also
Ep{#W(v)} = o for some v iff this holds for all v (see Sect. 4.1).
For one-parameter problems with

(3.61) Pp{v is occupied} = uv{m(v) =1} =p

for all vertices v of a connected graph ¢ we can therefore define
the critical probabilities

(3.62)  py = py(G) = sup{p e [0,1] : 6(p,v) = 0},

(3.63)  p; = pr(G) = sup{p e [0,1] : Ep{#W(v)} < w)

and these numbers are independent of the choice of v. By definition
Ep{#W(v)} > 8(p,v) . =

so that Ep{#W(v)} = o for p> Py - Therefore one always has

(3.64) Pr <Py, -

For periodic graphs (¢ imbedded in Rd we define a third critical
probability which is a slight modification of one introduced by
Seymour and Welsh (1978); see also Russo (1978).

(3.65) Pg = sup{p ¢ [0,1] : Tim o((3n,3n,...3n,n,3n,...3n):i,p)

n->co
=0 » 1 <i<d}.
where the one component equal to n in o ((3n,...,n,...,3n)3;i,p) in
(3.65) is the i-th component. It will be a consequence of Theorem
5.1 that for any periodic graph ¢ imbedded in Rd

(3.66) Pr = Pg
In some cases Corollary 3.1 can be used to show that
pT = pS = pH s
and in a small class of examples one can even calculate the common
value of these critical probabilities. This is demonstrated in the

applications below. Again all these applications are for graphs
imbedded in the plane.

Applications.
(1) Triangulated graphs. Let ¢ be a periodic graph imbedded
in Rz such that one of the coordinate axes is a symmetry axis and
such that all faces of G are triangles. Let PD be the one-




parameter probability measure defined by (3.22) and (3.61). In each
problem of this form

(3.67)

nN|—

Pr “Pg =Py~
This applies for instance in the site-problem on the triangular
lattice of Ex. 2.1(iii) or the centered quadratic lattice of Ex. 2.2
(iii).

It is interesting to observe that one may "decorate" the faces of
¢ almost arbitrarily without affecting (3.67). That is, if F is
a face of ¢ we may add a number of vertices and edges inside F.
The addition of these vertices and edges does not increase 6(p,v) .
Indeed, any occupied path entering and leaving F has to do so at
two vertices v1 and v2 on the perimeter of F. But then v1
and v, are occupied and connected by an edge of G , and hence
the piece of the path in F between vy and Vo can be replaced by
the edge between v, and vy We can make such a change in every
face; the decorations of different faces don't have to have any
relation to each other, and the resulting graph does not have to
be periodic or planar. Nevertheless it will have the same value of
8(p,v) for v e G and hence also Py = %-. If the number of added
vertices in any face is uniformly bounded, then a slight extension of
the above argument shows that also Py = Pg = %- remains true for
the decorated graph.

Vanden Berg (1981), Fig. 1, shows an interesting example of a
graph G which has all the properties required above, except for the
periodicity, but with Pr =Py = 1 . This illustrates how crucial
periodicity is.

Proof of (3.67): G 1is a periodic mosaic and since all faces are
already close-packed, we can take ¢* =G . (G, G*) is the matching
pair based on (¢, @); see Ex. 2.2 (iii), g 1is self-matching and
Condition A holds trivially for Po = %—. Indeed

P] {v is occupied} = P1 {v 1is vacant} =

2 2
and since G = g* this gives

L]

n|—

(3.68) o*(?l_;i,—;-) = 0(3;1,1-15,03*) = o(ﬁ;i,%,q) .

Clearly (3.68) implies (3.35) and (3.36). Thus, by (3.43), (3.46)

and (3.49) percolation occurs under Pp iff p > %—. Also,



E (V)Y < = iFF p < —;— . Thus p, =
follows from (3.66).

(ii) Bond percolation on 12 and further self-matching problems.
In the first application we considered a one-parameter problem with

and (3.67) now

N [t

Pr

4 = ¢* . Here we consider a two-parameter problem for a matching pair
of periodic graphs (G, (*) with (* a translate of ( . Assume
that

(3.69) GF =G+

for some vector vy = (y(1),v(2)). In other words, ¢ and ¢* are
imbedded in RZ such that v(e) 1is a vertex (edge) of ( iff

v+y (e+y) is a vertex (edge) of (* . Assume also that the vertex
set U s partitioned into two periodic classes b] , LZ which
satisfy

(3.70) h2 = b1 +y,

and that one of the coordinate axes is an axis of symmetry for ¢, G*
and h1, LZ . If p=(p(1),p(2)) satisfies

(3.71) p(1) +p(2) =1 , 0<p(i) <1,

then it is again easy to verify Condition A (see below). Hence
(3.71) gives the critical surface in this situation, and percolation
occurs on ( under Pp with p < <1 iff p(1) + p(2) > 1
The restriction of p to the line p(1) = p(2) gives the one-
parameter problem, and we see from (3.71) that the critical probabil-
ities are again given by (3.67) in a one-parameter problem on a (
which satisfies (3.69) ((3.70) will not even be needed for the one-
parameter problem, since (3.72) below automatically holds at

= (3 1)

) The most classical example of this kind is bond-percolation on
- with

p(1) if e 1is a horizontal edge
P{e 1is passable} =

p(2) if e 1is a vertical edge.
By Prop. 3.1 this is equivalent to site-percolation on the graph Gy
of Ex. 2.1 (ii) with
. 1 .
i’ - RN .o .
= Wyt B s ity e zy,

Yy

1]
A
—
-y
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(See also Ex. 2.5 (ii).) To see that this fits in the above framework
we take for Wﬁ the mosaic with vertex set U1 U Uz and an edge be-
tween the vertices v = (v(1),v(2)) and w= (w(1),w(2)) iff (2.10)
holds. For 3] we take the faces of Wq (which are tilted squares,
see Fig. 3.3 below) which contain a point (i],iz), with integral 11,
12. 3? will consist of those faces which*do not contain a point
(11,12) with integral 1],12. Finally G is the graph with vertex
set b1 U UZ and v = (v(1),v(2)), w = (w(1),w(2)) adjacent iff
either (2.10) holds or

V(1) = w(1) € Z +% , v(2)W(2) € Z, [v(2)W(2)]| = 1
or
V() w(1) € Z, v W] = 1, v(2) = w(2) € Z +5 .
x(2)-axis
\
| AN
}
pm o - === x(1)-axi <><>O
0 X axis 0 \<>
| @ G
|

Figure 3.3
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One easily checks that (Q1,QT) is the matching pair based on (Wﬁ’31)
and that

- 11 - 11
Q] - Q]+(2 ’2)’ Uz U]+(2 52)-

Thus (3.69) and (3.70) hold in this example and (3.71) is the critical
surface. A generalization of this result for a mixed percolation
model in which bona, sites and faces are random is given by Wierman
(1982b).

Another example is G = Q* = J, the triangular lattice I of
Ex. 2.1 (ii1) with

h] = {(11,12): 1],12 e Z1,

Uz i ,'i SZ}.

il
———
—
-
—
-+
3
-
-+
|
~
-

2

—t

Again (3.69) and (3.70) hold with vy = (
face is given by (3.71).

,é), and the critical sur-

N —

p(1) p(1) p(1)
p(2) (2) (2)
p(1) p(1)

Figure 3.4 The p-value next to a vertex gives the probability of
being occupied for that vertex.

Verification of Condition A. Since & and Q* have the same vertex
set (Comment 2.2 (iv)).

1t

h] U v, U = vertex set of Q* = U +y = ( b1'*Y) U ( U24'Y)

1!

UZ U ( b2+y)
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by (3.69) and (3.70). But U14-y and b2-+y are disjoint, and the
same holds for U] and L, (see (3.17)). Thus, in addition to

2
(3.70)
h] = 1;2+y

Therefore, if v e U], vty € UZ and for Py satisfying (3.71)

P {v+vy is vacant} = 1-P_{v+y is cccupied} = 1-p,(2)
Po Po 0

p0(1) = Ppo{v is occupied}.

Similarly for v ¢ Uz, so that for all v

(3.72) P_ {v is occupied} = P_ {v+vy is vacant}, and
Po Po

P_{v is vacant} = P_ {v+vy is occupied}.
Po Po

Consequently the distribution of the set of occupied vertices of §
equals the distribution of the set of vacant vertices on G+vy = Q*.
Therefore

(3.73) o*(ﬁ¥5§1,p0) = PpO{B vacant horizontal crossing on Q* of

[O ,h]-oﬂ x [Oanz'pz]}

= Pp {3 occupied horizontal crossing on ( of
0

["Y'] an]'p]'y1] x ['Yz 5n2"02"Y2]

By means of the monotonicity properties of o given in Comment 3.3 (v)
we see that for

(3.74) A

the last member of (3.73) is at 1east])

Pp {3 occupied horizontal crossing on G of
0

["Y]‘*'l- Y] ‘i ,n]~p]-‘{]+|— Y] 7] x ['Y2+L YZ _anz'f‘z‘Y2+ L Yz _J]}
> O(ﬁ—ﬂ 9p0)-

1) | vy | denotes the largest integer <y and [y | the smallest
integer > y.
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Thus, for any p which satisfies (3.74), (3.35) holds with & =
Similarly for (3.36).

(iii) Bond-percolation on the triangular and the hexagonal lattice.
In this application we take G = the triangular lattice and Qd = the
hexagonal lattice, imbedded as in Ex. 2.6 (ii). Thus the vertices of
G are at the points (i1,i,/3) and (3;+5(5y*3)V3),1qin0d1ad, € Z.
The faces of G are equilateral triangles and its edges are under an
angle 0, n/3 or 2n/3 with the first coordinate axis. The faces of
Gy are regular hexagons and its edges are under angles 121, %+IT3—, _121+§31
with the first coordinate axis. Strictly speaking, this is not a per-
iodic imbedding, but as pointed out in Sect. 2.1 one merely has to change
the vertical scale to make it periodic. In addition we shall describe
this application in terms of bond-percolation. This is simpler than
its equivalent formulation as a site-problem which can be obtained by
going over to the covering graphs, as discussed in Sect. 2.5. Since §
and Qd are a dual pair, their covering graphs form a matching pair.
(See Sect. 2.6, especially Ex. 2.6 (ii).) One can verify this easily
explicitly, but the covering graphs are more complicated than G and
Qd themselves.

1
5

As we shall see below, for the one-parameter bond-problem on these
graphs the critical probabilities are given by

(3.75)  pp(Gsbond) = pg(Gsbond) = p,(Gsbond) = 2 sin 5 ,

(3.76) pr(Ggsbond) = pg(Gysbond) = py(Gysbond) = 1-2 sin TTIS‘ i

Before we come to this result we describe first the 3-parameter problem
of Sykes and Essam (1964). The edge set €& of G 1is divided into the
three classes

€, = {edges of G making an angle of (1—1)%

with first coordinate axis}, i = 1,2,3.

An edge of 61 is passable with probability p(i). Each edge of Qd
intersects exactly one edge of G and vice versa. In the covering
graphs a pair of intersecting edges of G and Qd would correspond to
one common vertex of the covering graphs. In accordance with this fact
we take an edge of qd as passable iff the edge of G which it inter-
sects is passable. Thus, any configuration of passable and blocked
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edges in G is viewed at the same time as a configuration of passable
and blocked edges on Qd. The analogues of o and o* in the bond
version become

o(n;i,p,G) = Pp{a crossing in the i-direction of [0,n1]><[0,n2]
on G with all its edges passable},

o (M3i,p.G) = P,{ 3 crossing in the i-direction of [0,n;]x [0,n,]
*
on G with all its edges blocked}.
To verify condition A with this interpretation of o and o* we
follow Sykes and Essam's ingenious use of the star-triangle transforma-

tion. Instead of considering crossing probabilities on Qd itself, we
consider crossing probabilities on a translate of Gy > namely

(3.77) W= Gy- (3> ).

0f course we take the probability of an edge e of ¥ being passable
equal to the probability that the translated edge e +(%3—l—0 of Qd

2/3
is passable. These probabilities are p(1), p(2) and p(3) for the
edges which make an angle of %3 %4-%- and g~+%§- with the first co-

ordinate axis, respectively. The vertex set of # coincides with that
of G and each "up-triangle" of G (i.e., the closure of a triangular
face F of G with vertices at (11,12/5), (11+1,12/§) and

(1'1 +%,(1‘2+%)/§) for some 1i;,i, € Z) contains a "star" of three
edges of ¥, one through each vertex on the perimeter of F (see Fig.
3.5).

p(2 p(3)
/}\
/.-(3) p(2))
Vs p(1) v,
Figure 3.5 An up-triangle of G with a star of ¥ . —— = edges
of G, --- = edges of H. The p-value next to an edge

gives the probability for that edge to be passable.
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It turns out that the connectivity properties on ¢ and 3 can be made
identical by a suitable matching of certain probabilities in each up-
triangle separately. Note that it is not so much the full configuration
of passable edges in each up-triangle that is important, as the pairs

of vertices which are connected in each up-triangle. Here we make the
convention that two vertices vy and Vo on the perimeter of F are
connected in F on G(¥) 1if one can go along passable edges of @
(blocked edges of ¥) in F from vy to Vo If one has a sequence
Vgse ooV, of distinct vertices of G (or ¥) such that Vi1 and Vj
are connected in the unique up-triangle to which they both belong,
j=1,...,v, then there exists a passable path (wo,e],...,eT,wT) on @
(or a path on ¥ with all its edges blocked) with endpoints Wg = Vgs
W=V and which contains the vertices VooV, but only enters
up-triangles which have one of the v, as vertices. Since the dia-

meter of any up-triangle equals one, this together with (3.77) implies

*
(3.78) o (n-p31,p,G) = Pp{B a horizontal crossing of

1 1 1 1
[_w’n -p -——]x[— ——,N,=p —-:] on # all of whose
2’1 2 273 2 2 33

edges are blocked}

Z.Pp{3 a sequence of vertices Vgree sV such that

V.

V
5-1 and Vs are connected on H, 1 < j <wv, and

3 1 1 I
Vg e bgnoytplxbo o g 1l T e s vl

. 3 1
while v0(1) < -5 vv(1) > nl—p14-§} .

If the event in the Tlast member of (3.78) occurs and
r = (wo,e],...,eT,wT) is the path on ¥ through Vga---oY, 85 above,
then r contains a horizontal crossing of

1 1 1
[-an -0y - g1 % [ ~
221 "1 2 2 /3

sNp=0p —
2/3 ¢ 2

with all edges blocked. Assume now that Po is such that for an up-
triangle F with vertices VsVpsVg and any subset T of {1,2,3}
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(3.79) Pp {the pairs of vertices connected in F on G are
0

exactly the pairs Vi’vj with i,j e T}

= Pp {the pairs of vertices connected in F on ¥ are
0

exactly the pairs v1.,vj with i,j ¢ T}

Then the right hand side of (3.78) remains unchanged for p = Po if H
is replaced by G, because distinct up-triangles have no edges in common,
and have consequently independent edge configurations. (This holds on

H as well as on G.) However, when ¥ is replaced by G the last
member of (3.78) is at least equal to

Pp{a a passable horizontal crossing of

Z U( (n]—p-|+] 5”2‘]'02) 91 ap) .

Therefore (3.35) holds when o1 <1, 0o > -1 for any Po which satis-
fies (3.79). Similarly for (3.36), and consequently Condition A is im-
plied by (3.79).

We shall now verify that (3.79) holds for all Pg € S, where

(3.80) 8 = {p e P3: 0 << p << 1,p(1)+p(2)+p(3)-p(1)p(2)p(3) = 1}.

The only possibilities for I are ¢, {1,2,3} and the three subsets of
{1,2,3} consisting of exactly one pair. These last three subsets and
their probabilities can be obtained from each other by cyclical permuta-
tions of the indices, so that it suffices to consider T = ¢, I = {1,2}
and T = {1,2,3}. For T = ¢, the left and right hand side of (3.79)
are, respectively,

(3.81) (1-p(1))(1-p(2)) (1-p(3))
and
(3.82) p(1)p(2)p(3) +p(1)p(2)(1-p(3)) +p(1)(1-p(2))p(3)

+ (1-p(1))p(2)p(3)

(recall that on ¥ we are looking for paths with blocked edges). It is
simple algebra to check that (3.81) and (3.82) are equal for p e § .
Equation (3.79) for T = {1,2,3} acain r~duces to the equality of
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(3.81) and (3.82). Finally, if T = {1,2} and the vertices are number-
ed as in Fig. 3.5, then both sides of (3.79) equal

p(3)(1-p(1))(1-p(2)).

The above shows that in this example Condition A holds whenever
Py € 8- Unfortunately, neither of the coordinate axes is an axis of sym-
metry for the sets &, and 83 and therefore Theorem 1 cannot be used
for this 3-parameter problem. To obtain the required amount of symmetry
we have to restrict ourselves to the two-parameter problem with p(2)
= p(3). In this case Theorem 1 applies, and for this problem the criti-
cal surface in Fb is obtained by taking p(2) = p(3) 1in (3.80). Thus,
if we take

m
™m

p(1) if e
P {e is passable} =
P p(2) if eecé€, UE, ,

then there are infinite passable clusters on the trianglar lattice G
under Pp with 0 < p(1), p(2) <1 iff

(3.83) p(1) +2p(2) - p(1)p(2)2 > 1.

When restricted further to the one-parameter problem with p(1) = p(2)

= p(3) we find for the triangular lattice the critical probabilities

given in (3.75) since 2 sin %%— is the unique root in (0,1) of

3p—p3 = 1. This value was conjectured by Sykes and Essam (1964) and

first rigorously confirmed by Wierman (1981). By interchanging the role

of "passable" and "blocked" one finds for the one-parameter problem on

the hexagonal lattice the critical values given in (3.76). Of course,

by obvious isomorphisms these results determine the percolative region

also when we take p(1) = p(2) or p(1) = p(3) instead of p(2) = p(3).
So far we have been unable to prove the full conjecture of Sykes

and Essam (1964) that S is the critical surface for the three-parameter

problem. There are, however, many indications that the conjecture is

correct, in addition to the above verification for the two-parameter

problem. First, one can prove that no percolation can occur on G if

p(1)+p(2) +p(3) - p(1)p(2)p(3) < 1.

Thus, the percolative region is contained in ¥_ (see (3.58) for nota-
tion), and its intersection with the plane {p(2) = p(3)} 1is the same
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as the intersection of P+ with this plane. Also, if we take p(3) =0,
then the bond-problem on G reduces to the bond-problem on Z? with
probabilities p(1) and p(2) for horizontal and vertical edges to be
passable. This is evident if we imbed the triangular Tattice as in Fig.
2.5 in Ex. 2.1 (iii). However, by Application (ii) above we know that
the critical surface for this bond-problem on 22 is given by (3.71),
which is precisely the restriction of (3.80) to p(3) = 0, (if we ignore
the requirement p(3) > 0). Last, we can modify the three parameter
problem slightly so that the first coordinate axis becomes an axis of
symmetry. To do this we interchange the role of p(2) and p(3) in
every second row of up-triangles. To be precise we leave 8] as before
but replace 82 and €, by

3
v . . . = . l . l—
(3.84) 82 = {e: e an edge between (1],12/3) and (114-2,(124-2)/3)
or between (11,12/§) and (i1+~%,(12— %)/5) for some
1'],1'2£Z7_}
v L T Ry
(3.85) €y = {e: e an edge between (11,12/§) and (11 2,(124-2)/3)

1

2)/?) for some

.. .1 .
or between (1],12/3) and (1]-§412—

1],12 e Z}

Figure 3.6 A modified 3-parameter bond-problem on the
triangular lattice. The p-value next to an
edge gives the probability for that edge to
be passable.
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The assignment of probabilities becomes as indicated in Fig. 3.6. We
can define # as before, but the probabilities of an edge of ¥ being
passable have to be modified in accordance with (3.84) and (3.85). Each
up-triangle will have an assignment of probabilities as in Fig. 3.5 or
with p(2) and p(3) interchanged. However, the remainder of the
argument showing that Condition A holds whenever Pg € & remains un-
changed. Since this new example has the first-coordinate axis as axis
of symmetry for G, as well as for the edge classes 6], Sé, eé s
Theorem 1 and Cor. 1 applies. Thus, 8 1is the critical surface for
the modified 3-parameter problem.

(iv) Site-percolation on 12. In this example we shall verify

Condition B. It will, however, not lead to an explicit determination
of the percolative region. For our graph G we take the quadratic

lattice QO of Ex. 2.1 (i). We consider the two-parameter site-perco-
Tation problem corresponding to

Uy = {(ig,05): 14%i, is even}
Uy = {(ig,1,): i+, is odd}

A trivial change of scale by a factor %- in both the horizontal and
vertical direction is required to bring this problem in the periodic
form (3.18), but this will not change the fact that G, Q*, U1 and UZ
are unchanged by reflection in a coordinate axis or in the 45° line
x(1) = x(2) (see Fig. 3.1). Thus, both coordinate axes are axes of
symmetry while (3.52)-(3.55) hold trivially when all aj'dj are equal
to one and h(x) = x, because the probability of an occupied horizontal
crossing of [0,n]x[0,m] on G 1s the same as the probability of an
occupied vertical crossing of [0,m]x[0,n]. Similarly for vacant
crossings on Q*. Thus, Theorem 3.2 and Cor. 3.1 apply, and the criti-
cal surface 8 1is given in this example by

(3.86) s = {py = (pg(1)spg(2)): 0 << py << 1, py = t(py)py
for p; of the form (1,p) or (p,1), with 0 <p <1},

where

(3.87) to(p1) = inf{t > 0: tpy eP,, 1im sup o((n,n);l,tp1) > 0} .
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Infinite occupied clusters on ( can occur only for p ¢ P+ (see
(3.58) with X = 2), while for pe P

(3.83) Ep{#W(v)} < o,

When restricted to the one-parameter problem p(1) = p(2) Theorem
*
3.2 (together with (3.66)) implies (see Ex. 2.2 (i) for qo)

(3.89)  pp(Gy) = pg(Gy) = Py(Gy) = T-p(Ug) = 1-pg(y) = T-pylGy).

This result was recently proved by Russo (1981).
It is also interesting to see how S behaves near the edges
p(1) =1 and p(2) =1 of PZ' For p(1) = 1, the occupancy of a path

is determined only by the vertices from U, on the path. From this it

2
follows that the questions whether 6 (p,v) > 0 or Ep{#w(v)} < w re-
duce to the same questions in a one-parameter problem with p = p(2) on

the graph ¥ with vertex set U, and with (11,12) € b2 adjacent to

2
(31,32) £ UZ on H# iff

iy=dy = 1 and [ip-d,[ = 1
or
i = 3y [1p73p) = 2
or

|1]—j]| =2, 12 = j2 .

This graph is drawn in Fig. 3.7, together with QO .

F4t-
4

N
\ ’
N '
e

V4 A

—

N

) A T W
7/

N

Y—
TR

Figure 3.7 # has vertices at the circles only; its edges
are the solid as well as the dashed segments; QO
has vertices at the circles and at the stars;
its edges are the solid segments only.
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Clearly ¥ 1is isomorphic to QS (see Ex. 2.2 (1)) and therefore on i}
p(1) = 1, infinite occupied clusters occui if and only if p(2) > pH(gO);
moreover Ep{#w(v)} <o for p(2) < pH(QO). Simple Peierls arguments
(i.e., counting arguments such as in Broadbent and Hammersley (1957),
Theorem 7 and Hammersley (1959), Theorem 1) establish that

0 < pH(QS) <1

*
Thus, for any 0 < p(2) < pH(QO) and p = (1,p(2)) (3.88) holds. More-
over, as we shall see in the proof of Lemma 5.4, p >> 0 and (3.88) imply
that o((n,n);i,p) - 0. Since (3.88) for any p implies that (3.88)
is also valid for any p' with p'(i) <p(i), i = 1,2 (see Lemma 4.1),
it follows that 8 cannot have any accumulation points in
{1} x[o,pH(QZ)). Interchanging the role of p(l) and p(2) we see
that 8 has no accumulation points in [O,pH(QO))x {1} either. Fur-
thermore, it will be shown in Ch. 10 (see Ex. 10.2 (i)) that in the in-
terior of P, 8 Ties strictly above the line p(1)+p(2) = 1. Thus,
§, P, and P_ should look more or less as indicated in Fig. 3.8.

Figure 3.8 A

(Py(G)>1)s B = (P(Gy) P (Gg)).

C = (1,P,(Gy))

The points A = (pH(Q;),1) and C = (1,pH(QS)) are the points on the
boundary of PZ in the closure of 8, while S* intersegts the diagonal
p(1) = p(2) in B = (p,(Gy)s p,y(Gy)) = (1-p,(Gy),1-p,(Gg)).

(v) For a last application we consider one-parameter site-percola-
tion on the diced lattice of Ex. 2.1 (v). We shall show that this graph
satisfies (3.52)-(3.55) so that Theorem 3.2 applies. For p; we can
take any number in (0,1). We then find from (3.43)-(3.51) and the
definition (3.56)
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pg = inf{p > 0: 1im sup G((n,af‘);]’p) >0 or

N—oo

Tim sup o((n,b}n);Z,p) > 0}

N-—»co

Py (diced lattice) = P (diced lattice)

I

1—pH (matching graph of diced lattice)

1-pT (matching graph of diced lattice) .

Note that the diced Tattice is itself a mosaic, & say. Therefore, the
diced lattice & 1is the first graph of the matching pair (ﬂ,ﬁ*) based
on (8,0) (Comment 2.2 (vi)). In the imbedding of Ex. 2.1 (v) the
diced lattice is clearly invariant under a rotation over 120°, and this
will also be true for ﬂ*, where 8% is obtained by inserting the
"diagonal edges" in each face of 8. From this property it is easy to
derive (3.52)-(3.55) with h(x) = x. We content ourselves with demon-
strating (3.52). Note that any horizontal crossing on & of

B = [0,n]><[0,%n] contains a continuous curve 1y inside B and con-
necting the left and right edge of B. When B 1is rotated around the
origin over 120° it goes over into the rectangle B with vertices 0,
Pp o= (/3)s Py = (g-g/3, 5/3-g)s Py = (-g/3,-g). ¥ goes

p
1
4,—\
P2< 5 \\
\\\ \
VN
\\w\‘ \\ \_)'\,/
\
\‘\ \ B
\ ‘:,I‘ 0
p\'
3
Figure 3.9

over into a continuous curve on & inside B and connecting the seg-

ment from 0 to P3 with the segment from P] to P2' In particular

¢ begins below the first coordinate-axis (x(2) = 0) and ends above
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the horizontal line through P2, x(2) = %V?l-%-. Also y 1is contained
between the vertical lines through PZ’ x(1) = - %u-%/g, and the verti-

~

cal 1line through 0, x(1) = 0. 1In particular, y contains a vertical
crossing of

[-5-§/3-1.11x [0,5/3-g-11

if A > Tlength of any edge of 8. By the invariance of ® and P

p
under the rotation over 120° we therefore have

(3.90) Pp{ 3 occupied vertical crossing of
[-5-§/3-1,11x [A4,53- 1)

~

Z.PP{B continuous curve @ in B on 8 connecting the

segment from 0 to P3 with the segment from P] to P2

and with all vertices on ¢ occupied}

> Pp{B occupied horizontal crossing of [0,n]><[0,%]}.

This is essentially (3.52), since by the periodicity of & with periods
(/3,0), (0,3) the left hand side of (3.90) is at most

(3.91) Pp{ 3 occupied vertical crossing of

[o,n(;—+1831) +2+ /3] % [0,0/3- 0 20 - 3])

_n
8
E.Pp{ 3 occupied vertical crossing of [0,n]x [0,%]}

for large n (use Comment 3.3 (v)). For the imbedding of & of Ex.2.1
(v) this would say

(3.92) o((n,5):2,p,8) > o((n.7)51,p,8).

This is actually not the inequality which we can use, because we first
have to change scale in order to make ® periodic with periods (1,0)
and (0,1). This, however, does not change the form of the inequality
(3.92), and hence (3.52) follows for some ay-a, and h(x) = x.
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4. INCREASING EVENTS.

This chapter contains the well known FKG inequality and a formula
of Russo's for the derivative of Pp{E} with respect to p for an
increasing event E. No periodicity assumptions are necessary in this
chapter, so that we shall take as our probability space the triple

(Qb » By ,F’U) as defined in Sect. 3.1. Eh will denote
expectation with respect to PU
Def. 1 A Bh - measurable function f:Qh -+ R is called

increasing (decreasing) if it 151) increasing (decreasing) in each

w(iv), ve b . Anevent E¢ B, is called increasing (decreasing)

if its indicator function is increasing (decreasing).

Examples

(i) { #W(v)} is an increasing function, since making more

sites occupied can only increase W(v).

(i1) Ey = {#d(v) = «} for fixed v is an increasing
event; if E] occurs in the confiquration w' , and every site which

is occupied in w' is also occupied in w" - and possibly more sites

are occupied in w" - then E1 also occurs in configuration w".

(iii) E, = { 3 an occupied path on ¢ from vy to v2}
for fixed vertices vy and Vo is increasing for the same reasons
as E] in ex. (ii).

(iv)  The most important example of an increasing event for our
purposes is the existence of an occupied crosscut of a certain Jordan
domain in R2 . More precisely we shall be interested in pair of
matching graphs (g,g*) in R2 based on (th), gpg, qu* and
v/ will be the planar modifications of §, ( and 7 respectively

be
(see Sect. 2.2 and 2.3) . Let J be a Jordan curve on W$2

1 . . . . . .
) We use "increasing" and "strictly increasing" instead of "non-
decreasing" and "increasing".
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consisting of four closed areas B., A1, B2 and C with disjoint

1
interiors. Then

Ey = { 3 occupied path r on ng with initial (final)
point on Bl(BZ) and such that r minus its endpoints
is contained in int (J)}

is an increasing event. For further details see Ex. (iii) in the next

section. 11/
Before treating the principal results of this chapter we prove

a simple lemma, stating that the expectation of an increasing function

goes up when the probability that a site is occupied goes up.

Inequality (4.2) gives an upper bound for this effect, though. The
lemma will be useful Tlater.

Lemma 4.1. If f:0, - [0,0) is an increasing non-negative function
and
P = 1 u s P3 = 1 u!
s
vel v vel v
are two product measure on Q0 which satisfy

u& {w(v) =1} > uv{w(V) =1} , vel ,

then (with Ey (Et) denoting expectation with respect to Py (Pt))

(4.1) EL f > E, f

If f > 0 depends only on the w(v) for v in a subset W of
U with cardinality m = #Ww , then .

1y ™

”) B, f .

For a decreasing non-negative function f the inequality in (4.1) is
reversed, while (4.2) is to be replaced by

| max  Myle(v)
(4.2) E, T < (v € Wb uv{w(V)

fn

m
max uv{w(v) -1} E' f
By T 2 (v el Hylwlv) = -1} ) b

Proof: The lemma is proved by "coupling". We construct a measure
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P on (QU X Qs B X BU) such that its marginal distribution on the

first (second) factor is Ph(Pt ) and with the following properties:

(4.3) P 1is a product measure I ,
vel

where vy is a measure on {-1,1} x {-1,1}. Thus if we write a generic
point of @, xq_  as {(w(v),w'(v)): v e \} , then the random vari-
ables (w(v),w'(v)), v e b, are indeperdent under P. Moreover we

will have
(4.4) Plo(v) =1 | w'(v) =1} = nlwlv) =1}
u' {w(v) = 1}
and
(4.5) Plluw') e @ x @ :wlv) < w'(v) forall v}=1.

' U

To construct such a product measure we merely have to choose the v,

suitably. Ue take

il
1
—
-
£
—
<
SN
i
1
—
—
1]

vv{w(V) u¢{w(v) = -1} ,

vv{w(v) == w'(v) =1 = ugde(v) = 13 - u fw(v) =1},

n
—
-
e
—
<
S
(]
i
—t
—
1]
(o]

vv{w(v)

vv{w(v) =1, w'(v) =1} = ufw(v) = 1}

(4.4) and (4.5) obviously hold for these v, and one easily checks
that P has the prescribed marginal distributions. Now, for any

increasing f > 0, by (4.5)
By, f o= [ flw) dPiw') = f flo') dPlu,w')
Q Q X Q
v U 1%
> / f(w) dP(w.w') = ElJr f
PR

This proves (4.1).
To prove (4.2) note that (4.4) implies
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Plu(v) > w'(v) for all v e W] u'}

m
- 1 P -1 . =1 . {w{v) = 1}
JI wlv) w'(v) P> (s;&wr—zﬁ\) .

w'(v) =1

For an increasing f > 0 which depends only on the occupancies
in W we now have

EL f = i flw) dP(w,w")

| v
X =
—.h
—
IS
S
(el
v
——
e
-
e
a—

= [ flw') P{lu(v) > w'(v) forall ve bw') dP(u")

_>_ ( m]'n U{UJ(V = ]} ) m El .f:

ve b u'{o(v) =1} v

This is equivalent to (4.2). We leave it to the reader to derive

the analogues of (4.1) and (4.2) for decreasing f, by interchanging
the roles of E, and E} . ]

4.1. The FKG inequality.

We only discuss the very special case of the FKG inequality
which we need in these notes. This special case already appeared in
Harris (1960). For more general versions the reader can consult
the original article of Fortuin, Kasteleyn and Ginibre (1971) or the
recent article by Batty and Bollman (1980) and its references.

Proposition 4.1. If f and g are two bounded functions on @
which depend on finitely many coordinates of w only and which are
both increasing or both decreasing functions, then

(4.6) Ey, (flw) glw)} > E, {f(w)} £ {g(w)?

In particular, if E and F are two increasing events, or two
decreasing events, which depend on finitely many coordinates of
w only, then
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(4.7) PL){E n FrFr > PU {E} . P];{F}

Proof: For (4.6) it suffices to take f and g increasing. The
decreasing case follows by applying (4.6) to -f and -g. Order the
elements of L in some arbitrary way as VisVosenes and write

Wy for w(vi). Without loss of generality assume that f(w) and
g(w) depend on Wyseews woonly. If n =1, then (4.6) follows

from the fact that for each wy s w% R

{f(w))- f(mi)}{g(w1) - 9(wy)} > 0

wy and wy < w]). Thus

(check the cases W

| v

o
A

[Ifw) - Fw)Hgloy) = glu})} P (dw) P (do')

2 By {fg} - 2 E, {f}E, {9} .

The general case of (4.6) follows by induction on n since
Eb {fg} = Eb {Eb {fglwz,-.., n}} s

> E {EU {flwz,...,wn} Eh {glwz,...,wn}}

(since for fixed Wosenn s s f(w) and g(w) are increasing

functions of W, only)
> E, {E, {flwz,---,wn}} E, {E, {glwz,...,wn}}

(since E, {f|w2,...,wn} is an increasing function of
Wos e e sl and similarly for g, plus the induction
hypotheses) = Eb {f} EU {g} .

This proves (4.6) and (4.7) is the special case with f = IE , g = IF S

Application.

For a simple application of the FKG inequality let Vis Yy be
two vertices of a connected graph G. Then if there is an occupied
path from vy to ) the occupied clusters of vy and v, are
identical. Therefore, by (4.7) and Ex. 4(i) and 4(iii).
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(4.8) Py t#W(vy) > n} > P { 3 occupied path from v, to v,
and #w(vz) > n} > P, { 3 occupied path from Vi to vz}
Py (#(v,) > n} .
If G 1is connected and Pb,{v is occupied} > 0 for all v, then
also

Py { 3 occupied path from vy to v2} > 0

Therefore
8 (v2) > 0 implies © (v1) > 0 and

E {#W(vz)} = o implies E {#w(v1)} = oo

This justifies our statement in Sect. 3.4, that PH and P, are

T
independent of the choice of v.

4.2. Pivotal sites and Russo's formula .

Def. 2. let E ¢ By, be an event and w e 0, an occupancy
configuration. A site ve U is called pivotal for (E,w) (or for
E for short) iff

IE(w) # IE(va) s

where va e Q is determined by
wiw) for welb but w#v

(4.9) va(w) =
‘ - w(v) for w=v

In other words, v 1is pivotal, if changing the occupancy of v only
changes the occupancy configuration from one where E occurs to one
where E does not occur, or vice versa.

Examples .

(i) Let E1 be as in Ex. 4(ii) and take

Fi = {w : #M(w,w) = = for some neighbor w of v}
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Then v 1is pivotal for (E],w) iff we Fy Indeed for we Fy, E

‘I’
occurs iff v ditself is occupied (recall that W(v) =9 if v is

1

vacant), and hence IE (w) will change with w(v) for we F]. On
1
the other hand, if w £ F1, then #W(v,n) < » , no matter what

w(v) is.

(i1) Let E, be as in Ex. 4(iii) and take

-n
I

2 E2 N {w : all occupied paths from vy to

Vo contain the vertex vi}.

Then

IEZ(w) 1 and w(iv) =1 for we F2

But in va s Vv 1is vacant and there are no longer any occupied
paths from vy to Vo s since on F2 all these paths had to go
through v, and v has now been made vacant. Thus v is pivotal
for (Ez,w) whenever w e F2 .

(iii) This example plays a fundamental role in the later
*
development. Let (4,4 ) be a periodic matching pair of graphs

. 2 *
R~ , based o ,&) and let , G and be the
in a n (7,3 Gps, > Uy Tog
planar modifications defined in Sect. 2.3. This time we take
L = vertex set of qu and define Ql; s ﬁb accordingly. We

are interested in the existence of "occupied crosscuts of Jordan
domains". More precisely, let J be a Jordan curve on W$£, consisting
of four closed arcs, B1, A, 82 and C, with disjoint interiors and
occuring in this order as J 1is traversed in one direction.

J=4int(J) U J. We consider paths r = (vo,e1,...,ev, v,, ) on

G which satisfy

pL
(4.10) (e1\ {vgds vis &pseeis 45 v 15 €0\ {v,}) e int(J),

and
(4.11) v, € B

(4.10) and (4.11) are just the conditions (2.23) - (2.25) 1in the

present setup, since an edge of sz c sz can intersect
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the curve J on W$2 in a vertex of W%l only, by virtue of the
planarity of W$2 . We call any path r on Qpl which satisfies
(4.10) and (4.11) a crosscut of int(J) . We can now define J (r)

and J+(r) as in Def. 2.11 and order " and r, as in Def. 2.12,

2
whenever r, rys T satisfy (4.10) and (4.11). We take

(4.12) E3 = {w: 3 at least one occupied crosscut of 1int(J)} ,
and we want to find the pivotal sites for (E3,m) when w e E3 . By
Prop. 2.3, if E3 occurs, then there exists a unique lowest crosscut

of 1int(J) on sz » which we denote by R(w). Now let we Egs SO
R(w) exists and v a vertex which is not on R. Then changing

the occupancy of v Tleaves the crosscut R intact and such a site

v is therefore not pivotal for (E3,w). Next consider a v on

R N int(J) which has a vacant co:nection to _ C. . By this de mean

* E3
that there exists a path 5= (vo, €ysenes ep . vp) on G

pL
satisfying the following conditions (4.13) - (4.16):

(4.13) there exists an edge e of W@l between v and Vo
such that & ©J%(R) (in particular v W$2 Vo)

(4.14) Vied

P

* * * * * +
(4.15) (VO, €qses Vo g o ep’\ {vp}) cJ (R) ,
*

4. all vertices o s are vacant.
(4.16) 11 verti f

We allow here the possibility p = 0 1in which case s* reduces

to the single vertex v; = v: , and we make the convention that
(4.15) is automatically fulfilled in this case. We claim that any

v € R N int(Jd) with such a vacant connection to E is pivotal for
(E3,w) whenever  w e E5 . To prove this claim note that v 1is on
R(w), hence is occupied in w , and therefore vacant in TV w., If
there would exist an occupied crosscut r of int(J) in va , then
r could not contain v, which is vacant in va . Thus r would
also be occupied in w and by Prop. 2.3 (see (2.27)) we would have

(4.17) red (R) .

Now, if R = (vO, €1seees €, Vv)’ then the boundary of J+(R) consists
of R, the segment of 82 from v, to the intersection of 82
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with C(call this segment B;) » C, and the segment of B1 from the
intersection of B, with C to vo(ca11 this segment B;) ; see
Fig. 4.1. This boundary is, in fact, a Jordan curve.

C
+ +
B B
V0 V\)
B] 82
A
Figure 4.1

Since r would begin on B1 and eEd on 82 and satisfy (4.17) it
would in fact connect a point on B1 with a point on B
JHR). Next consider, the path s: = (v,e,v;, e:, cees €, v: ), where
e s as in (4.13). From the requirements e c J+(R) , (4.14) and
(4.15) it follows that s is a crosscut of J+(R). Moreover,

its endpoints - v on R N int(J) and v: on ¢ - separate the
endpoints of r on BT and B;. Thus r would have to intersect
s. This, however, is impossible. Indeed, the paths r and s on

W%z would have to intersect in a vertex of W$g (recall that

W$2 is planar) which would have to be occupied - being a vertex of
r - as well as vacant - being also a vertex on s. (Note that the
v: are vacant in w , hence in va , and v became vacant in
Ty w). Thus no occupied crosscut r of 1int(J) can exist in

va , 1.e., Tvm ¢ E3, which proves our claim.

We remark (without proof) that a certain converse of the above
holds. Assume that AN Bi as well as CN Bi is a vertex of
W$2 » i =1,2. Then under the convention (2.15), (2.16) the only
pivotal sites on R N int(J) for (E3,w) are vertices which have
a vacant connection to C. (We call s* a vacant connection to C
if (4.13) (4.15) and (4.16) hold but (4.14) is replaced by v: e C).
This can be derived from a variant of Prop. 2.2. We shall, however,
not need this fact.

Proposition 4.2 (Russo's formula) Llet E ¢ B, be an increasing

event and PU as in (3.3), (3.4) with € replaced by VU .

inside

*

—_ N+
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Then

(4.18) %51;7- PUE} = P {v is pivotal for (E,w)} .

Let p' and p" be any two functions from U into [0,1] and set

(4.19) uvt{w(v) =1} = T-uvt{m(v) = -1}

(T-t)p'(v) + tp"(v), ve b, 0 < t < 1,

(4.20) P = 1 u
Lt vel vt
If
(4.21) p'(v) < p"(v) forall vel ,

and E 1is an increasing event which depends on the occupancy of

finitely many vertices only, then for any subset w of VU , then

(4.22) 7%; P {E}
Lt
= Y {p"(v) - p'(v)} P {v is pivotal for E}
Vel vt
> inf  {p"(v) - p'(v)} E { # of pivotal sites for
Vel Ut
E in w I.
(Of course E y denotes expectation with respect to P )
t Lt

Proof: (Russo (1981)). To prove (4.18) write

(4.23) Ph {E} = Eh {IE} = p(v) Eh {IE | v 1is occupied}

+ (1-p(v)) Eh {IE[ v is vacant}

Since w(v) 1is independent of all other sites, the conditional
expectations in the right hand side of (4.23) are integrals with

respect to I u and are independent of p(v). Therefore

w#Vv w
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(4.24) gLBTVY' Py 1B} = E {I; | v is occupied}
- B L | v is vacant} .

Next set
1 if v 1is pivotal for (E,w)
J = Jw) = I(wsE,v) =

0 if v is not pivotal for (E,w).

Then, from (4.24)

(4.25) 58”51'@ P, E} = E_ {10 | v is occupied}

+ E, {IE(1-J)]V is occupied} - E. {IEJ|V is vacant}

- Eh {IE(1-J)|V is vacant} .

Now the function IE(m)(1-J(w)) can take only the values 0 and 1.
IE(w)(1—J(m)) =1 only if E occurs and v 1is not pivotal for

(E,w), i.e., E occurs in w , and also if w(v) 1is changed to

-w(v). Clearly IE(w) (1-3(w)) = 1 1is a condition on w(w), w # v,
only, so that IE(w)(1—J(w)) is independent of w(v). Therefore the
second and fourth term in the right hand side of (4.25) cancel. Also,
if v is pivotal for (E,») and E 1s increasing, then E must occur
if w(v) =1 and cannot occur if w(v) = -1. Therefore the third
term in the right hand side of (4.25) vanishes. This leaves us with

5 i EU{IE(w)J(w)I[m(V) = +1]}

But, by the argument just given, E must occur if J(w)Ifw(v) =1]=1,
so that we can drop the factor IE in the numerator on the right of
(4.26). Finally J(w) 1is again independent of w(v), since

J(w) =1 means w(w), w# v, is such that E occurs when w(v) =1
and does not occur when w(v) = -1. Thus, the right hand side of (4.26)
equals

EU {3 (w)} = Ph {v 1is pivotal for E}

This proves (4.18). (4.22) follows now from the chain rule and
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(4.21). (Note that v can be pivotal for E only if IE depends

on w(v); hence the sum in the middle of (4.22) has only finitely
many non-zero terms). ]
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5. BOUNDS FOR THE DISTRIBUTION OF # W .

The principal result of this chapter is that
(5.1) Pp{#W(V).i n}

decreases exponentially in n, provided certain crossing probabilities

are sufficiently small. This is almost the only theorem which works

for a general periodic percolation problem in any dimension. No axes

of symmetry are required, nor does the graph have to be one of a

matching pair. When Theorem 5.1 is restricted to one-parameter problems,
then it shows that (5.1) decreases exponentially for p < Py and

that in general P = Pg (see (3.62)-(3.65) for definition). 1In

Sect. 5.2 we discuss Tower bounds for

(5.2) Pp{#W(v) = n}

when p 1is so Targe that percolation occurs. In the one-parameter
case this is the interval Py < p < 1. It turns out that (5.2),
and hence (5.1) does not decrease exponentially in this domain. We
have no estimates for (5.1) for p-values at which

(5.3) Ep{#W(v)} = o, but 6(p,v) = Pp{#W(v) = o} =0 ,

except in the special cases of Go and & (see Theorem 8.2). Of
course if Theorem 3.1 and Cor. 3.1 apply then (5.3) can happen only
on the critical surface, and one may conjecture that in general the set
of p-values at which (5.3) holds has an empty interior. In one-parameter
problems this amounts to the conjecture that Pr = Py in all periodic
percolation problems. If one goes still further one might conjecture
that (5.1) decreases only as a power of n whenever (5.3) holds. For
bond- or site-percolation on ZZ , Theorem 8.2 indeed gives a lower
bound of the form n~' for (5.1) at p = Py -

In Sect. 5.3 we discuss a result of Russo (1981) which is more or
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less dual to Theorem 5.1. If in dimension two certain crossing
probabilities are large enough, then percolation does occur. Sect.
5.2 and 5.3 are not needed for later chapters.

Throughout this chapter G will be a periodic graph imbedded in
R™ which satisfies (2.2)-(2.5). We deal with a periodic1)
site problem and take (Q,B,Pp) as in (3.19)-(3.23). We also use the
following special notation: For n = (n1,...,nd) we set

d A-parameter

(5.4)  T(n3i) = {x = (x(1),...,x(d)): 0 < x(J) <353 #1450 < x(1) < ng

[O,3n]] X, . .X [O,Bni_1] X [O,ni] X [0,3n1+1] X, .. X [0,3nd

The block T(n3;i) is "short" in the i-th direction, as illustrated in
Fig. 5.1 for d =2 and n = (1,1).

0
T((1,1)51) T((1,1)52)

Figure 5.1

The corresponding crossing probabilities are defined as

(5.5)  t(n;i,p) = t(n31,p,G) = o((3ny5.euu3n_ 1on0530, 05.005304)51,p,0)

n

Pp{ 3 an occupied i-crossing on G of T(n;i)}

7 Actually one does not need periodicity for most results of this
chapter, but it simplifies the formulation of the results.
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and
(5.6)  t*(n3i,p) = t(M3i,p,G) = t(n3i,T-p,G*) = o((3nq,....3n,_;onss

3n1+1,...,3nd;i,Tlp, G*) = Pp{ 3 a vacant i-crossing on G*

of T(n;i)l}.

5.1 Exponential fall off of P{#W > n}.

We need the following constants:

(5.7) u = number of vertices v = (V1""’Vd) of G with
O<vi <1, 1<ic<d.
(5.8) A s any number such that |v-w| < A for all adjacent
pairs of vertices v,w of G.
d

(5.9) « =«(d) = g—a(Ze 5d)-11

Furthermore, Z4 is some fixed vertex of G and

Theorem 5.1. If for some N = (N],...,Nd) with N, >4, 1 <1 <d, one
has

(5.10) t(Nsi.p) <k, 1 <1 <d,

then there exist constants 0 < C], C2 < © such that

-Czn
(5.11) Pp{#w > n} < C]e ,n >0 .

(The values of C], C2 are given in (5.40)-(5.42)). If
(5.12) p(v) > 0 for all v

and

(5.13) Ep {#W} < o

then

(5.14) t((ny...,n); i,p) >0 as n >

and consequently (5.11) holds.
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Corollary 5.1. The set

(5.15) {pe Py :p >> 0 and Ep{#W} < o}
is open in PX'

Special Case. In the one-parameter problem with p(v) independent of

p the implication (5.10) = (5.11) shows that if p < Pes and hence
(5.14), then (5.11) holds, and consequently p < P (see (3.63),(3.65)).
Conversely p < p; means (5.13) and this implies (5.14), i.e.,

P<Ppg - Thus, in any periodic one-parameter percolation problem

(5.16) Pr=Ps < Py

(The last inequality is just (3.64)). From the fact that

Ep{#w} = o immediately to the right of Pr and Cor. 5.1 it further
follows that

(5.17) {#W} = o

o

is any periodic one-parameter problem. /l/
Kunz and Souillard (1978) already proved (5.11) when

p(v) < (z-])_1 for all v, where z 1is as in (2.3). The present

proof, which is taken from Kesten (1981) is a reduction to the case of

small p(v) by a block approach. The blocks T(N;i) and suitable

translates of them are viewed as the vertices of an auxiliary graph

£ with vertex set ZQ. A vertex 2 of & 1is taken as occupied
iff there is an occupied crossing of some associated block of G, and
this will have a smail probability. Therefore, the distribution of
the size of the occupied cluster of a vertex on £ will have an
exponentially bounded tail. This, in turn, will imply (5.11) via
Lemma 5.2, which relates #W to the size of an occupied cluster on £.

The proof will be broken down into a number of lemmas. As in
Kunz and Souillard (1978) we bring in the numbers

(5.18) a(O,R):=6],E ,
and for n > 1
(5.19) a(n,t) = a(n,Q;ZO,Q) = number of connected sets C of vertices

of G, containing Z4 with #C = n, #3C = & .
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Here, analogously to (3.6), #C denotes the number of vertices in

the set C, 9C 1is the boundary of C on G as in Def. 2.8, and

C is connected if any two vertices in C are connected by a path on
G all of whose vertices belong to C.

Lemma 5.1. For any 0<p<1,q=1-p

[o o)

(5.20) D) a(n,l)pnqg = 1—e(p,zo) < 1.
n=0 £>0

Consequently

2
(5.21) a(n,2) < (E%&) " (DigL)
Also
(5.22) b ooa(n,) < {((z+)F 7H "
2>0

and for some universal constant eg >0 and 0 < x < egr 0 <P <1,

g=1-p and n > 1

(5.23) N a(n,2)p"q" < nz exp(- %-szzqn)-
2 with

|p2-gn| > xnpq

Proof: The relation (5.20) is well known, and is hardly more than the
definition of the percolation probability. It is immediate from

(5.24) Py = C} = pg”

for any connected set C of vertices containing Vo and with

#C = n, #3C = 2. In fact {W =C} occurs iff all vertices of C are
occupied, but all vertices adjacent to C but not in C are vacant. The
left hand side of (5.20) is simply the sum of (5.24) over all possible
finite C. (5.21) follows from (5.20) by taking p = n/(n+2),

q = 2/(n+2). For (5.22) observe that, by (2.3) and 3C # ¢ .
(5.25) 1 < #3C < z.#C when #C > 1,

so that the sums in (5.20) and (5.22) can be restricted to 1< & <n,

when n > 1. Thus, with p = (z+1)7, q = z(z+1)7 (5.20) yields for
n>1
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n Zin n
I oana) < ()" EDH T amwplt < 1,
=1 2=1

while for n = 0 (5.22) is true by definition of a(0,2). Finally, by
virtue of (5.25) and (5.21) the left hand side of (5.23) is bounded
by

n 2 n 2
(5.26) ) a(n,g) ((MHR1Ry" (nth)a 4™ ny™ Ly
|p2-qn| > xnpq

< nz max {(n";f')p}n {(n*‘%,)q],ﬂ'

where the maximum in (5.26) is over all 1< & < zn with
|p2 - gn| > xnpgq. Now fix n and p and consider

(5.27) £(2):= n log Qi_n&la+ 2 log ﬂ?lﬂ

as a function of a continuous variable & on (0,»). One easily sees

that f(.) is increasing if (n+2)q/2 >1 or pL - gn < 0, and
decreasing for pf - gn > 0. Thus, the maximum of f over

|p2 - gn| > xnpg s taken on when p2 - qn = xnpqg or pR - gqn = -xnpq.
For such a choice

- 4 ntl)p _ (n+2)q _ 1 % xpq

2 5 n(1 £ xp), - 1 + xpq, T xp

A simple expansion of the logarithms in (5.27) now shows that for
small x and pL - gn = £ xnpq

f(e) = - %-n x2p2q {1 +0(x)?} ,
with |x'] 0(x)| bounded uniformly in n,2,p . (5.23) follows. [ ]
We now define the auxiliary graph £, and derive a relation
between W and a certain occupied component on £. The vertex set
of & is 79 . The vertices K = (k(1),...,k(d)) and

2= (2(1),...,2(d)) are adjacent on £ iff
k(i) - 2(i)] <2, 1 <i<d.

We associate with an occupancy configuration on G an occupancy
configuration on & in the following manner: We take k € £ occupied
iff there exists an occupied path r = (wo,e],...,eT,wT) on G whose
initial point satisfies
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(5.28) K(N; < Wold) < (K() + DN. 1 < 3 < d,

and whose final point W satisfies

(5.29) w_(i) < (k(i) - T)N

. ioorow (1) > (k(i) + 2)N,

for some 1 <i<d.

We shall now prove the estimate

o

(5.30) Pp {k 1is occupied} < 2y t(N;i,p) ,

i=1
which is basic for our proof. To see (5.30) observe that if there
exists an occupied path r for which (5.28) and (5.29) hold, then
there is a smallest index b for which there exists an i such that
ey intersects one of the hyperplanes

H; s {x:x(d) = (k(i) - 1)Ni} or
H: o {xix(d) = (k(i) + Z)Ni} .

e, may intersect H; U H: for several 1. For each such 1, let
Tps be the first intersection of W, with H; U H? and let 10 be an
index such that Thi precedes all the other Cpi which exist. Then

0
(5.31) e, (including its endpoints Wo 1 and wz) lies strictly
between Hi and HI forall 1<2<b and 1<j<d;
the same is true for the segment [w, ,,z,.. ).
b-1 b10
For the sake of argument assume e, intersects Hf so that
Thi € H; . Then take a as the largest index1essothan b for which
0 0

e, intersects the hyperplane x(io) = (k(io) + T)Ni0 . Such an a
exists by (5.28). Also take Cai as the last intersection of W
0
with the hyperplane x(io) = (k(io) + 1)Ni . Then
0
(5.32) el(inc1uding its endpoints Wo 4 and wi) 1ies strictly
between the hyperplanes x(io) = (k(iO) + ])Ni and

H: for all a < 2 < bj the same is true for the
0

segment (CaiO’ wa+1] .
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al b1

a ™
[
)

(-1 k(DN (KD, (K(T)+2)N,

Figure 5.2

(5.31) and (5.32) say that (wa,ea+],...,eb,wb) is an io—crossinq of
the block with sides

and

[(k(igp) + 1)N10, (k(ig) + Z)NiO] for § =i .
This is precisely the block

-, d . .
(5.33) T(N3ig) + jZ1 (k(3) - 1INE; + 2k(1O)N10€iO ;

where, as before, gj is the j-th coordinate vector in Rd . Moreover,
since r s occupied (wa,ea+1,...,eb,wb) is occupied. By periodicity,

the probability that an occupied io—crossing of (5.33) exists is at

most T(N@io,p). The same estimate holds when Wy intersects H;
0
instead of H: . (5.30) now follows by summing over all possible iy
0
We next define v by
(5.34) vij < zo(j) < (vj + 1)Nj » 1 <j<d,

where  z, is the vertex which we singled out in W = w(zo). W(R) will
denote the occupied component of & on £ . Finally we remind the
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reader that k £ 2 means that k and % are adjacent on &.

Lemma 5.2. Assume W contains a vertex w = (w(1),...,w(d)) with

b

(5.35) k(IINy < w(3) < (k(3) + DIN;, T < § < d

for some k with

(5.36) lk(m) - v(m)| > 2 for some 1<mc<d.

Then there exists an occupied path (Eb,éi,...,EE,Eé) on £ with

kO = k and

(5.37) lkp(;i) - v(J)]

<3, 1<j<d.

(E& denotes an edge of £). Furthermore

{#W - u4d.

(5.38) max #ﬁ(l) > J;]
u7d I N,
=1

Nj}

where the max in (5.38) is over those % with

(5.39) 2(3) - v(3)] <3, 1<i<d.

Proof: Assume w e W satisfies (5.35) and (5.36). Then there exists

an occupied path (w0 = W.eps...@ LW = zO) on G from w to Zy- By
(5.36) and the definition of v, W=z, satisfies (5.29). Since also
W, satisfies (5.28) (see (5.35)) the vertex k of & is occupied,

and there exists a smallest index b with wb(i) < (k(i) - ])Ni or

wb(i) > (k(1) + 2)N1 for some 1i. We take Fb =k and Ei such that

(N

5% w (3) < (ky(3) + 1)Nj, 1<j<d.

This E& is uniquely determined, and by virtue of the minimality of
b, and szA,

(Compare (5.31) and Fig. 5.2.) Thus Eb £ El

We now repeat the procedure with Wy and Eﬁ in the place of Wy and
Eb . If the analogue of (5.36) still holds for El’ i.e., if
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Ik1(m) - v(m)| > 2 for some m, then F} is occupied and we find

a neighbor Eé of E} on £, and so on. We continue this process as

long as possible. It stops when we have obtained a sequence #b,...,ip
of occupied points on & and a Eb+] e £ such that
Ky £Kpp 0<t <o,

while the analogue of (5.36) fails for k .., i.e.,

p+1
ks (3) - (D] <1, T <5 <d,

Since EE £ Eé+] _Fhis_jTP1ies Ehaf_(5.37) holds. Thus there exists an
occupied path (k0 = k,e ,...,ep,kp) as claimed in the first part of
the lemma. (Note that we may have to apply the loop-removal procedure
of Sect. 2.1 to make the path self-avoiding.)

The inequality (5.38) now follows easily from the first part of
the lemma. Each vertex we W with |w(m) - zo(m)l 3_2Nm for some
m satisfies (5.35) and (5.36) for some k. There are at least

d
#W - u T (4N.).
=

such vertices w. Each such w Teads to an occupied path of the above
type on & startifg at some Eb and ending at a Eb satisfying
(5.37). A fixed kO can arise as starting point for such a path only
for a w with

(N < w(d) < (kp(d) + TN,

(see (5.35)). Since there are at most u I Nj such vertices W on
G, at least

d
(5.40) {1
J=1

d
N - T (AN}
J 1= J
J
distinct vertices Eb arise as the initial point of an occupied
path on & which ends at some Eé satisfying (5.37). Since there are
at most 7d points EE which satisfy (5.37), (5.38) now follows

from (5.40). ]
Lemma 5.3. (5.10) implies (5.11) with
(5.41) A= 7NN



d d -d
(5.42) =@ el T !
i=1
d -d
[1 - esd {2 1 Nzt 1
i=
d d -d
< (;7-;) 23y iyt
i=1
-C, GA 4 At
(5.43) e =(e5) {2 } t(N;i,p)} < 2
i=1 -
Proof: By (5.38)
(5.44) Pl > n} < ) Pp{#ﬁ(@:) >An -1} .
% satisfying

(5.39)
Set, for any 2¢e &

b(m) = number of connected sets on £ of m vertices
and containing ¥ .

Note that b(m) does not depend on by the periodicity of &.
Recall also that at most 7d points satisfy (5.39). Therefore,

(compare (3.15) and the proof of (5.20)) the right hand side of
(5.44) is bounded by

2
2

~

(5.45) 79 ) b(m) _max Pp {all vertices in C are occupied}

where E in (5.45) runs over the connected sets of vertices of & with
cardinality m. To estimate the probability appearing in (5.45) we
observe that we are not dealing with a percolation problem on &£ because
the occupancies of the vertices of £ are not independent. However,

the occupancy of a vertex 2% of & depends only on the occupancies

of the vertices v of G with

((3)-2)N; < (2(3)-1IN5=h < v(3) < (2(3)+2IN5+n < (a(3)#3N;,1 < <d.

Thus, if Eﬁ,...,@£ are vertices of &£ such that for each r # s there
exists an i with l%r(i) - zs(i)l > 6, then the occupancies of
E&,...,iﬁ are independent (Eecause thsy depend on disjoint sets of
vertices of G). Now given C with #C = m we can choose

1. ,...;It e C with the above property for some t > 117%. With
2

1""’2t chosen in this way we have by virtue of (5.30)
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Pp {all vertices in C are occupied}

< Pp{iﬁ”"’ik are occupied} < {2 J t(N;p,i)}
=

Substitution of this estimate with t = 1179 into (5.45) yields

-d
(5.46) P, > n} < 74 117%,

ne~—100

B(m){Z
m > An-1 i

. T(Naps1)}

Finally, (5.22) applied to the graph &£ with Sd -1 for z shows
~ zm m
b(m) < (2D} < (e 5%

This together with (5.46) implies (5.11) with the values (5.42) and
(5.43) of C, C, . [

Lemma 5.4. (5.12) and (5.13) imply (5.14).

Proof: This Temma basically proves that the diameter of W has an
exponentially decreasing distribution under (5.13). This fact was
first proved by Hammersley (1957), Theorem 2. We make the following
definition for positive integers m,M and u a vertex of G

wn
1]

0 So(u,M) = {w a vertex of G:|w(j) - u(j)| <M, 1<j<d},

w
it

1 S0 U 850 = {w a vertex of G: we SO

or w adjacent to a vertex in SO},
(5.47) A{u,m) = { 3 an occupied path on G from a neighbor of

u to a w with w(1l) > m},

g(u,w,M) = Pp{ 3  occupied path (wo,e1,...,ep,wp) on G with

Wy G u, wp ¢ SO(u,M) and one of the W equal to w}.
We claim that if u(1) < m - M then

(5.48) Pp{A(u,m)} < g(u,w,M)Pp{A(w,m)} .

W e 51(u,M)

To prove (5.48) assume that A(u,m) occurs. Then there exists an
occupied path r = (vO = u,e1,...,ev,vv) on G with Vg = U and
vv(1) >m> v0(1) + M. Therefore v, € S,. and there exists a smallest

0
index a, 1 <a<v with v ¢ Sg- Now set
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R={we S]: 3 occupied path (wO,e],...,ep,wp) on G
with wOQu, wp ¢ S0 but W, € SO for t < p and one

of the W, equal to w}.

R 1is the random set of vertices in S1 through which there exists

an occupied path from a neighbor of u to the complement of SO’ which
except for its final point contains only vertices in SO‘ By choice

of a, v, eR. Let b>a be the last index with vg e R. Now
consider the occupied path (vb+1,eb+2,...,ev,vv). A1l its vertices
lie outside R, its initial point is adjacent to Vp € R and its final
point v, satisfies vv(1) > m. Thus A(vb,m) occurs. Summing over
all possibilities for vy and R gives the inequality

(5.49) P {A(u,m)} < J P {weR and 3 an occupied path
P WES] P

(wo,f1,...,fp,wp) on G with wyGw, wp(1) >m and

w, ¢ R for 0<i<op}= J N PpfR=1C and 3 an
W851 CCS]

weC

occupied path (wo,f1,...,fp,wp) on G with WG »

wp(]) >m and w, ¢C for 0 <1 <opl.

We now fix w and a subset C of S, containing w and estimate
the last probability in (5.49). Observe that R = C iff both the
following two events occur:

¢ = {For every vertex x e C there exists an occupied

path (uo,g1,...,gT,uT) on G with UG U ¢ SO’ but
u_eSy for t<t,u;eC for 0<i<t and x equals

T
one of the ui} s

C, = {any path (uo,g],...,gT,uT) on G with ugGus u_ ¢ Sy

but u_ € SO for t <t and not all u; € C contains at

least one vacant uj ¢ C}.

A1l vertices on the paths (uo,g1,...,uT) in the description of 61
must belong to C, because whenever such a path satisfies uOQu, u_ ¢ SO
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u_ € S0 for t < 1t and all Uy occupied, then all its U auto-
matically belong to R. Not all sets C c Sl are such that 01 can
occur; e.g., C can only have components which contain a neighbor of
u. But in any case IC1(w) is a function of the occupancies of the

vertices in C only. If C] can occur, then
¢ = {a11 vertices of C are occupied} .

Also Ic (w) 1is a function of the w(y) with y #C and it is a
2

decreasing function. On the other hand
(5.50) J(w) = J(w,w):=I[ 3 an occupied path (wo,f1,..., p,wp)
on G with w,Gw, wp(1) >m and w, ¢ C for 0<i <p}

is an increasing function of the occupancies of the w(v), y ¢ C. By
the independence of the w(y) with y ¢ C and with y ¢ C the
last probability in (5.49) can be written as

1,1, Jdy=€{I,}E{I, d} .

Ep{ ¢, C, } p{ L1} p{ c, }
Next it follows immediately from the FKG inequality (apply Prop. 4.1
to Ic and 1-J for instance) that
2
Ep{ICZJ} < Ep{ICZ} Ep{J} .

Substituting this into (5.49) and using the independence of C] and
C, once more, as well as the simple inequality J(w,w) < I[A(w,m)] we

obtain
P {A(u,m)} < E {I E {I
p “wst Cg__s] plle,} Eplle } E,00)
weC
= E {1 IE {J}
wgs1 (:és1 PG c
weC
< 3 ) P{R=2C}P {A(w,m)}
- WQS1 Cc S] P P
weC

Y P {weR}P {A(w,m)} < Y} g(u,w,M) Pp{A(w,m)}.
W€S1 P P WSS1
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This proves (5.48). We next show that we can choose M such
that

(5.51) ) glu,w,M) < ~% for all ue G
W e S1(u,M)
This is easy, because any path from a neighbor of u to the

complement of So(u,M) has diameter > M-A  and therefore contains
at least M/A vertices. Consequently

g(u,w,M) < Pp{w e W(x) and #W(x) > M/A

for some neighbor x of u}

and, by virtue of (4.8)

(5.52) ) glu,w,M) <} Ep{#W(x); #(x) > %5
Woe Sq(u,M) x such that
XGu

< Y [P {x and u are occupied}]'] E_{#W(u); #W(u) > %}.
Under (5.12) and (5.13) the right hand side of (5.52) tends to zero as

M-~ when u=zy. But,by the Application in Sect. 4.1 (5.12) and
(5.13) imply

Ep {#M(u)} <= forall ueG

Consequently the right and left hand side of (5.52) tend to zero as
M > o for any vertex u. In particular

(5.53) Tim Y g(u,w,M) =0
M~> o We 51(u,M)

uniformly for the finitely many u 1in [0,1)d. By periodicity,

Y g(u,w,M)
We S](u,M)

is unchaged if u is replaced by u + ijaj , S0 that (5.53) holds
uniformly in u.

The above shows that (5.51) holds for large enough M. Pick
such an M. Then, it follows from (5.48) and the fact that
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w(l) < u(1) +M+Ar for we S](u,M) ,

that for r < m-M

sup Pp{A(u,m)}

u(l) <r
< ) g(u,w,M) sup P {A(u,m)}
we Sq(u,M) u(1) < reMepn P
3
< 7 sup P {A(u,m)}

u(1) < reMpn P

It follows immediately that

-M)/ (M+A
(5.54) sup Pp{A(u,m)} < (%) Lm-M)/ ()}

u(1) < 0 -

(5.54) says that the probability that W(u) extends m wunits in the
1-direction decreases exponentially in m .t((n,...,n);1,p) is the
probability that there exists an occupied 1-crossing (vo,e],...,e V)
on G of T((n,...,n)31). By Def. 3.1 (cf. (3.30) and (3.31)) such

a crossing must satisfy vv(1) - v0(1) > n-2A and the initial
point Vo has to Tie in

[-A,AT] x [=A,3n+A]x.. . x[=A,3n+A]

(see (3.29), (3.30), (5.8) ). By periodicity and (5.7) there are at

most
d-1
u(2A+1) (3n+20+1)

such vertices Vo Therefore, by periodicity

(5.55)  t((n.....n)51,p) < u(2a+1)(3n+20+1)4° 1 sup Po{A(un-30)3,

u(l)y<o

so that 1((n,...,n);1,p) tends to zero exponentialy as n - =, by

virtue of (5.54). The same holds for t((n,...,n);i,p) for any

1 <i <d. This proves the Temma. []
Theorem 5.1 is now just a combination of Lemmas 5.3 and 5.4.

Proof of Cor. 5.1: Assume

Epo{#W} < o and Py >> 0
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for some Po € P - By (5.14) we can then find an n > A such that
t((n,....n)si,pg) <k forall 1 <i<d. Since ((n,...,n);i,p)
is a continuous function of p for fixed n - it only involves the
occupancies of a finite number of vertices - it follows that

((ny...,n)3i,p) <k , 1 <i<d,

holds for © 1in some neighborhood of Py For any p in this
neighborhood (5.11) holds, and consequently also (5.13). ]

5.2. Estimates above the percolation threshold.

Let ¢ be a periodic graph imbedded in Rd and Pp a
periodic probability measure. Assume that p is such that percolation
occurs, i.e., that

(5.56) e(p,vo) > 0 for some v, e G .

0

Aizenman, Delyon and Souillard, (1980) proved that in this case (5.2)
does not decrease exponentially. In fact they showed that

d-1
(5.57) ¢407n
Pp{#w=n}_3 C3{p/\(1-p)}
for all n, where
(5.58) pA(1-p) = min {P {v is occupied} A P {v 1is vacant}},
d

ve[0,1)
(5.59) 0 = Y 6(p,v).

V€ [0,1)d

C3 is a constant depending only on © and d, and C4 is a constant
depending only on ( and d. Aizenman et al. (1980), Remark 2.2,
pointed out that (5.57) does not give the right behavior near the critical
surface, i.e., when © becomes small. Indeed one expects © to tend
to zero as p approaches the critical surface, and for 0 > 0 the
exponent in the right hand side of (5.57) blows up. On the other hand,

on the basis of Theorem 8.2 (dealing with one-parameter problems on

Go and q1) we expect (5.2) to decrease only polynomially in n when

p 1is on the critical surface. Theorem 5.2 gives a Tower bound for

(5.2) with an exponent containing 0O to a positive power. Even though
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this improvement meets the above objection, we have to pay a price. Our
estimate is not valid for all n, and we do not have much control over
the domain of n-values for which the estimate holds. It should also

be said that Aizenman et al. prove their estimate (5.57) in much more
general models than our independent site-percolation models. To avoid
uninteresting combinatorial complications we restrict ourselves in
Theorem 5.2 to site-percolation on Z@ . The proof should, however, go
through for most periodic percolation problems.

Theorem 5.2. Let P be a probability measure on the occupancy configura-
tions on Zd which satisfies

(5.60) P {v 1is occupied}

P {V+k051 is occupied}

for some integer kg and 1< d1). Let

A

(5.61) m: =min {P {v 1is occupied}AP {v is vacant}} > 0
v
and
(5.62) ©:= L PV == > 0.
V E [0,k0)
Then for d > 3 there exists a C3 = C3(d), depending on d only,
and an NO’ such that for n > N0 and all w ¢ Zq one has

Ck 2d-1 ol/d (d-1)/d
(5.63) P{#W(w) = n} > 30

The estimate (5.63) remains valid for d = 2 if (5.61) holds and
(5.62) is strengthenedz) to

(5.64) E{#W*(v)} <o for some v,

where  W*(v) is the vacant component of v on (22)*= Qa‘ (see Ex.

2.2(i) for Qa ).

1) As usual gi is the i-th coordinate vector. For simplicity of
notation we required (5.60) instead of our usual periodicity condition
(3.18) which corresponds to k0 = 1. To obtain (3.18) one has to

replace z4 by k61 times zd .

2)  (5.64) and (5.61) imply (5.62) by Lemma 7.3.
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Remark .

(i) By Theorem 3.2 (see also Application 3.4(iv)) (5.64) and
hence (5.63), hold as soon as (5.61) and (5.62) hold, provided the
probability measure P has enough symmetry properties. In particular
(5.63) holds for the two-parameter site-percolation problem on ZZ of
Application 3.4(iv) anywhere in the restriction of the percolative region
to the interior of Fb, i.e., whenever the parameters p(1), p(2)
satisfy 0 <p(1) <1, p(1) +p(2) >1. l//

Kunz and Souillard (1978) also prove for max P {v 1is vacant}

v
sufficiently small that there exists a constant D for which

P{#W(w) = n} < exp—Dn(d‘”/d

To give a proof of this estimate for general d would require too
much topological groundwork. We shall therefore only prove this result
for d =2 and G one of a matching pair.

Theorem 5.3. Let (G,G*) be a matching pair of periodic graphs in
RZ . Denote by Pp a A-parameter periodic probability measure
defined by means of a periodic partition U],...,U

2 of the vertices

of G as in (3.17)-(3.23). Assume that Py € PA satisfies

(5.65) 0 << pg << 1 and Epo{#W*(zo)} <o,

where w*(zo) is the vacant cluster of z, on G*. Then there
exist constants 0 < Di = Di(pO’Q) < o such that

(5.66)  Pin < #l(zg) < =} < Dpe 2 for all

p=(p(1),...,p(1)) € Py with p(i) Z_po(i), 1<i<ax.

Remarks .

(ii) In particular (5.66) holds for any (G,G*) to which
Cor. 3.1 applies if we take p ¢ P; , 0<<p=<<1. I.e., (5.66) holds
in the whole percolative region of (O,1)X (cf. (3.51)). In some
two-dimensional examples (such as the two-parameter site-percolation
problem on 12 of Application 3.4 (iv)) both (5.66) and (5.63) hold,
when percolation occurs. For such examples one obtains in the percolative
region
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0 < liminf - <= Tog P_{#W(z.) = n}
n P 0
< limsup - f&;]og P {#(z,) = n} <o .,
- vn P 0

(iii) Russo (1978) uses estimates of the form (5.66) in one-
parameter problems to show that for various graphs G, which are one
of a pair of matching periodic graphs, the functions

p~6(p,zy) and p +~Ep{#w(zo); #W(Zo) < o}

are infinitely often differentiable on (pH,(Q),l]. The same argument
works for p > Ep{ﬂ(#W(ZO))E #w(zo) < «}  for any polynomial .

(iv) Delyon (1980) shows that for most periodic graphs G the
a(n,2) of (5.19) satisfy

1

(5.67) Tim {a(n,2)} " = (m)”Y vy

n->ow

2

[
whenever

< .
Y py(G)

The remarkable part of this result is that the Timit in (5.67) is
independent of G; only the range of +y's for which the 1imit relation
(5.67) holds depends on G. One only needs some aperiodicity assumptions
on the relation between #C and #3C for connected sets C of vertices
on G to obtain (5.67). The proof rests on subadditivity arguments
such as in Lemma 5.9 below, an estimate Tike (5.23) and the fact that
Pp{#W(zO) = n} does not decrease exponentially for p > pH(Q). /17
We turn to the proof of Theorem 5.2. Until further notice we deal
with the set up of Theorem 5.2 and all its hypotheses are in force. As
in Aizenman et al. (1980) the main estimate will be obtained by connecting
a number of vertices inside a large cube by occupied paths, and making
several vertices in the boundary of the cube vacant. The latter change
disconnects a cluster inside the cube from the outside; this allows us
to control (from above) the size of a cluster which we constructed inside
the cube. Nevertheless the size of this cluster is not fixed, and this
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method only yields a lower bound for P{#W = n} along a subsequence
of n's. The general n is then handled by Lemma 5.9, which shows
how lower bounds for various n's can be combined.

Ci’Ki will denote varjous constants; the Ci depend on d only,
while the Ki depend the probability distribution P as well. It is
understood that 0 < Ci’Ki <o . In addition we shall use the
following sets and events:

S(v,M) = [v(1) - M,v(T) + Mlx...x[v(d) - M, v(d) + M]

(a cube of size 2M centered at v = (v(1),...,v(d)),

AS(v,M) = Fr(S(v,M)) = topological boundary of S(v,M).

B(v,M) = { 3 an occupied path on ld inside S(v,M) which
connects v with a point in AS(v,M)},

Bk(v,M,j,i) = {at least k vertices on the face

[v(1)-M, v(T)+M]Ix...x[v(3-1)-M, v(j-T)+M] x {v(j) M}
x...x[v(d)-M, v(d)+M] of S(v,M) are connected by an
occupied path on Zd inside S(v,M) to v}.

Finally

6(v) = P{#W(v) = =} .

Lemma 5.5. There exist constants M0 and Ki such that for each
d

set A of vertices of Z

(5.68) P{B(V,MO) occurs for more than 2 J 6(w) vertices
weA
v in A} < K] exp - KZ(#A)'

In addition, for each k there exists an Mk such that for all
vezd and M > M

k

. 8(v)
(5.69) P{Bk(v,M,J,s)} > "

for some Jj, e , which may depend on v,k,M.

Proof: First note that by (4.8) (with

= ) we have for any two
vertices v, and v, of Zd in [O,ko)

n
d
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e(v]) > P{ 3 occupied path from v to v2} e(vz)

C,k
> 470 e(vz).
C4k0
If we write K3 for , then this can be written as
(5.70) 68(vy) > Kg8(v,),

By virtue of the periodicity assumption (5.60), 6(.) 1is periodic with
periods kogi » 1 <1< d,and hence (5.70) holds for any pair of
vertices Vis Vp- Moreover (5.70) implies for any vertex w

(5.71) o(w) > ;Sd ) . B(v) = ~;§H 0>0
0 ve [O,ko)

(see (5.62)). Next observe that the events B(v,M) decrease to
{#(v) = »} as M 4 o . Consequently we can find an M
that

0 such

(5.72) P {B(v,MO)} <5 8(v),

N w

and by the periodicity assumption (5.60) we can choose MO independent
of v. Now if A 1is any set of vertices of Zd we can write A as
a union of at most (2M0+1)d disjoint sets Ai such that for each pair
of vertices v and w 1in a single Ai one has |v(j)-w(j)]| > 2M0 for
some 1<Jj<d. For any such pair of vertices v and w S(v,MO)
and S(w,MO) are disjoint. Consequently the events

{B(v,MO):v € Ai} are independent for fixed i . It follows from
standard exponential bounds for independent bounded variables (see

Renyi (1970), Ch. VII.4 or Freedman (1973, Theorem (4)) that for all

x>0

(5.73) P{B(v,MO) occurs for more than 2 Y o(w) vertices in A}
weh
< ¥ P{B(V,MO) occurs for more than %- Y o(w) + %(2M0+1)_d Y8(w)
i weA., weA

;
vertices in Ai}
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A 3A

- —2— T o(w - 2
= ; o 2(2M0+1)d sz W - szie(w))
LT 1+ P{B(w,M)) (e - 1)}
WEAi
< 2 Y e+ T e Beto1) -3
< g 2(2my+1) g L, Gl A

(use (5.72)). Now pick A > 0 such that

3,0 3 A
2(e - 1) - A <

4(2MO+1)d

For such a A the last member of (5.73) is at most

2 exp - "”““l;"zr‘ Y e(w) .
i 4(2M0+1) weA
This, together with (5.71) implies (5.68).
Now for the proof of (5.69). Let (M) = &(v,M) be the o-field
generated by {w(w):w € S(v,M)}. By the martingale convergence theorem
(see Breiman (1968), Cor. 5.22)

PL#N(V) = «[F(v,M)} > I[#(v) = =] (M > =)

with probability one. As pointed out above

(5.74) I[B(V,M] + I[#W(v) = =] (M + ),
so that
(5.75) P{#W(Vv) = «|&(M)} - I[B(v,M)] >0 (M~ =)

with probability one. Now define

WM(V) = collection of edges and vertices of ZZd

which are connected to v by an occupied path in S(v,M)

and
FM = TM(v) = number of vertices in  AS(v,M) which are

connected by an occupied path in  S(v,M) to v.

Ty 1s Jjust the number of vertices of wM(v) in  AS(v,M). #W(v) will
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be finite if all neighbors outside B{(v,M) of the FM(V) vertices of
wM(v) N AS(v,M) are vacant. Indeed, if this occurs no occupied path
starting at v can leave S(v,M). Since any vertex has 2d neighbors
it follows that

2dr
(5.76) PUN(Y) = =[3(M} <1 -7 M

(see (5.61) for = ). (5.61) and (5.74) - (5.76) imply that for
each fixed k

P{B(v,M) occurs, but Ty < 2dk} > 0 (M » =),
and hence

P{B(v,M) occurs and T, > 2dk} - 6(v)

M

But, by the definition of FM and Bk(.)

{B(V,M) and PM > 2dk} c U Bk(VaM’jse)-

Consequently, for each k there exists an M, such that

p{Bk(VsM’J se) _Z

for all M > Mk . Again by the periodicity assumption (5.60) we can
choose M independent of v. (5.69) is now immediate. 1

Without Toss of generality we shall assume that the origin has been
chosen such that

(5.77) 8(0) = max 8(v)
v

and consequently (see (5.62))
(5.78) 0 <0<k 0(0) .

We next define for v e S(0,M)

wM(v,O) = collection of edges and vertices of Ep which

are connected to v by an occupied path in S(0,M),
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and for m > M choose a j=j(k,m) and an e = e(k,m) such that

(5.79) P {8 (0,m,3,e)} > —eﬁl

Note that wM(v,O) < S(0,M). A face of S(0,M) is a set of the
form

{x € S(O,M):x(j) =M}, & =+1 or -1

Any face of S(O,M) is contained in  AS(O,M), and in fact, AS(0,M)
is the union of all faces of S(O,M).

Lemma 5.6. Assume the origin is chosen such that (5.77) holds. Then
there exists a constant C; >0 and for all k > 1 an M _ such
that for M > M

k

(5.80) P{ 3 set of vertices D in some face of S(0,M) with

d

< 3k oM™ and ce(0) Mk < #( U Wy(w,0))

weD

o(0)M’ and #{ U W,(w,0) 0 as(0,M)} < ade(0)(3m T
weD

Proof: Fix k and let M> 4M + 8MO + 20kO . For m > M
we take Jj(k,m) and e(k,m) such that (5.79) holds. For some

JO,EO there exist at least

1M M
>3 Lag—d > —
2d -4k, 10d k

integers m satisfying

(5.81)  M+2My <m <, k, divides M-moand j(k,m) = jg.elkm) = e -

Without loss of generality we assume that jO =1, €9 = . For the
corresponding m we then have j(k,m), e(k,m) = (jo,eo) (1,-) and by
(5.79) and the periodicity assumption (5.60)

"

(5.82) P LB (vom,1,-) > L0
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for each vertex v = (v(1),...,v(d)) with v(i) divisible by kO for
each i . We put

FM = {-M} X [_MQM]XIU-X[—M,M]
FM is the "left face" of S(0,M). Now let v be such that

(5.83) v(1) = -M + m for some m which satisfies (5.81) and

V()| < B v(i) divisible by Kk for i=2,....d .

If Bk(v,M - |v(1)|, 1,-) occurs for such a v, then v is connected
inside S(v,M-|v(1)]|) to at least k vertices in

{v(1) = M+ [v(T) |} x [v(2) - M+ |v(T)], v(2) + M -|v(T)]]
x,..x [v(d) - M+ |v(1)], v(d) + M -|v(1)|] < Fy
Moreover, S(v,M - |v(1)|) = S(O,M) . Thus, if we define
ry(v,0):= number of vertices of NM(v,O) in Fy= #(wM(v,O) N Fy)s

then for a v satisfying (5.83) Bk(v,M - |v(1)],1,-) dimplies
TM(V,O) k . In addition for any v satisfying (5.83), k0 divides
v(i), 1 <i <d, (use (5.81) for i=1) and by (5.82)

>
<

P{B, (v,M-|v(1)], 1,-) = P{B, (v,m,1,-) 2_9§%l

It follows that for M 3_4Mk + SMO + 20k0

(5.84) E {number of v in S(0,M) which satisfy (5.83) with
PM(v,O) > k} z_gégl-{number of v satisfying (5.83)}

> 2c, (0) (M/ky)d

5
for some C - Since the total number of v in S(O,M) is (2M+1)d,
the left hand side of (5.84) is at most

P{(number of v € S(0,M) which satisfy (5.83) and with
ry(vs0) > k) s at least Cse(o)(M/kO)d} (2m+1)9

d
+ Cg 8(0) (M/kq)™ .
It follows from this and (5.84) that
(5.85) P{there are at least CSG(O)(M/kO)d vertices v in
S(0,M) which satisfy (5.83) and with FM(V,O) > k}

> Co(3ky) ™ e(0)
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Now consider the collection of w in FM which belong to
some wM(v,O) for a v satisfying (5.83) and FM(V,O) > k. Call
two vertices W1 and W, of this kind equivalent if they belong to
the same wM(v,O) with v satisfying (5.83) and FM(V,O) > k. From
each equivalence class pick one representative and denote by D the
collection of representatives chosen in this way. Note that D c F
and that by definition each equivalence class contains at least
k elements. Consequently

M

#D < K (number of vertices in Fy which belong to

some WM(V,O) with v satisfying (5.83)).

Now if w e Wy(v,0), then v e Wy(w,0), and if w(1) = -M,
v(1) > -M+ 2My then B(wo,ZMO) must occur. Consequently, by (5.68)
and (5.77).

(5.86) #D < k! (number of w ¢ Fy for which B(w,2M
occurs) f_Zg%gl- #FM = 29%?1- (2M+1)d']

o)

outside a set of probability at most

d-1
Ky exp - K2(2M+])

Also, by our choice of D

(5.87) U W, (w,0) = U Wy,(v,0) ,
M M
welD

where the union in the right hand side is over all v which satisfy
(5.83) and have FM(V,O) > k. If the event in braces in (5.85) occurs
then this union contains at least C 6(0)(M/k0)d vertices. On the

5
other hand, the union in (5.87) is contained in the set

{ue S(O,M):B(u,MO) occurs}

To see this note that if u e wM(w,O) for some w e D, then

wM(u,O) = wM(w,O) = WM(V,O) for some v satisfying |v(1)-w(1)| > 2M
(by (5.81)) and hence |u(1)-v(1)| > My or u(1)-w(1)] > My . In
any case, such a u is connected by an occupied path to AS(u,MO) and
B(u,MO) occurs. The number of vertices in the union in (5.87) is

0
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therefore for large M at most

(5.88) #{u e S(O,M):B(u,MO) occurs}

d+1

< 26(0) #s(o,M) < 3% g(omd

outside a set of probability at most

K] exp - K 2M+1)d .

o

(again by (5.68) and (5.77)). For the same reasons

(5.89) #{( U ; W(w,0)) N AS(0,M)} < 26(0) #AS(O,M)
we

< 4do(0) (3m)d-!

outside a set of probability at most

Ky exp - K2d (2me1) %]

Thus, if the event in braces in (5.85) occurs, and if the estimates
(5.86), (5.88) and (5.89) are valid, then the event in braces in (5.80)
also occurs. In view of (5.85) and the above estimates this shows that
the left hand side of (5.80) is at least

(:5(3|<0)'d 8(0) - 2K, exp - K (2m+1) 47

2

- Ky exp - Ky(2me1)d

o
from which (5.80) follows for large M. 1

Lemma 5.7. Assume (5.77). For d here exist constants

>3 t
C., C, and M such that for all M > M  the interval

6> 77

d

(5.90) [csky @ elom? , 392 5(0)m

0

contains an integer m with

(5.91) P{#W(v) =m} > 6

C7k0d_1(6(0))]/d m(d—1)/d
>
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for some Vv e [O,ko)d .

Proof: We take
k = {o(0)3 ~1/(d-2),

Fix an w for which the event in braces in (5.80) occurs. Note
that this event depends only on the occupancies in S(0,M), and is
therefore independent of all w(u) with u ¢ S(0,M). We want to
show that the WM(w,O) with w e D can be connected by paths on z°
which (apart from their endpoints in D) lie outside S(0,M) and which
contain at most (:86(0)Md—1 vertices. To do this fix D such that
it satisfies the requirements in (5.80). For the sake of argument assume
again that D 1lies in the face FM = {-M} x [-M,M]x...x[-M,M]. Take
D' =D - 251. D' 1is the translate by (-2,0,...,0) of D so that
#D' = #D. Also each vertex v in D can be connected to v - 251 e D'
via a straight Tine segment of length two containing only the vertex
V-E] outside D UD'. Moreover

D' < Fﬁ T = FM - 251
and FM lies outside S(0,M). The paths connecting the vertices in
D will consist of all the Tine segments from v e D to v-2£1 e D'
plus a number of paths in FM connecting all vertices of D'. Hence,
they will indeed contain only vertices outside S(0,M) plus endpoints
in D, as desired. To construct paths in FM connecting all vertices
of D' consider the collection of vertices w = (w(1),...,w(d)) & F,

M
of the following form:

(5.92) w(1) = -M-2, w(r) is a multiple of o for 2<r<d, r#s,
and -M < w(i) < M, 2<1i<d,

where

0= r{ 5—(%Y ]J/(d—])‘l ~ 18(0)} -1/(d-2)

and s 1is anyone of the indices 2,...,d . There are at most (d-1) x
pz"d(2M+p)d'] such vertices. When d > 3 all the vertices satisfying
(5.92) are connected by line segments in FM , containing only vertices
of the form (5.92). Also, each vertex v e F! can be connected to one

M
of these vertices by a straight line segment in FM containing at most
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Figure 5.3 The vertices satisfying (5.92) are connected by the
dashed lines in FM. These lines are distance p

apart. The solid 1line from v shows how to connect
v to this system of lines.

(d-2)p vertices for d > 3. (see Fig. 5.3). Choose such a segment
for each vertex v e D'. Let E be the set of all vertices which
satisfy (5.92), the vertices on the segments in Fﬁ which connect vertice
of D' to one of the vertices which satisfy (5.92), as well as the
vertices in D-g]. It follows from the(fbove that any pair of vertices

of D can be connected by a path on Z which, apart from its

endpoints in D, contains only vertices from E. By construction E

lies outside S(O,M) and for M > p
#E < (d-1)02"%(2me0) 371 4 ((d-2)p+1)#D < cse(O)M““1

(the last inequality follows from the upper bound on #D in (5.80)).
Moreover, if all vertices in E are occupied, then

(5.93) U wM(w,O) UE

weD
forms a connected occupied set. When the event in braces in (5.80)
occurs and M is sufficiently large, then the number of vertices in
the set (5.93) Ties in the interval (5.90). Thus E has all the desired
properties for connecting the WM(w,O) with w e D. In addition -
because E is disjoint from S(O,M) - the conditional probability that
all vertices in E are occupied, given any information about the
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occupancies in S(0,M), is at least W#E . This almost proves our
lTemma. We merely have to make sure that (5.93) is a maximal occupied
component when all of E is occupied, i.e., that it is not part of

a bigger occupied component (whose cardinality may lie outside the inter-
val (5.90)). We claim that (5.93) will indeed be a maximal occupied
component if all vertices in the following set G are vacant.

G:= {all vertices outside S(0,M) U E which are

adjacent to a vertex in U NM(w,O) UE}.
weD
To see this, note that all vertices inside S(0,M) adjacent to the
set (5.93), but not belonging to (5.93) itself, are already vacant. This
is so because the WM(w,O) are already maximal occupied components

inside S(0,M), so that their neighbors in S(0,M) are vacant. The
only vertices of

S(oO,M) na( U wM(w,o) UE)
weD

which might be occupied would have to 1ie in S(O,M) N 3E. But by our
choice of E no such vertices exist, because S(0,M) N 3E = D, and this

is part of the set (5.93). This proves that if all vertices in G are
vacant, then all vertices in

o( U Wy(w,0) UE)
weD

are vacant. It therefore justifies our claim and thereby shows

(5.94) P{3 a maximal occupied cluster in [-M-2,M] x [-M,M]d'1
with cardinality in the interval (5.90)}

> P {the event in braces in (5.80) occurs, all vertices in
E are occupied and all vertices in G are vacant}

> E {w#E t #G ; the event in braces in (5.80) occurs}.

It remains to estimate #G. But by definition

G ©3E U o( U Hy(w,0) n aS(0,M)),
weD
so that

#6 < 2d {#E + 4do(0) (am) ™"y
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by the bound on #{ U NM(w,O) N AS(0,M)} in (5.80). Therefore
weD

the last member of (5.94) is at least
2 d-1 .
E {exp(log m) {(2d+1)#E + 8d“6(0)(3M) ;

the event in braces in (5.80) occurs}

exp{Cge(O)Md-] log w}. P{the event in braces in (5.80) occurs

|v

%

exp{C40(0)M?T g m} . %CS(BkO)_d 6(0).

The lemma follows easily from this lower bound for the first member of
(5.94), because any maximal occupied cluster which lies entirely in
[-M-2,M] x [-M,M]%1 equals W(v) for one of the (2M+3)(2M+1)%"]
vertices v 1in this box. In addition the interval (5.90) contains

at most 3d+29(0)Md integers, so that

max PUAW(v) = m} > (2m+3)"9 (3%Zg()md)"]

1

-d
5C )

(3k.)"96(0) exp{cge(o)Md‘1 Tog 7}

5770

where the max is over all v, and over all m in the interval (5.90).
We may restrict v to [O,ko)d by the periodicity assumption (5.60).
This gives the first inequality in (5.91) for large M (since m<1). The
second inequality follows from the fact that m 1lies in the interval
(5.90). ]

The proof of the preceding lemma breaks down for d=2, because the
collection of vertices satisfying (5.92) is no longer connected; it
consists merely of the vertices (-M-2,2p) , |&] < M/p . Nevertheless
the conclusion of Lemma 5.7 remains valid.

Lemma 5.8. Assume (5.77). If d=2 and the conditions (5.60), (5.61) an

(5.64) hold, then there exists an M such that for each M > M the
interval

(5.95) [ %CS ko2 e(o)ME, 3% s(0)M? ]

contains an integer m for which (5.91) with d=2 holds.

Proof: We do not give a detailed proof for d=2 here. We shall
rely in part on a simple result from Ch. 7. This result shows that
for d=2 there exists with high probability an occupied path in S(O,M)
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which connects most occupied clusters in S(0,M). We therefore
automatically obtain a large cluster WM(V,O) in S(0,M), even without
the use of any such set as E outside S(0,M), as in the preceding
lemma. Specifically we shall prove

(5.96) P{ 3 a vertex v in S(0,M) for which #NM(V,O) 1ies in the

interval (5.95) and #WM(V,O) N AS(0,M) < 20 6(0)M}
-6 -2
> 270 C(3ky) ™" 0(0) .
This estimate will take the place of the construction of E in
Lemma 5.7. For any w for which the event in braces in (5.96) occurs

choose a v in S(0,M) for which #WM(V,O) lies in the interval (5.95)
and define G as

G:= {all vertices outside S(0,M) which are adjacent

to wM(v,O)}

From here on the proof is practically the same as in Lemma 5.7. When
all vertices in G are vacant, then WM(V,O) is a maximal occupied
component, i.e., it equals W(v). Thus

P{ 3 a vertex v 1in S(0,M) with #W(v) in the interval
(5.95)}

Z‘E{w#a ; event in braces in (5.96) occurs} ,

and we can estimate this as before. We shall therefore restrict ourselves
to proving (5.96) and leave further details to the reader.

The proof of (5.96) relies on Lemma 5.6 which does hold for d=2. It
is a trivial consequence of (5.80) for d=2, that for some face FM of
S(0,M)

(5.97) P{ # u WM(w,O)
WEFM

|v

2
C50(0) (M/ky)? )

> 2Co(3k 2 5(0) .

5( 0)
Again without loss of generality we assume that (5.97) holds with
FM = {-M} x [-M,M], the left side of the square S(0O,M). Now note
that Z° s just the graph G, of Ex. 2.1. (i). Under the

periodicity assumption (5.60), (5.61) and the extra hypothesis (5.64)
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for d=2 we can apply (7.15) as well as Theorem 5.1. (7.15) together
with periodicity gives

(5.98) P{ 3 occupied vertical crossing on QO of

[-M,-M + C TogM] x [-M,M]} > o((C 109M—k0,2M+k0); 2,p,QO)

> 1 - P{ 3 vacant horizontal crossing on Qa of

[0,cC 1ogM—k0-A] X [0,2M+kO+A]}

2 only). Moreover,

as at the end of the proof of Lemma 5.4, a horizontal crossing on QB

of [0,C 1ogM—k0—A] X [0,2M+kO+A] has to contain one of the vertices

v=1(0,2), 0 <& < 2Mkyth . If such a v is part of a vacant horizont:

crossing of [0, C 1ogM-k0—A] X [0,2M+kO+A], then its vacant component

an G, W*(v), must contain at Teast C logM-k

the right hand side of (5.98) equals at least
2M+kO+A

1-3 P{ #4*((0,2)) > C TogM-k,-A} .
2=0

for some constant A (which depends on QO =7

O—A vertices. Thus,

Now Theorem 5.1 applied to 96 shows that (by virtue of (5.61) and
(5.64)).
K.C

PLHN*(0,2) > C TogM-k -0} < K, M °

uniformly in & , for some constants K4,K5 which depend only on the
probability measure P. Thus for C > K;1 the right hand side of
(5.98) is greater than %— eventually. From the FKG 1inequality,

Proposition 4.1, and (5.97) we now obtain

(5.99) P{# U WM(w,O) > G e(O)(M/kO)2 and there exists an
weF
M

occupied vertical crossing of [-M,-M + C logM] x [-M,M]}

> TP U Wy(w,0) > C0(0)(Mky)P
WEFM
1 -2

Now assume that there exists an occupied vertical crossing r of
[-M,-M+C TogM] x [-M,M]. Then any occupied cluster NM(V,O) in S(0,M)
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which is connected inside S(O,M) to w in FM = {-M} x [-M,M], and
which contains a vertex in [-M + C TogM, M] x [-M,M] must intersect
r. Hence r will be part of any such wM(v,O). In particular all
NM(V,O) with the above property are connected via r and form a single
cluster. On the other hand, any cluster wM(v,O) which contains a w
in FM but does not intersect r must be contained in [-M,-M + C logM)
x [-M,M]. Hence, all such clusters contain together at most

(C TogM + 1)(2M + 1) vertices. Thus, if the event in braces in the

first member of (5.99) occurs, then S(0,M) contains a single wM(v,O)
of at least

#( U WM(w,O) - (C TogM + 1)(2M + 1)
WEFM

> Cg 8(0)(M/ky)® - (C Togh + 1)(2M + 1)
vertices. For sufficiently large M this number exceeds

1 -2 2
E-Csk0 8(0)M so that

(5.100)  PL3 ve S(O.M) with #uy(v,0) > 3Ccks! 8(0)M°)

1 -2
16 C5(3k0) 8(0)

2
for large M. This gives us a WM(V,O) (with a certain probability) whose
cardinality equals at least the Tower bound of (5.95). To make sure
that #WM(V,O) actually falls in the interval (5.95) we once more
appeal to (5.68). For each w in wM(v,O) with [w(i)-v(i)| > My for
i=1 or 2, B(w,MO) occurs. Indeed any such w 1is connected to
v ¢ S(w,MO). Thezefore,zif #WM(v,g) > 346(O)M2 3 then B(w,MO) occurs
for more than 37 8(0)M" - (2M0+1) > 26(0)(2M+1)° = 26(0) #S(0,M)
vertices in S(0,M). Thus, by (5.68), for large enough M

4 2

P{#NM(V,O) > 3'8(0)M~ for some v e S(0,M)}

-6 -2
< Ky oexp - K2(2M+1f <2 C5(3k0) 8(0) .

By the same argument one has for large M
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P{#(WM(v,O) N AS(0,M)) > 206(0)M for some v e S(0,M)}
< P{B(w,My) occurs for more than 200(0)M - (2M+1)2
> 20(0) #AS(0,M) vertices in AS(O,M)}

<Ky exp - BKM < 27 c.(3kp) 7% 6(0) .

These estimates together with (5.100) nrove (5.96). []
From here on the proof closely follows Aizenman et al. (1980).

Lemma 5.9. For any vertices VisVo and integers nyshy > 1 one has
d
on Z

2dn2
(5.101) P{#H(vy) =ny + 0,3 > m P{#(v;) = n;}

and, for some constant C,, = C]O(d)

(5.102) PUH(vy) = ny +ny + (dH1)ko}
! 1050 puv,) = b PG(Y) = 2
T, (d+ Tk, i Vil = My Vol = My

| v

Proof: Let G] be a connected set of vertices of Z@ containing
Vi with #G1 = nq. Let w, = (w](l), w1(2),...,w](d)) be a vertex
in G, with maximal first coordinate, i.e., w](l) > w(l) for all
W e G1. (w1 is a "right most" point in G1). Then form a connected
set G of vertices by adding to 61 the n, vertices

Wyt jg1 = (w1(1) + 3, w1(2),...,w](d)) for j=1,...,n2. Then

#G = ny +n,. As in (5.24)

P{W(v,) = G} = T P{w 1is occupied}
1 1
WEG]

. I P {u 1is vacant}
WEBG1

and similarly for G. Since G consists of G1 plus n, vertices,

and 3G consists of 8G1\\{w] + E]} plus at most (2d—1)n2 points
it follows that

2dn2
(5.103) P{W(V]) =G} > 7 P{W(v]) = G]}

Finally,



(5.104) PL#N(v,) = M} = N PUN(v,) = 6}

where the sum runs over all connected G] with #G1 =, and containing
Vq- Since distinct G1's lead to distinct G's in the above con-
struction we find

P{#W(v]) =np +n,} > Y PLH(v,) = 6}

2dn2

> o L PWN(vy) = 6y}
#G1 =n,

This proves (5.101).

To prove (5.102) we also bring in a connected set of vertices
G, which contains Vo and with #62 = n,. We take W, = (w2(1),...,
w2(d)) as a "left most" point of Gy i.e., one with w2(1) < w(1) for

all W e G2 . We shall now form a connected set G with
#G = ny +n, + (d+])kO by connecting G1 and a translate Gé of
G2 . Let m, be the unique integer for which

(m-Tky < wi(i)=w,y(i) < mkp, 1 <4 < d

d d
For G, we take G, + ; mikogi + kog1. Let w, = W, ; mikogi
+ k0£1. Then

w](1) + kO < wé(1) 5_w1(1) + 2k~ s
wq (1) < wé(i) <wy(i) + kg» 2 <1 < d,

and we can therefore connect W1 to wé by a path r of at most
ko(d+1) vertices, all of which T1ie in the strip {w1(1) < x(1) < wé(])}.
By the periodicity assumption (5.60)

P{W(wz) = G2} = P{all vertices in Gz are occupied

and all vertices in an are vacant} = P{all vertices

in Gé are occupied and all vertices in aGé are vacant}

Very much as in (5.103) one obtains from this
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(5.105) POH(v,) = G U r U 63}

2d(d+1)kO
>om P{w(v]) = G]} P{w(vz) = GZ}
We now sum this over all connected sets G1, G2 with #Gi = "i and
containing Vi i =1,2. By (5.104) the sum of the right hand side
will be

2d(d+1)k0
(5.706) 0 P{#w(v1) = n]} P{#w(vz) = n2}

As G1, G2 run over these sets, G1 Ur U Gb will run over certain
connected sets of vertices G, containing Vi and with

np +n, <#6 < ny+n, + (d+1)ky . It is nevertheless not true that the
sum of the left hand side is at most P{n] tn, < #w(v1) <n +n,

+ (d+1)kO » because any given G may arise from many pairs G],Gz. It
is, however, not hard to derive an upper bound for the number of pairs
which can give rise to the same G. In fact G1 is uniquely recoverable
from G. One merely has to find the smallest integer m such that

G has exactly ny vertices in the half space {x:x(1) < m} . G1 is
then the piece of G 1in this half space. This is so because r

and G, Tie in  {x:x(1) > w1(1)} in our construction. In the same
way one can recover Gé as the piece of G in {x:x(1) > m'} where
m' 1is the maximal integer for which the above halfspace contains n
vertices of G. Finally r =G\ G1 U Gé . When Gé is known
there are at most n, possible choices for GZ’ since G2 is obtained
from Gé by a translation which takes one of the n, vertices of

Gé to Voo From this it follows that the sum of the left hand side

of (5.105) over G

2

1 and G2 is at most

nzP{n1 +n, < #w(v]) < onpton, 4 (d+1)k0}

Together with (5.106) this proves that there exists an m in
(n] + Ny, Ny ton, * (d+1)k0] with
P {#W(V]) = m}

. 2d(d+1)k,
Tk, T P {#d(vy) = ny} P{#H(v,) = n,} .

|v

An application of (5.101) with ny replaced by m and n, by
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n, +n

1 o+ (d+1)k0 -m now yields (5.102). ]

Proof of Theorem 5.2. Given an integer n 3-(d+])k0 + 3d+2 e(o)ﬁd
we find the Targest integer M with

d+2 o( d

0)M™ + (d+1)k, < n

3 0o 2 Mo

and then find an m in the interval
(5.107) [y Csko @ o(om?, 382 s(0)u]

for which (5.91) holds. Such an m, exists by virtue of Lemma 5.7
and 5.8 since M > M. Next we find the maximal integer S for
which s](m] + (d+1)k0) < Ny Since

B2 oy + (d+1)k. > n

3 0 1°

and m, lies in the interval (5.107),it follows that for N greater
than some ny = no(e(O), d,M)

1 -d ,-d-2

(5.108) my > E—CskO 3 ny
a1 od42
Consequently for Ny > ng and (3]1 = 4C5 3
(5.109) 1 < s, < C..k2d
: - 1 = 71170
and
.= 1

(5.110) ny:= n.l—s](m1 + (d+1)k0)_§ 5 Ny

By repeating the above procedure for n, instead of n and so
on we can represent n] as

ny = ) sy(my 4+ (d+l)kg) + t

with integers m, satisfying (5.91) and (5.108), S satisfying (5.109),
and t < Ny Repeated application of Lemma 5.9 and (5.91) now shows
that for some > [O,ko)d

2dn, + Cinkny Y S, -s, S,
PesH(v) = k> w0 100 T T i (gen)k ) T pTAM(v.) = m )

> exp{2dn, log m + (C, kqTog m - Tog ky(d+1)) Js.
- Js, Tog m; + C5(log Mk (e(0))/? s m, (d-1)/dy

A



It is clear that we can fix ng SO large that the inequalities
-1 ,-d -1 ,-d d
M2 0y kg Ny 2 Gy kg mp and sy < Gy kg

(5.109)) imply that the exponent in the right hand side is at least

-1 (g(0))1/d ) Simi(d—1)/d + 2dnj log m

(cf. (5.108) and

2C7(Tog ﬂ)k0

2d-1 1/d -
> 2C7C”k0 log m (8(0)) / y mi(d 1N/, 2dn, log 7 .

It is also easy to show from m; < ng and n, f_-% n. (cf. (5.110))

that

m.(d'”/d < ¥ on,
. 1 — . |
i>1 i>1

(d-1)/d

Since 0 > 6(0), it follows that (5.63) holds for n 3AN0 with a

suitable choice of N C, =3C, C

3 7 C4q C12 and w equal to some

OS

Woe [O,ko)d. To obtain (5.63) for all w we use Lemma 5.9 once more.
By (5.102) with Vi =W, v, = wn—1-(d+1)k0
1 G105

P{#W(w)

n}zﬁ-(m)—k-a—ﬂ

P{W(w) = 1} P{W(wn_1_(d+1)k0) = n-1 - (d+1)ky} .

Since

P{W(w) = 1} = P {w 1is occupied and all its neighbors

are vacant} > 2+ ,

and (5.63) holds for n replaced by n-1 - (d+1)kO and
WoEW g (d+1)k0’ we obtain (5.63) , in general, at the expense
of increasing C3 and N0 sTightly. ]

Proof of Theorem 5.3: By Cor. 2.2, if 0 < #W(vo) < o, then there exists
a vacant circuit J on G* surrounding w(vo). If #W(VO) > n, then

w(vo) contains some vertex vy with

lv](i) - vo(i)l > %—(/ﬁ7ﬂ¥1) for i =1or 2,

where 1y is as in (5.7). Therefore, the diameter of J - which has



Vo and v, in its interior - is at least %—(/ﬁ7ﬁ?1). Let the
diameter of J be L > (/n/u-1). Since J surrounds v, it inter-
sects the horizontal half line [0,») X {VO(Z)}, and if A is some
constant which exceeds the diameter of each edge of G*, then J con-
tains a vertex v* of G* 1in the strip

S = [-A,») x [v0(2)-A, v0(2) + A].

Moreover,  |v*(1)-vy(1)] <L, since v, Ties in the interior of J.
Also, J must contain at least

L > Dnaxt[vx(1)-vg(1) |, 2(A75-1)3

vertices of G* and all of those belong to the vacant cluster of
v¥ on G*, Wx(v*). Thus,

(5.111) Po{n < #(vy) < =

< T PG (VY) > T maxd [vr(1)-vg (1) |, HATE-1)1Y
vxes P

By virtue of Lemma 4.1 the right hand side of (5.111) can only be
increased if we replace p by Py with p(i) Z_po(i), 1 <1i<d. More-
over, by Theorem 5.1 (applied to G*) (5.65) implies that

-sz
(5.112) Pp {#W*(v*) > m} < C e ., m >0,

0

and by the periodicity this estimate is uniform in v*. (5.66) is
immediate from (5.111), (5.112), and (5.7). ]

5.3. Large crosssing probabilities imply that percolation occurs.

Even though this section does not deal with the distribution of
#W we include it here, since the proof of next theorem, due to Russo
(1981), is in a sense dual to that of Theorem 5.1. The argument works
for any graph G imbedded in R2 which satisfies the following
condition.

Condition C. If e' and e" are edges of ( with endpoints v',w'
and v",w", respectively, and e' 1intersects e" in a point which
is not an endpoint of both e' and e", then there exists an edge of
orw' to v" or w'. /17

g from v
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Condition C holds for instance if G is one of a matching
pair (G,G*) based on some (7,5). In such a graph two edges e', e"
can intersect in a point which is not an endpoint of both, only if
e' and e" both belong to the closure of the same face F e & (cf.
Comment 2.2. (vii)). This F 1is close-packed in G and the endpoints
vi,w', v', w" of e' and e" must lie on the perimeter of F, and
there exist an edge of G between any pair of these vertices. This
argument also shows that even the graphs discussed in the Remark in
Sect. 2.3 satisfy Condition C.

The reader should note that in the next theorem (5.113) and
(5.114) are conditions on the crossing probabilities in the "long
direction" of the blocks, while (5.10) is for crossing probabilities
in the "short direction".

Theorem 5.4. (Russo 1981) Let G be a periodic graph imbedded
in R® which satisfies (2.2)-(2.5) and Condition C. Let P, be
a_A-parameter periodic probability measure and let A satisfy (5.8).
If for some integers N1, N, > 2A

2

(5.113)  o((3N.N,)5 1,p,G) > 1-7781

as well as
(5.118)  o((N;,3N,)5 2,p,G) > 1-77°81
then

(5.115) 8(p,v) > 0 for some v e G.
Remark .

Russo (1981), Prop. 1 uses Theorem 5.4 to show that for periodic
site-percolation problems on graphs G in R2 which satisfy conditions
somewhat stronger than those of Theorem 3.2 no percolation can occur
on the critical surface. In other words e(po,v) = 0 for the Po
defined in Theorem 3.2. In particular e(pH,v) = 0 1in one-parameter
problems of this kind. This is of course also a consequence of Theorem
3.2 (see (3.43)). Actually using Theorem 6.1 and a refinement of Russo's
argument one can prove this result under more general conditions.
Specifically the following left-continuity propertv holds: Let
(G,G*) be a matching pair of perijodic graphs imbedded in Rz and
h]""’bx a periodic partition of the vertices of G such that one
of the coordinate axes is an axis of symmetry for G,G* and the
partition Upseeesly - Let Pp be as in (3.20)-(3.23). If
Py € PA is such that Py >> 0 and  6(p,v) = 0 for all
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P <<Ppps PebP, then e(po,v) =0 .

There also is a continuity result if e(po,v) > 0, which can be
derived from Theorem 12.1. Under the above conditions p -+ 6(p,v) is
continuous at all points p >> 0 for which 6(p,v) > O.

We do not proof either of these results.

Finally, it is worth pointing out that Russo (1978) proved that
8(.,v) is always right continuous for any graph in any dimension. I.e.,
if p(i) ¢ po(i), 1 <1i<d, then 6(p,v) v e(po,v). This is so
because  6(.,v) is the decreasing limit of the sequence of continuous
increasing fuctions p - P_ {v is connected by an occupied path to some
point outside S(v,M)}. (See the lines before Lemma 5.5 for S(v,M).)

Proof of Theorem 5.4. As in Theorem 5.1 we use an auxiliarly graph and

set up a correspondence between vertices of this graph and blocks of

G . This time the auxiliarly graph is the simple quadratic lattice QO
of Ex. 2.1(i). For each occupancy configurations w on G we
construct an occupancy configuration on QO as follows. If (11,12) is
a vertex of QO with 11 + 12 even, then we take (i],iz) occupied

iff there exists an occupied horizontal crossing on G of

(5.116) [N (#3300, % Ty Ny (i ON,]

If (j],jz) is a vertex of Gy with j, + j, odd we take (j],jz)
occupied iff there exists an occupied vertical crossing on G of

(5.117) COIHONGS (34#2)N, T < L(3-1N,, (3,+2)N,]

We claim that if (i],iz) with i] + 12 even and (j1,j2) with j1 + j2
odd are two adjacent vertices of Qo which are both occupied, then
there exists an occupied horizontal crossing r = (vo,e1,...,ev,vv)

of (5.116) and an occupied vertical crossing s = (wo,f1,...,fp,wp) of
(5.117), and any such pairs of crossings must intersect. We check this
for the case j1 = 1]+1, j2 = 12; the other cases are similar. Since
(11,12) is occupied, there exists an occupied horizontal crossing r
of (5.116) on G. By Def. 3.1, if r = (vo,e],‘..,ev,vv), then the
curve made up from €1s-..s8 contains a continuous path in
[1,N],(i]+3)N]] X [12 NZ,(i2+1)N2] which connects the left and right
edges of this rectangle. Similarly, there exists an occupied vertical
crossing s = (wo,f1,...,fo,wp) of (5.117), and s contains a con-
tinuous curve in [(j]+1)N], (j1+2)N1] X [(32-1)N2, (j2+2)N2] which
connects the top and bottom edges of this rectangle. Since
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j1 = 1]+1, j2 = 12, the latter rectangle equals

(5.118) [(11+2)N1, (i]+3)N1] x [(12-1)N2, (12+2)N2] .

It is now evident from the relative location of the rectangles (5.116)
and (5.118) that r and s intersect.

This proves the claim. By condition C it follows that either
r and s intersect 1in a vertex of G, common to both, or there
exists vertices v of r and w of s which are adjacent to each
other on G. In either case all the vertices of r and s (which
are all occupied) belong to the same occupied component on G . Thus,
if (i],iz) and (j],jz) are occupied neighbors on QO’ then necessarily
one of them has an even sum of its coordinates, and one an odd sum, and
the corresponding blocks on G contain crossings which belong to the
same occupied component on G. Therefore, if QO contains an infinite
occupied cluster, then so does G . To complete the proof it therefore
suffices to show

(5.119) Pp{qo contains an occupied cluster} > 0,

since this will imply (5.115). (5.119) is proved by the standard
Peierls argument. Let wo be the occupied cluster of (0,0) on Go- By
Cor. 2.2., 0 < #wo < « happens only if there exists a vacant circuit

J surrounding (0,0) on Qa . Qa is described in Ex. 2.2(i). Every
vertex has eight neighbors on qa. The number of self-avoiding paths
starting at the origin and containing n vertices is therefore at most
8.7"’2 . The number of circuits of n vertices containing the origin
in its interior is therefore at most 8n.7n—2 (since any such circuit
must contain one of the points (i,0), 1 < i < n, as in the argument
preceding (5.111)). On the other hand, the probability that any vertex
of Q6 is vacant is strictly less than 7-81 , by virtue of (5.113)
and (5.114). Not all vertices of 96 are independent, but if
?ﬁ,...,i% are vertices of Q6 (and hence of QO) such that for each
T<r,s<t,r¢#s, there is an i =1,2, with Ilr(i)‘ls(i)l.i 5

(I} = (Qr(1), zr(z)) then the occupancies of 'I1,...;Et are inde-
pendent, because they depend on disjoint sets of vertices of G. Any
circuit on Q6 of n vertices contains at least n/81 such inde-
pendent vertices, and hence the probability that a given circuit on

Q6 of n vertices is vacant is at most

(781 _ ,yn/81
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for some n > 0. It follows that for a suitably large N

(5.120) Pp {there does not exist a vacant circuit on Qa surrounding

(0,0) and containing at least N vertices}

2_] _ z 8n 7n"2 -81 _

n>N

(7

Now the event that there does not exist a vacant circuit of a certain
type on Qa is an increasing event for the percolation on G. Thus,
by the FKG inequality
(5.121) Pp{the origin of Go is occupied and there does not exist
any vacant circuit on QB surrounding (0,0)
> Pp{the origin of QO is occupied and there does not exist

any vacant circuit on Qa surrounding (0,0) and containing
less than N vertices} x {the left hand side of (5.120)}

> I P_{the vertex (11,12) of Qa is occupied} - % > 0.
il P

li,] <N

As we saw above, the event in braces in the first member of (5.121)
implies #NO = =, so that we proved

Pp{#w0 = »} >0

which in turn implies (5.119). 1
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6. THE RUSSO-SEYMOUR-WELSH THEOREM.

The object of this chapter is a result which states that if the
crossing probabilities of certain rectangles in both the horizontal and
vertical direction are bounded away from zero, then so are the crossing
probabilities for larger rectangles. This result will then be used to
prove the existence of occupied circuits surrounding the origin. The
idea is to connect an occupied horizontal crossing of [O,nl] X [O,nz]
and an occupied horizontal crossing of [m,n] + m] x [O,nz] by means
of a suitable occupied vertical crossing, in order to obtain a horizontal
crossing of [O,n] +m] x [O,nz]. This would be quite simple (compare
the proof of Lemma 6.2) if one had a lower bound for the probability of
an occupied vertical crossing of [m,n]] X[O,nzj, but in the applications
one only has estimates for the existence of occupied vertical crossings
of rectangles which are wider and/or Tower. One therefore has to use
some trickery, based on symmetry to obtain the desired connections. Such
tricks were developed independently by Russo (1978) and Seymour and
Welsh (1978). (See also Smythe and Wierman (1978), Ch. 3 and Russo
(1981).) These papers dealt with the one-parameter problems on the
graphs Gy oOr G (see Ex. 2.1(i) and (ii)) and therefore had at their
disposal symmetry with respect to both coordinate axes, as well as
invariance of the problem under interchange of the horizontal and
vertical direction. We believe that neither of these properties is
necessary, but so far we still need at least one axis of symmetry. We

also have to restrict ourselves to a planar modification sz of a
graph G which is one of a matching pair of graphs in Rz.
Throughout this chapter we deal with the following setup:
*
(6.1) (G,G ) 1is a matching pair based on (7,%) for some mosaic

m satisfying (2.1)-(2.5) and subset & of its collection ol
faces (see Sect. 2.2). ng is the planar modification of
G (see Sect. 2.3).



127

(6.2) 4 and pr are periodic and the second coordinate axis
LO:x(1) = 0 1is an axis of symmetry for G and for pr
(Note that we can construct sz symmetrically with respect
to LO as soon as G is symmetric with respect to this
axis, by virtue of Comment 2.4(iii).)

(6.3) P is a product measure on (Qlf Bl)’ where LU is the
vertex set of Qpl (compare Sect. 3.1). P is symmetric
with respect to L, i.e. if v =(v(1), v(2)) is any vertex
of qu , then P{v = (v(1), v(2)) 1ds occupied}

= P{(-v(1), v(2)) is occupied} . (It is not required that
(2.15), (2.16) be satisfied).

Finally A is a constant such that

(6.4) diameter of any edge of G or of qp2 is < A.

Theorem 6.1. Assume (€6.1) - (6.4). Let m> 1 be an integer and
assume that n = (n1, n2) and m = (m], mz) are integral vectors
for which

(6.5) o(ﬁ§1,p,qp£) = Pp{ 3 an occupied horizontal crossing on sz
of [O,n]] x [0,n2]} > 61 > 0 |,

(6.6) o(m;2,p,Qp2)= Pp{ 3 an occupied vertical crossing on sz of

[0,m1] x [0,m,]} > &, > 0,

and

3

(6.7) %55—:—3w i=1,2
Then there exist ng = nO(Q,w) » and for each integer k > 1 an
f = f(s],éz,w,k) > 0 depending on the indicated parameters only,

such that for

(6.8) n; > ny = ny(G,m)

one has
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(6.9) c(kn], 2n2); 1,p,qp2) = Pp{ 3 occupied horizontal crossing

on sz of [O,kn]]><[0,2n2]} z_f(s],éz,w,k) >0

(6.10) o((m + 3)n1, knz); 2,p,qu) = Pp{ 3 occupied vertical crossing
on Qpl of [0,(m+ 3)n1] X [0,kn2]} > f(5],52,ﬂ,k) >0 .

Moreover, for fixed T,k

(6.11) Tim f(61,62,w,k) = 1.
6] > 1
62 > 2

Corollary 6.1. Under the hypotheses of Theorem 6.1 (including (6.8))

(6.12) Pp{ 3 occupied circuit on Qpl surrounding 0, and inside

the annulus [-2(w + 3)n1, 2(m + 3)n]] x [-3n2,3n2]
(- (1 + 3)ngs (1 + 3)ny) x (-ny, n))} > ‘F4(61,62,w, 4n +12).

The very long proof will be broken down into several lemmas. If one
is content with proving the theorem only for the case my = Nys

m, = nz(ﬂ = 1) and under the additional hypothesis that both the

x(1) and x(2)-axis are symmetry-axes, then Lemma 6.1 suffices. Since
these extra hypotheses hold for most examples the reader is strongly
urged to stop with Lemma 6.1 at first reading, or to read the original
proofs of Russo (1978) or Seymour and Welsh (1978). The proof of
Theorem 6.1 in its full generality is only included for readers
interested in technical details, with the hope that it will lead
someone to a proof which does not use symmetry.

The principal ideas appear already in the first Temma. These
ideas are due to Russo (1978), (1981) and Seymour and Welsh (1978). A
very important role is played by an analogue of the strong Markov
property, not with respect to a stopping time, but with respect to a
Towest occupied horizontal crossing (see step (b) of Lemma 6.1).

Harris (1960) seems to have been the first person to use this property.

In each of the lemmas we construct an occupied crossing of a large
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rectangle by connecting several occupied horizontal and vertical
crossings. The existence of suitable crossings will come from

(6.5) - (6.7). The difficulty is to make sure that the vertical crossings
really intersect the horizontal ones, so that they can all be connected.
To do this we shall repeatedly use the FKG inequality (and symmetry
considerations) to restrict the locations of the crossings. In other
words, if we know that with high probability there exists an occupied
crossing of some rectangle, we shall deduce that there is also a high
probability for the existence of an occupied crossing with additional
restrictions on its location. Lemma 6.3 and the proofs of Lemmas

6.6 - 6.8 exemplify this kind of argument.

Since we only consider paths and crossings on ng we shall drop
the specification "on sz" for paths for the remainder of this chapter.
We remind the reader that sz is planar, and that a path in our
terminology has therefore no self intersections (see beginning of Sect.
2.3). We shall suppress the subscript p in Pp. (6.1) - (6.4) will
be in force throughout this chapter.

Lemma 6.1. Assume

(6.13)  o((27:8,)3 1.puGp) > 85 > 0

and
(6.14)  o((23:2))3 2:p.G5)) > 8, > 0
. e 1)
for some integers 21580583 2 1 with
3 2
(6.15) g < 5 Ay & > 32+ 16A, L, > A

Then for each k there exists an f](63,64,k) >0 such that

(6.16) c((kz],ﬁz); 1,p,Qp£) > f1(63,64,k) >0
and
(6.17) 1im f](63,64,k) =1
§, ~» 1
3
64 » 1
N The requirement 25 < %—21 can be replaced by g i_(2-5)£1

for any & > 0.
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Proof: The proof is somewhat lenqthy and will be broken down into
three steps.

Step (a). Consider a fixed horizontal crossing

\)) of [Osl] - -]] X [0,12] such that ev
intersects the right edge, {21 - 11 x [0,22] , in its interior only.
In view of Def. 3.1 and 21 > 1 + A, this implies that r intersects
the vertical line L:x(1) = 21 - 1 only in the open segment

{21 - 1} x (0,22) . The rather trivial technical reasons for insisting
that the intersection of r with L 1is in this open segment rather
than the closed segment {21 - 1} x [0,%2] will become clear

below. For the moment we merely observe that any horizontal crossing
r of [0,&1] X [0,12] contains a path r with the above properties.
Indeed we can simply take for r the initial piece of ry oup till

and including the first edge e of 8 which intersects L. (Note
that L is an axis of symmetry of sz because Lou(1)==0 is an
axis of symmetry and sz is periodic with period £ = (1,0). As
explained in Comment 2.4(ii) this implies that e intersects L in
exactly one point; e cannot be in case (a) or (b) of that Comment
because it has one endpoint strictly to the left of L.) Therefore

r= (vo,e1,...,ev,v

(6.18) P{ 3 occupied crossing r = (vo,e1,...,ev,vv) of

[0,2] - 1] x [0,12] which intersects L only in
{2/] - 1} X (Oﬁlz)} > O((Q'] 9212); ],Paqu) i 63 °

We shall write e(v) for the reflection of an edge e (a vertex v)
in L. r will denote the reflection of r in L. Then for r as
above r Ur s a horizontal crossing of [0,221 - 2] % [0,22], pro-
vided we interpret this statement with a little care. If v, lies
on {21 -1} x (0,22) then r Ur is simply the path
(vo,e],...,ev,vv = Vv,év,vv_1,...,90). As observed above, by Comment
2.4(ii) the only other possibility is that the intersection of e,
and L is the midpoint of e, - Then e, = ev and r Ur should

Vo 45 € 15 V. nseausVp).
v=-17 “v-17 "v-2 0
Note that we insisted on e, intersecting L in the open segment

{2] -1} % (0,12) precisely to make r U r a horizontal crossing
of [0, 28y - 2] x [0,22] .
Now we take for J, the perimeter of [0,22] - 2] x [0,22] viewed
as a Jordan curve. We further take B] = {0} x [0,22], B2 = {29v1 - 2}
X [0,22], A2 = [0,221 - 2] x {0} and C2 = [O,ZQ] - 2] % {22}. These

be interpreted as the path (vo,e1,...,ev,vv =
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are the left, right, bottom and top edge of [0,22] - 2] x [0,12],
respectively. These four edges make up J2 and r U r satisfies

the analogues of (2.23) - (2.25), i.e., all its edges and vertices

except for vo,e],é] and GO Tie in int(JZ), while e1(§]) has exactly

one point in common with 81(82)‘ We can therefore define J;(r U F)
Jé(r Ur)) as the component of int(Jz)\ r Ur which contains
C2(A2) in its boundary, exactly as in Def. 2.11. We also introduce

the events
(6.19) D(r): = { 3 path s = (ws,fy5...,f ,w ) such that
0’1 p’7p

WiseoosW g are occupied, wy = v, for some v, er, fp

intersects C2 in some point g, and

(f]\{wo}: w-ls f29---i fp_']y wp_1a [wp_}/aC))
c {J;(r ur) n [L%J, 280 - 2 - L@]_]] x (0,2,) 1}

and D(r), defined as D(r), except that one now requires w, = v, for

0
some v, er, or equivalently that Wy is a vertex on r. We shall
prove in this step that

(6.20) PID(M)Y > 1 - /175,

Note that (6.19) estimates the probability of the existence of an
"occupied connection from r to the upper edge C2 of
[0,22, - 2] x [0,2,] above r U r'" and in the rectangle

21 2]
[I_@_], 221 -2 - ]_?_J] x [O,SLZ] (see Fig. 6.1).

Figure 6.1

1) Recall that | a | denotes the largest integer < a
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Before starting on the proof of (6.20) proper we first observe
that for any two increasing events E1, E2 one obtains from the FKG
inequality

_ c c c c
P{E1 U E2} = 1 - P{E1 n E2} <1- P{E1} P{EZ}

or

(6.21) (1 - P{E]})(1 - P{EZ}) <1- P{E] U Ez}

We apply this with E, = D(r), E, = D(r) . Since D(r) 1is obtained
by "reflecting D(r) in L" and L 1is an axis of symmetry we have
P{D(r)} = P{D(r)} and (6.21) becomes

PO(r)} > 1- (1 -Pio(r) un(Mh'/?
For (6.20) it therefore suffices to prove

(6.22) P{D(r) UD(r)} =P{ 3 path s = (wO,f],...,fp, wp) such

that wp,...,w ; are occupied, wy = v, or v; for
some 1, fp intersects C2 in some point r and

(f]\{wo}s W-]s fZ’EL..’fD'], wp_1s [‘Zp_]’g))
ctdrUur) 0 lLg .2 -2~ L4 11% (0,81 >, .

To prove (6.22) assume for the moment that there exists an occupied
vertical crossing t = (uo,g],...,gT, uT) of

[L-é%j, 28y - 2 - L-;}_J] x [0,22] . Then t contains a contiguous
curve from the bottom to the top of this rectangle, while r U Tr
contains a continuous curve from the left to the right edge of this
rectangle. Both these curves are contained in the rectangle and must
therefore intersect. Thus r Ur and t intersect, and since both
are paths on the planar graph Qpl they intersect in a vertex. Let
Uy, be the last point of t on r Ur and let Uy, equal vy or
Vi, vy er. Since t 1is a vertical crossing of

2 2
[Lgl> 28 -2- L 11%x00.8,] and &,>4 g_ is the only

edge of t which intersects C2. Let ¢z be the first intersection

of g_ with C,, so that the segment from u._7 to z (excluding 1)
is disjoint from C,. Since C, fis part of Fr(J;(r ur)), and

J;(r Ur) as well as U1 1ie below C2’ it follows that near ¢ the
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segment of gT from u_L__1 to ¢ 1lies in J;(r U F). Moreover, the
connected set 9a+1\\{ua} U g 4p U---U gT_]+U (the segment of
9. from u._q to r) does not intersect Fr(Jz(r U r)). Consequently

ga+]‘\ {ud} s--+» 97 and the vertices u ,;,..., u_; on these

edges also lie in J;(r Ur). These observations show that the path
(ua, ga+1,...,gT,uT) satisfies the requirements for s 1in (6.22) (if

we take wj = uu+j, fj = gu+j, p=1-a). We have therefore

proved that the event in (6.22) occurs whenever there exists an
% L
occupied vertical crossing of [L‘T;-J’ 221 -2 - L'?}J ] x [0,22]

and consequently

P{D(r) U D(r)} > P{ 3 an occupied vertical crossing of
£ ')
[Lg ). 20 -2- Lg 11 % [0,8,0

> o((235%5)5 2,p,Qp,L) > 8

L
For the second inequality we used periodicity, 23 < 221 -2 - ZL-TQ'J

(see 6.15)) and the monotonicity property of Comment 3.3(v). This
proves (6.22) and (6.20).

Step (b). We apply Prop. 2.3 with J equal to the perimeter
of [0,2] - 1] x [0,22] and 81 {0} x [0,22] R B2 = {21- 1} x [0,22],

A [O,!L1 - 1] x {0} and C = [0’21 - 1] x {22} » and with

S RZ‘\{(Z] -1, 0), (& - 1,%,)} . Note that B, here differs from
B, in step (a); in any case B, NB, = # so that (2.26) holds.
Moreover the lines x(1) =0 and x(1) = & - 1 containing B]

and 82 are axes of symmetry. Prop. 2.3 now tells us that if there
exists an occupied horizontal crossing of [0,2] - 1] % [0,22] in S,
then there exists a lowest such crossing, i.e., an occupied crossing
with minimal J (r). As in Prop. 2.3 we denote the lowest such
crossing by R if it exists. Note that a crossing in S is precisely
one which intersects L 1in the open segment {21 -1} % (0,22).
Therefore, by Prop. 2.3 and (6.18), the probability that R exists is
at least a((%1,22); 1’p’QpL) > 63 . For any fixed horizontal
crossing r = (VO’el""’ev’Vv) of [0,2] - 1] % [0,22] denote by
Y(r) the second coordinate of the last intersection of r with the

L
. : , M . .
vertical line L1.x(1) = gl . Formally, if e; intersects L



134

in y = (y(1), y(2)) and the segment of e from y to vy as

well as ej+1,...,ev do not intersect L] anymore, then Y(r) = y(2).
Note that Y(r) is well-defined since r - which goes from

{x(1) <0} to {x(1) > 8 - 1} - must intersect L. Finally, we choose
m as the conditional (1-e) - quantile of Y(R), given that R exists,
where

= L Ao (1
€ 63 {V 63 (1 53)}
More formally, we choose m such that
(6.23) P{R exists and Y(R) <m} > (1-e) P{R exists}

= (1-e) x (left hand side of (6.18))
> (1-e) a((%y5%,); 1,P,Qp2)

and

(6.24) P{R exists and Y(R) <m} < (1-¢)P {R exists}
= (1-e) x (left hand side of (6.18)).
Finally, we take the segments A2 = [0, 22] - 2] x {0} and

02 = [0, 221 - 2] % {22} as in step (a) and define the horizontal
semi-infinite strip H by

L
Ho= [Lgd = x(0.8,) .
In this step we shall prove

(6.25) P{ 3 an occupied horizontal crossing r' of [0,%1- 1]

X [0,22] with Y(r') <m and r'NLc {x] -1} x (0,22)

and 3 path s' = (wo,f],...,fp, wp) such that

. . ,
Wgsee-aWy_p are occupied, w, is a vertex of r', fp

3

intersects C2 in some point 1z, while @vo,f1,...,fp_]

W1 [wp,c)) CH}

> (1 - /T58,) (1-/15,)

and
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(6.26) P{ 3 an occupied horizontal crossing " of
[0,11 - 1] % [0,22] with Y(r") > m and

MnNLc {21 -1} % (0,%2) and 3 a path

s" = (uo,g1,...,gT, uT) such that Ugs - -sU are

T-1
occupied, Ug is a vertex of r", 9. intersects A
in some point 7 while (uo,g1,...,gT_],u
[u2) < H)

> (1 - /TTSE) (1 - JTTSZ ).

7-1°

To prove (6.25) we observe that the event in the left hand
side contains the union

(6.27) ry {R=r"'" and 3 a path s' = (wo,f],...,fp,wp)

such that Ws oo oW are occupied, wq is a vertex

p-1
on r', fp intersects C2 in some point ¢ and
(wo,f],...,fp_1,wp_],[wp,g)) c H} ,

where the union in (6.27) is over all horizontal crossings r' of
[O,SL1 - 1] x [0,22] with Y(r') < m and which intersect L in
{2] -1} % (0,22). The events in (6.27) are clearly disjoint. In
addition, if R =1r' and D(r') occurs (see (6.19)) , then the event
n (6.27) corresponding to r' occurs. Indeed, D(r') implies the
existence of a path s = (wo,f1,... fp,wp) with Wise e
occupied, Wy @ vertex of r', f 1ntersect1ng2 C2 in a po1nt
z and (f1\\{wo}, w1,...,fp_],wp_]{w ,2)) [L 1, =) x (0, 2) = H.

In addition Wo is occupied since it belongs to r' = R, and W lies
on f] Nr'cH (since r' Tlies strictly between the horizontal

lines x(2) = 0 and x(2) = Lo to the right of L1) . Therefore

s satisfies ail requirements for s'. It follows from these obser-
vations that the left hand side of (6.25) is no less than

p -1

(6.28) Yy P{R=r'} P{D(r')|R=1r'"}
Y(r') <m

r'NLc {2:-1 - 1} X (Osﬁ'z)

The "strong Markov property" to which we referred earlier is that

{R=1vr'} and D(r') are independent. This is true, because by
Prop. 2.3 {R = r'} depends only on the occupancies of vertices in
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J(r)U{v:v is a vertex of sz with its reflection v in LO: x(1)=0 or
L:x(1) = &, - 1 belonging to J7{r') and such that e N J < J ™ (r')
for some edge e of G ) between v and v}. Here J is still
the perimeter of [0,4; - 1] x [0,8,] and J s the closure of
int(J), i.e., [O,l] - 1] x [0,22]. One easily sees that all these
vertices lie in _3é(r' Ur') plus possibly a collection of points
in the half plane x(1) < 0 (note that the endpoint of r' Tlies

on r' in all cases; the notation here is as in step (a)). On the
other hand the definition (6.19) shows that D(r') depends only on
vertices in J;(r' Ur'). Thus {R=r'} and D(r') depend on
disjoint sets of vertices so that they are indeed independent. It
now follows from (6.20), (6.23) and (6.13) that (6.28) is at least

) PR = '} PD(r')}
Y(r') <m
r' NL c {2,.] - ]} X (0322)

> (1 - /1—64) P{R exists and Y(R) < m}
Z (1 - Vl‘54) (1‘5) O((l] 922);] sp’qu)

| v

(1-e)85 (1 - /T=§,) = (1 - /1-85) (1 - /T-5,) .

This proves (6.25).

The proof of (6.26) is essentially obtained from (6.25) by
interchanging the role of "top and bottom" or rather the role
of the positive and negative second coordinate axis. The Towest
occupied horizontal crossing now has to be replaced by the highest
occupied horizontal crossing, i.e., the roles of A and C have to
be interchanged. We are not using symmetry with respect to the first
coordinate axis, but merely saying that the same proof works when we
make the above change, except for one step. The analogue of (6.23)
which we need is the following: Let R" be the highest occupied
horizontal crossing of [0,21 - 1] x [0,22] which intersects L in
{21 -1} x (0,22) . In other words, R+ is the occupied horizontal
crossing r of the above type with minimal J+(r). R+ exists by
Prop. 2.3 as soon as there exists an occupied horizontal crossing
of [0, - 11 % [0,2,] in s = R\ (2 - 1,00, (8 - 1,8,)} (dust
interchange A and C). We want
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(6.29) P {R" exists and Y(R+) >m} > (1—5)63
Once one has (6.29) to replace (6.23), the proof of (6.26) becomes
a copy of that of (6.25).

We now deduce (6.29) from (6.24). First observe that RV exists
iff R exists iff there exists any occupied horizontal crossing of
[0,21 - 1] x [0,12] in S. Second, if such crossings exist, then

(6.30) Y(R) > Y(r) > Y(R)

for any occupied horizontal crossing r of [0,9,1 - 17 % [0,22] in
S. We only have to prove the right hand inequality in (6.30); the
left hand inequality will then follow by interchanging the role of
A and C. To obtain this right hand inequality note that the piece of

2
R from its last intersection gy = (L-?%-j , Y(R)) with L] to its
unique intersection, Lo say, withﬂ;he tine L:x(1) = R] - 1 forms
= 1 .
a crosscut of the rectangle F := (L-??-J,Qq -1)x(0,2,) (see Fig. 6.2).

"1
DR

(21—1,0)

1 L
Figure 6.2

Let us write R] for the piece of R between Z and Lo Thus
R} divides F into two Jordan domains. The lower one, which we
denote by F  is bounded by R], the segment of L from Zo to

(SL1 - 1,0), the horizontal segment at the bottom from (21 - 1,0)

to (L-é}_] , 0) and the segment of L1 from ([_ig-j ,0) to Zy-
Any point in F~  which is close enough to R1 can be connected

by a continuous curve in F \R to the segment of L below

Ly i.e., the segment from z, to (21 - 1,0). This is obvious if

R 1is a polvgonal path. In general one can obtain this from the fact

that F can be mapped homeomorphically onto the closed unit disc



138

(see Newman (1951), Theorem VI. 17.1 or use conformal mapping as

in Hille (1962), Theorem 17.5.3). Since the segment of L from Z,

to (11 -1, 0) belongs to Fr(J (R)) and not to Fr(J+(R)) it follows
that all points of F  close to R, belong to J (R). Consequently
for any occupied horizontal crossing r of [0,21 - 1] x [0,22] in S,
the piece between the last intersection of r with L1 and the first
intersection with L cannot enter F , because such a crossing r
satisfies rnNJcJ(R) (see (2.27)). In particular, the last

intersection of r with L., ([_é;-J, Y(r)), cannot lie strictly
below zy; on L] . This just says Y(r) > Y(R), and therefore
proves (6.30).

Now we apply (6.21) with E1(E2) the event that there exists an
occupied horizontal crossing r of [O,IL1 - 1] x [0,12] in S with
Y(r) <m (Y(r) > m). E, VE, is the event that there is some
occupied horizontal crossing of [0,21 - 1] x [0,22] in S and this
has probability at least 63 by (6.18). Also, by (6.30) P{E]} is
given by the left hand side of (6.24), and hence is at most
(1-¢) P{E] U E2} . Thus, by (6.30) and (6.21)

P{R" exists and Y(R") >m} > P{ 3 an occupied horizontal crossing
r of [0,&1—1] x [0,22] in S with Y(r) >m}

1-P{E; U E,) 1-PLE; U Ey)
= Pl 21 - T z 1= T(T=)PE, UE

1-8
3 = 1-/132 = (1-

9}

This is precisely (6.29), and as stated above, implies (6.26).

Step (c). In this step, we complete the proof of the lemma from
(6.25) and (6.26). Assume that the events in braces in the left hand
sides of (6.25) and (6.26) both occur. Then r' U s' contains in

2
H a continuous curve from (L-?%'J » Y(r')) = last intersection of
2
\ . 1
r' with L, to the upper edge of H, [L.Tg'J , ®) X {22}. Also
r" U s" contains in H a continuous curve from (L_T;»J, Y(r")) to the

2
lower edge of H, [[_3%;} »») x {0} . Moreover, Y(r") >m>Y(r'),
so that the second curve begins above the first curve on L] and ends
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below the first curve. Thus these curves intersect, necessarily in a
vertex and in H. Since all vertices of s' U s" 1in H are occupied
it follows that r' r", s' N H and s" NH all belong to one occupied
component and (r' Us' Ur" Us") NH contains a continuous curve,

Figure 6.3 r' and r" are solidly drawn, s' and s" are
dashed. The curve ¢ 1is indicated by + signs.

¥ say, in H which connects the upper and lower edge of H. If
y contains any point on or to the right of the vertical line

2
Lz:x(l) = | 7%—j + M for a given integer M (to be specified later)

then r' Us' Ur" Us" contains an occupied horizontal crossing
of

L
(6.31) [0, [ g 1 + M=-a1x[0,8,]

If, on the other hand, y Tlies strictly to the left of L2, then we
must bring in a further path. Assume in this case that there also
exists an occupied horizontal crossing r™ of

% 4
(6.32) [l_—g-__l - -‘, L_E—-J + M] X [032‘2]

If ¢ lies entirely to the Teft of L2, then ¢ Tlies in the
rectangle

SZ,-I ,Q,]
[L“g_..l > L—g—._l + M] X [032'2]

and connects the top and bottom edges of this rectangle. Thus ¢ inter-
sects r™ to the right of L] and r',r",r"™ , s'NH and s" NH all
belong to one occupied component in this situation. Since r' begins

on or to the left of x(1) = 0 and r"™ ends on or to the right of
2

x(1) = L-@}_J + M, we see that now r' U r" U r™ Us' Us" contains
an occupied horizontal crossing of the rectangle (6.31). Consequently
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2
O(([_j%-J +* M- A, )5 1,p,G,,) > P{the events in (6.25)
and (6.26) both occur and there exists an occupied

horizontal crossing r™ of the rectangle (6.32)} .

By the FKG 1inequality, (6.25), (6.26) and periodicity we finally
obtain from this

L
(6.33)  o((Lg ]+ M- a1y 1p.Gy)

> (- /T5)% (1 - /52 o((M + 1,85)5 1.0.G,,)

We apply this first with M = Mg 2 = % - 1. Then by (6.13)

L
(6.34) c(([_q%-J t -1, 22);1,p,QpZ)

> 8501 - VT8 (1 - /5P

2
We now use (6.33) with M =M, : =M, + L-1%_J - A - 2, and use the

estimate (6.34) for the last factor in the right hand side of (6.33).
We can repeat this procedure and successively obtain lower bounds for
o((Mj+1 +1, 22);],p,qp2) in terms of c((Mj +1, 22);1,p,Qp2), where

%
Mj=2,1-1+j(|_—§]-_J—A-1).

By induction on j one sees that these lower bounds tend to one when
63 + 1 and §q 1. Since M]Gkvi ksL1 this implies (6.16) and (6.17)
for a suitable f1(cf Comment 3.3 (v)). ]

Lemma 6.2. Assume (6.13) holds as well as

(6.35) o((2224)5 2,P:Gpp) > 85 > 0

for some integers R15895%, > 1 withT)

(6.36) by < Tog g Y4 > 300

1)
)

: 98
The requirement 22 < 790 24 can be replaced by

, < (1—6)24 forany &>0
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Then for each k there exists an f2(63,65,k) >0 such that

(6.37)  ol(:k8)5 2:pG,) 2 f,(85:85.k) > 0
and
(6.38) 1im f2(63,65,k) = 1
§, > 1
62 »> 1
Remark.

The reader should note that the crossing probabilities in
(6.13) and (6.35) are for rectangles of the same horizontal size ¢

while in (6.13) and (6.14) they are for rectangles of the same

'l!

vertical size. Also, this lemma estimates the probability of "long"
vertical crossings, while Lemma 6.1 deals with "long" horizontal
crossings. This lemma is much simpler than the Tast one and does not
rely on symmetry. The simplification comes from the assumption that
14 is greater than 22, by a fixed fraction. In contrast tc this,

(6.15) allowed 2, < &3 .

Proof: To prove (6.37), we observe that if there exist occupied
vertical crossings of r' and r" of [0,&1] x [0, M+ 1] and

[0,2]] x [M - Ly - 1, 2M - 22] , for some integer M, and an

occupied horizontal crossing t of [0,21] x [M - 22,M], then t must
intersect r' as well as r' 1in the open rectangle (0,21) x (M - QZ,M)
(see Fig. 6.4). It follows that in this situation r' U r" Ut contains
a vertical crossing of [0,%1] x [0,2M - 22]. Thus, again from the

FKG inequality, periodicity and (6.13), we obtain

Figure 6.4.
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(6.39) o((2y, M - 25) 5 2,p.Gp)
> ({2, M+ 1) 2,p,Qp2)
P{ 3 occupied vertical crossing of [0,21] X [M—£2—1,2M-22]}
P{ 3 occupied horizontal crossing of [0,&1] x [M-QZ,M]}

> {o((8y. M+ 1);2,p,QpZ)}2 83

We use this in the same way as (6.33). We first take M =M. := &
Then by (6.35) the right hand side of (6.39) is at Teast
53 6% . This is also a lower bound for

(6.40) a((&y5 My + 1) 2,p, G Q)

when j =1 and Mj: = [_(1.01)J L | (use (6.36)). Once we have a
lTower bound for a given j we substitute it into the right hand side
of (6.39) to obtain a Tlower bound for (6.40) with M, + 1 replaced
by ZMj -4, Since 2M -4y > M3+] + 1 this is also a Tower
bound for (6.40) with M replaced by M. 541 - Again we see by
induction on j that the Tower bound for (6.40) obtained after j
iterations of this procedure tends to one when 63 and 65 - 1.
(6.37) and (6.38) follow from this. 1

Lemma 6.3. Assume (6.13) holds. Let s > 0 be an integer. Then
one has

(6.41) o((z], 302 22 +2); 1 ,p,qu) = P{ 3 an occupied horizontal

crossing of [0,2.7 x [0, 202 5+ 27
1 S 2

-2
> 8= 1 - (1-8) (542

or for some 300 < j <s the following estimate ho1ds:1)

1 a7 denotes the smallest integer > a.



143

(6.42) P{ 3 occupied horizontal crossing of

[0,21] x [0, QEZ 22'1 +2] and 3 occupied vertical

L .
crossing of [0,2]] x [T 15-1 +1, [_lgl— %, 17}

-2
> 8 =1- (1-53)(5+2)

This lemma does not depend on symmetry and the role of the horizontal
and vertical direction may be interchanged.

Proof: Let r = (vo,e1,...,ev, Vv) be an occupied horizontal crossing

of [0,21] X [0,22]. Let %1 be the last intersection of e with
the left edge, {0} x [0,22], of this rectangle, and Z, the first
intersection of e, with the right edge, {ll} x [0,22]. Then the
segment [g],v1] of ey, together with the edges €ys...5e, 7 and
the segment [vv_1,cv] of e, form a continuous curve inside

[0,2]] X [0,12], connecting the left and right edge. Let yg(r) and
yh(r) be the minimum and maximum value, respectively, of the

second coordinates of the points on this curve. Also, let E(j1,j2)
for 0 < j1, jz <s be the event

{ 3 occupied horizontal crossing r of [0,2]] X [0,22]
(j]+1)
s

J

J (i,*1)
r2a,7 <y < T-2"0,T

%5 | and

Any horizontal crossing r of [0,21] x [0,22] has

0 f_yg(r) f_yh(r) < %, » so that if there exists an occupied horizontal
crossing of [0,21] X [0,22], then one of the events E(j],jz),

-1 5_j1, j2 <s must occur. Exactly as in (6.21) we obtain from the
FKG inequality and (6.13)

(6.43) 185 > PLUUE(§;:3,0)Y > T (1-PLE(3153)1)

The union and product in (6.43) run over -1 5_j1, jz.ﬁ s and hence
contain at most (s+2)2 elements. Therefore, for some -1 < j,.j, <s

-2
(6.44) P{E(J]s.]z)} Z_ 56:=1 - (]'63)(S+2)
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Assume now that (6.44) holds for some jy <, - 300. If E(j1,j2)
occurs for these j],j2 then there exists an occupied horizontal
crossing r = (VO’e1""’ev’Vv) of [0,11] X [0,&2] with

LJ'1S'112_| < y(r) < l_(j]ﬂ)s']saz_[ and

r jzs']zz'] < yh(r) < ['(j2+1)s'] zéT . By Def. 3.1 of a crossing,
r is then also an occupied horizontal crossing of

J J
[0,2]] x [L—g—lz_J, r—%;l 227 ]. But also

Yo(r) < L(J1+1)s'1%2_l < FJZS'UZW < y,(r) implies that
some edge e of r dintersects the segment [0,21] x {Lﬂj1+1)s'122 13

and some edge e, intersects the segment [0,2,] x {(’jzs']zz'l}. Choose
o and B such that ]B-al is minimal. For the sake of argument let
o < B . Then the piece (vu,eu+],...,e8,v8) of r 1is an occupied

vertical crossing of [0,2]] x [L_(j1+1)s_]£2_J ,[325'12é]] (see Fig. 6.5)
Thus for j = j2 - j1 - 1 the left hand side of (6.42) is (by virtue

of the periodicity and the monotonicity property of Comment 3.3(v)) at
least

__________________ M3,+1)s 7 e,

Figure 6.5. The boldly drawn pieces of r represent the edges
e, and e8 .
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P{ 3 occupied horizontal crossing of [0, 2]] x [L Z-J ,
Jo*

-

%o 7] and 3 occupied vertical crossing of

j
Loy 1 P2 2 Rl 2 6

Thus, (6.44) for some j1 < j2-300 implies (6.42) for a j > 300. If,
on the other hand, (6.44) holds for some j, > J, - 300 then the
first part of the above argument and periodicity show that (6.41)

holds. []

Lemma 6.4. Assume (6.13) and (6.14) hold for some integers
£1,22,£3 > 1 with

(6.45)

3 < t2],£1 > 302 + 32A, 22 A
for some t. Then for each k there exists an f3( 32845ts k) >0
such that
(6.46) o(kiy225)312:G0,) > F3(83.84,t.K) > 0
and
(6.47) 611? : f3(63,64,t,k) =]

3

64 »> 1

For t = %— this is Lemma 6.1. Here we relax condition (6.15)

considerably.

Proof: For %y 5_32]/2 Lemma 6.1 already implies (6.46) and (6.47),
so that we may assure 23 3'321/2 . We now apply Lemma 6.3 with the
horizontal and vertical direction interchanged. Take s = ['302232;11

< 303¢,27' < 303t . We then have

o(( == 302 S * 2, 22) ,p,qu) = P{ 3 occupied vertical

-2
crossing of [0, 3022 + 2] x [0,8,]} > & 54)(S+2)

7° =(1-

or for some j > 300
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(6.48) P{ 3 occupied vertical crossing of

[0,['l§g— 23'] + 2] x [0,22] and 3 occupied horizontal
A .
crossing of [[ 1951 +1, [_321-23 17 x [0,22]} > 8 .

In the first case (6.14) and (6.15) hold for & replaced by

3

3028

32, 7+2 <« —3 _ +3 < 34, and s, by s&,. Thus
s 73 - 1 - 27 4 7
302%.,4
31
in this case (6.46) and (6.47) follow from (6.16), (6.17) and the fact
that 67 +1 as 64 + 1 (uniformly under the condition s < 303t
implied by (6.45)).
In the second case (6.48) implies the following replacements of

(6.13) and (6.14):

o((Ld 23] -3, 205 1pG) > 8y

(use periodicity again) and

1
o((T 552377 + 2, 8,05 2,p.G0) > 8

Thus 21 is replaced by
j2

A4 - 3 _ . 300, _
L5923 -3 > o0 2;] 4 > 33 % - 4232+ T6A
3

j+
r’]‘s‘z““ﬂ te

A

J*z 3d ¢ . 31 4 -
s k3t 32558 <5(lyagl-3)

(recall 8 2 302 + 32A,j > 300). With these replacements, and

84 instead of 63,64, (6.16) and (6.17) give us (6.46) and

(6.47). O
Now assume (6.5) and (6.6) hold. Assume also that mssn. satisfy

(6.7) for a given m > 1 and take for the remainder of the proof

(6.49) s 400w

We then have (6.13) with i = Nss 85 = 8 and by Lemma 6.3 (6.41)
holds or (6.42) holds for some 300 < j <'s. Also (6.14) holds with
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22 = My, 23 =M, 64 = 62 . In the next lemma we take care of the
case where (6.41) holds, and then we deal with the case where (6.42)
holds in a sequence of reductions in the succeeding lemmas.

Lemma 6.5. Assume (6.6), (6.7) hold and (6.41) for Ly = n
and s = 400r . Then the conclusion of Theorem 6.1 holds.

j»83% 8

1

Proof: By (6.7) and (6.49)

7 n
te s gw <

302
Y2 = 2007 M2

1o 302
(6.50) foi= =4

oo|~

m

2 2

as soon as n, exceeds some no(w). Then by Comment 3.3(v) and (6.6)

o((m.25)5 2,p.Gop) 2 8, s

while by (6.41)

\'4
O

Since by (6.7) m < Ny = v21 it now follows from Lemma 6.4 that
for n1,n2 greater than some no(w) one has

(6.51) G((kn1,2é); 1’Dsqp£) _>_ f3(563623ﬂ-sk) .

Since (6.41) holds for &

it

61, 66 here has to be read as

3
(6.52) S

~(s+2)72
6 1 - (1-8,) S

(6.51) together with another application of Comment 3.3(v) gives
us (6.9).

For (6.10) we use Lemma 6.2. (6.35) with Ry = Mys Ly = mys
8 = 8, holds by virtue of (6.6). Also, if we apply (6.51) with
k = 7, then we find (again using Comment 3.3(v))

a((my.25)3 1,p,ng) > c((ﬂn],zé);1,p,qpl) > 8g s
where

(6.53) 8g = f3(56,62,w,w) .

This takes the place of (6.13). Since lé 5_%%% m, (see (6.50))

(6.37) now gives
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a((my kmy) 3 2,p,QpQ) > fy(8g58,,:k)

and hence (6.10). Finally (6.11) follows from (6.38), (6.47) and the
fact that §g * 5 8g 4 1 as 8+ 1, 8y 4 1. ]
In view of the last lemma and the comments immediately before
it we may assume from now on that (6.42) holds for some 300 <Jj<s
and £1 =N, 22, =n, and 63 = 6] . If the first coordinate
axis were also an axis of symmetry. Theorem 6.1 would now follow
from (6.42) and Lemma 6.4. Without this extra symmetry assumption
we must first show that (6.42) can be strengthened to (6.85) below.
For the remainder we take 21 = Nys 22 = Nyy S = 400w, 63 = 61
and 300 < j <s such that (6.42) holds for these choices. We shall
also use the following abreviations and notations:

g = [ ()7 2,1+ 2= [(3#2)s™ n, 7 + 2

if r= (vo,e1,...,ev,vv) is a horizontal crossing of [0,21] X [0,25],
then %1 denotes the last intersection of e with the segment
{0} x [0,25]. For any vertical line L(a): x(1) = a with 0<a< %15

z(a) = g(a,r) is the first intersection of r with L(a) and
Y(a) = Y(a,r) is the second coordinate of z(a). Thus
z(a) = (a,¥(a)), and if z(a) € e s then the segment [g1,v]] of ey,

together with the edges @ys-n o€y and the segment [vp_],;(a)] of
e, form a continuous curve inside [0,a] x [0,25] connecting the
left and right edge of this rectangle. For a = 2]/8 we denote by
zg(r) and zh(r) the minimum and maximum value, respectively, of the
second coordinates of the points of this curve, i.e., of the piece of
r from T to c(21/8).

Lemma 6.6. Let 56 be as in (6.52). Assume

(6.54) P{ 3 occupied horizontal crossing r of [0,21] x [O,QS]
with zl(r) > (.03)25 or zh(r) < (.97)2,5 and 3
occupied vertical crossing of

8 :
[0,2,] x []'—53"1 +1, LJ—:l 2, J1¥ > 8g:= 1 - /-5

Then the conclusion of Theorem 6.1 holds.

Proof: A horizontal crossing r of [0,21] X [0,%5] with zl(r) > (.03)2
contains a horizontal crossing of [0,21/8] X [(.03)25,25 ]. Similarly
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a horizontal crossing of [0,2]] X [0,25] with zh(r) < (.97)25 contains
a horizontal crossing of [0,21/8] X [0,(.97)15]. Therefore (6.54)
implies

P{ 3 occupied horizontal crossing of
o o
[o, 7;—] x [(.03)25,25] or of [0, 7§-] x [O,(.97)25]} > 8
By the FKG inequality, or rather (6.21), this implies

2
(6.55) P{ 3 occupied horizontal crossing of [0, ?% ]
x [(.03)85:051) > 1 - /T-84
or
o
(6.56) P{ 3 occupied horizontal crossing of [0, 5 ]
x [0,(.97)2:1} > 1 - /-8

For the sake of argument let (6.56) hold. From (6.54), Comment
3.3(v) and periodicity it also follows that

(6.57) P{ 3 occupied vertical crossing of [0,2]]

x [0, [_g~22 J -3 > g

Since Jj > 300, %, = n, we have for n, greater than some n,(r)

(e +1 < (N2 g va < (o8)(LLs, ] - 2.

We are therefore in the same situation as in the beginning of Lemma
6.5 and (6.9) - (6.11) for suitable f(.) follow from Lemmas 6.4,
6.2 and Comment 3.3(v). ]

By virtue of the last lemma we only have to consider the case

where (6.54) fails. Denote by E1 the event in the left hand
side of (6.54) and set

E, = E2(21,25) = { 3 occupied horizontal crossing

r of [0,21] X [0,25] with zz(r) f_(.03)25 and
zh(r) > (.97)25 and 3 occupied vertical crossing

) .
of [0,4,1 x [[2T+1,L &g, |1}
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Then E, U E2 is the event in the left hand side of (6.42). Thus if
(6.42) holds with 8y = 51, but (6.54) fails, then by virtue of
(6.21)

(1_66)

a7z = S

(6.58) PEES > 1 -
(1-66)

It therefore remains to derive Theorem 6.1 if (6.58) prevails
(with 2y = Ny 22 =Ny 63 = 51). First we observe that we may
assume an even stronger condition than (6.58). Specifically set

E3(k) 3_E3(£],25,k) = { 3 occupied horizontal crossing

r of [0,21] X [0,25] with zz(r) 5_(.03)25 ,
k& (k+1)25

5
T00 * “Too 1 -

2
1
zh(r) 3_(.97)25 and Y(L‘Q’J’ r) e[
4
Since Y(L'E’J , r) e [k£5/100, (k+1)£5/100] for some
0 <k <100 it follows from (6.58) that

P{ U E,(k)} = P{E,} > §
0 <k <100 3 27 =9
As in (6.43), (6.44) this, together with the FKG inequality shows that
for some 0 <k, < 100

__ 1/100
(6.59) PLES(k)} > 87g:= 1 - (1-8)

The next lemma will show that we can assume that the intersections of
an occupied horizontal crossing of [0,21] X [0,%5] with any line

%
L(a), 5 < a < &, Tie with high probability in
ko =11 ky+12

(6.60) {a} x [ 1100 gy —

5° 700 %) -

In order to state the lemmas to follow we need to introduce a further
integer t = t(sz). By Lemma A.3 there exists a vertex Vo of T
an integer o > 1 and a path v, on ng from v, to v, + (a,0)
such that for all n > 1 the path on qu obtained by successively
traversing the paths ro ¥ (ka,0), k = 0,1,...,n (these are translates
of vO) is self-avoiding. We take

(6.61) t = 2[ diameter of ro) T+ 1.
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For later use we observe that this definition of t guarantees that
if (b], bz) is any point of o then

(6.62) rg * (ko.,0) c:[b] - t,®) xR, k>0

-

Lemma 6.7. Assume that (6.59) holds and that there exists an integer

2
ae[%~,%] for which

(6.63) P{ 3 occupied horizontal crossing r' of

[0,21] X [0,25] with zz(r') < (.03)25

zh(r') > (.97)!&5 and which intersects L(a) in
k1-11 k]+12
{al x [0, —555— 251 U {a} x [ —qgg~ %5:251}
v (1. 1/T2t
> 611 :=1- (1 510)

Then the conclusion of Theorem 6.1 holds.

Proof: Assume that

(6.64) P{ 3 occupied horizontal crossing r' of

[0,21] X [0,25] with zl(r') 5_(.03)25 R
zh(r') 3_(.97)%5 and which intersects L(a) 1in

k]—1] 1/2
{a} x [0, ——1-0-6'—25]} > 1 - (1-5”)

If (6.64) does not hold, then it will become valid after replacing
the interval {a} x [0, (k1-11)25/100] by {a} x [(k]+12)25/100,25], by
virtue of (6.63) and (6.21). In this case one only has to interchange
the role of top and bottom in the following argument.

The idea of the proof is now roughly as follows. If E3(k) occurs
then there is an occupied path r with zz(r) 5_(.03)25,
zh(r) Z_(.97)25 and which contains a connection, p, between the
Tower edge of the rectangle .

L
(6.65) T:=[0, L—zlJ] x [(.03)8;,2,]

and the segment

2 k1 k] + 1
(6.66) I: =1L 1Y * 750 % 700 %
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(.03)25'

Figure 6.6. The interval I (in the right edge of the rectangle) and the
connection p are drawn boldly. The reflection p' of p is
dashed (--~) — - — -~ denotes r". The hatched region is A

in its right edge (see Fig. 6.6). (Note that (6.64) implies k]_z 11 so
that I Ties entirely in the right edge of the rectangle at (6.65).
Also, zz(r) 5_(.03)25 guarantees that r intersects the lower edge of
this rectangle. Now if the translate by (| 21/2_j - a, L(.])QSJ) of

the event in (6.64) occurs, then there exists an occupied horizontal
crossing r" of

L 2
(6.67). [L—zl_] - a, L%—_] -a+ I x LGN ] L% |+ 2]

which gets above the upper edge of T (in fact its highest point will
be on or above the line x(2) = (.97)25 + L.(-l)ls.l . Also r"

2
intersects L(a + \_-g—J -a) = L([ﬁgg-j) in {a} x [L_(.1)£51 s

ke - 11
'Jﬁfﬁf—' L + L_(.])zs 1]. Thus the intersection of r" with

L(L;%LJ) lies in the right edge of T below I. Denoti by A the
“triangle" bounded by p , its refiection p' in L(L—gij), and the
horizontal line Rx (.03)25. Then from the above observations we see
that r" contains a point in A as well as points outside A (to
wit points above the upper edge of T). Since r" 1is a horizontal
crossing of the rectangle (6.67) it lies above the line x(2) = L(.])zs ]
- A> (.OB)SL5 and does not intersect the horizontal bottom edge of

A. In order to enter A r" must therefore intersect o U p'. A
symmetry argument will show that we may assume r" intersects p and
hence r. But then r U r" will contain an occupied vertical crossing
of [-21,11 + A] x [(.03) 2> (.97)5&5 + L(.1)£5_j]. By periodicity this
gives us a lower bound for
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(6.68) P{ 3 occupied vertical crossing of

[0, 3,1 x [0, (1.08)2; | - 21}

This will take the place of (6.35) and then the lemma will follow
directly from Lemmas 6.4, 6.2.

Now for the details. The symmetry argument is really the main
part which needs to be filled in. To do this we shall use Prop. 2.3 and
this requires a slight change in the definition of p and A . At
various places we tacitly assume Nos and hence 25, large. Let B] be
a continuous path without double points, made up from edges of ng
inside the strip

2
[0, o 17 % ((.03)25, (.08)8)

and connecting the left and right edge of this strip. It is easy to
see from the periodicity and connectedness of sz that such a B
exists as soon as (.01)& 3_35’] n, s larger than some constant

which depends on G ) only (see Lemma A.3 for a more detailed argument).
Let the endpoints of B1 be (0,c) and ([_—%—J,d). Next define the

straight line segments

1

21 k1 + 1
By = (Lo 13 x [L.D2e)s —355— 2] >

L
A= (L5 ]} % [d, [(.1)2]]
Finally, let C be the curve made up of the three segments
{0} x [c,zs], [0,L_21/2 17 x {15} and L_Z]/ZJ x [(k]+1)25/100, 15].

Then B1, A, BZ’ C together make up a Jordan curve J which almost
equals the perimeter of T, except that the lower edge of T has been
replaced by 81(see Fig. 6.7). If r 1s an occupied horizontal

Bl

- -

(.04)22

—— -

C
(.03)23

Figure 6.7. C is drawn boldly. The hatched region is A.
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crossing of [0,2]] X [0,25] with zi(r) < (.03)25 , and

Y(L_Q]/Z_J, r) e [k1£5/100, (k1+1)£5/100], then since r lies to the
left of L(L.21/2.J) until it reaches c([_21/2 |,r) and since the
piece of r between L(0) and L(£1/8) gets below Rx (.03)25, r
contains an occupied path p = (w0 , f1,...,fT,wT) with the following

properties:

(6.69) w],fz,...,fr_],wl__1 c int(J),

(6.70) Wy € B.| and f1\\{w0} < int(J),

(6.71) fT has exactly one point in common with J. This
1ies in 82 and is either w. oor the midpoint of
f
T

For (6.71) we used Comment 2.4(i1) again. The intersection of fT

with B, 1is just the point ([ 2/2 ], r) = (L 2,/2 ], Y(L%/2) ], r))
in the notation introduced before Lemma 6.6. Also k1 > 11, (6.70) holds
because B1 is made up from edges of the planar graph sz; the path

r on qu can intersect B1 only in a vertex. g is just the first
such intersection we reach when going back along r from

z(| %4/2 |,r) to its initial point. The above shows that

(6.72) P{ 3 occupied path o = (wo,f],...,fT,wT) with the

properties (6.69) - (6.71)} > P{E3(k])} > 8y
The properties (6.69) - (6.71) are just the analogues of (2.23) - (2.25)
in the present context and we can therefore apply Prop. 2.3 (again
with S = RZ). If J (p) denotes the component of int(J)\ p which
contains A in its boundary, then we denote by R the path p for
which J (p) is minimal among all occupied paths p satisfying
(6.69) - (6.71). By Prop. 2.3 and (6.72) the probability that R exists
is at least 810° Now for any path o0 satisfying (6.69) - (6.71)
denote by pé its reflection in L(L_21/2_j). Also write Bi for the
reflection of By in L([ 2/2]) and &= Alpg) for the triangular
domain bounded by Py U pé and the piece of 81 U Bi between w, and
wé , the reflection of W in L(L_Q]/Z_j). Now let o9 be a given
path which satisfies (6.69) - (6.71). Assume the translate of the
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event in (6.64) by [L21/2_1 - a, L(.])JLB_]] occurs. Then there
exists an occupied horizontal crossing r" of the rectangle in (6.67).
Moreover, the piece of r" between L(| %4/2 ] - a) and

L(LSL]/Z_J -a+ 2]/8) contains a point on or above the line

R x {(.97)5L5 + |__(.1)25_|} (by virtue of the condition on zh(r') in
(6.64)). Also r" intersects L(LJL]/Z__[) in a point with second
coordinate at most

k]-11

K
1
o0~ % t LN < —p5 2% -

Lastly, r" Tlies above the horizontal line R x {L_(L])%S_j - A} and
a fortiori does not intersect B] u Bi . In particular r" contains
a point outside A(since A lies below Rx {25}) and a point on
L(L-£1/2_j) inside A. Since r" does not intersect B, U B! it

1 1
must intersect °o U p'o, necessarily in a vertex of ng . Therefore

r" contains a path o = (uo,g],...,ge,ue) with the properties
(6.73) - (6.76) below.

(6.73) g, fintersects the horizontal line Rx {L_(1.07)25 ] =13,

(6.74) (u0,91,...,ge\\ {ue}) =0\ {ue} is contained in the
vertical strip [L_21/2_J -a- A [ 8/2 ] +a+ ] xR
but outside  A(py). (Use the inequality [ 2,/2 ]
-at ey <L y/2] +a).

I
(6.75) Ug € 0g u P0
(6.76) Ugs--eslg_q are occupied

It follows from these observations and (6.64) that

P{3 apath o= (uo,g1,...,ge,u6) satisfying (6.73)
- (6.76)} > 1 - (1-8,,)"/2

Since L(L_£1/2_J) is an axis of symmetry we obtain exactly as in the
derivation of (6.20) from (6.22) that

(6.77) P{3 a path o = (uo,g],...,ge,ue) satisfying (6.73),

(6.74), (6.76) and ug € pg} > 1-(1-6,7)"/%.
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Now, by Prop. 2.3 the event {R = po} depends only on vertices in
ﬁ—(po) U the reflection of J° (po) in L(L 2]/2J) j.e., on
vertices in Z(po) . The event in (6.79) depends only on a set of
vertices which is disjoint from the above one, and is therefore
independent of {R = pO} . As in the proof of (6.25) we now obtain

(6.78) P{R exists and 3 path o = (uo,g1,...,ge,ue) which
satisfies (6.73) and (6.76), is contained in the vertical

strip [L2/2] -a-A, [ &/2] +a+ 4] and has uy € R}

(- (-804 PR exdsts)
74y

| v

> {1 -(1-8

11 10

But if R exists, then it is occupied and contains a point on B
Thus, if the event in the left hand side of (6.78) occurs, then
o UR contains an occupied vertical crossing of

2 2
[L—ZL_J -a-A-1, L%_\ +a+ A+ 1] x [(,04)25’ L(]_07)15J_1]

1°

Since a 5_21 we obtain from periodicity and the monotonicity property
in Comment 3.3(v).

o((4zy, L1.0325 | = 3)3 2,p,G,)

1/4
> 610 {1 - (1—6]1) }

This is just (6.35) for the values
g, = [ (1.03)2: | - 3, 8 = 6,001 - (1-6:) "%
4 : 5 > 75 10 11 ’
and 21 replaced by 42]. But we also have
O’(('Q:],Q/S); ]’p’qpl) > 59

(by virtue of (6.58)) as replacement for (6.13), and
98

We can therefore obtain (6.9) - (6.11) again from Lemmas 6.4 and 6.2 in
the same way as in Lemma 6.5. 1
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One more reduction is necessary. Lemma 6.7 discusses intersections
of horizontal crossings with L(a) for a single integer a. The next
lemma considers the intersections with a vertical strip around such
a line.

Lemma 6.8. Assume that (6.59) holds and that for the t of (6.61)

there exists an integer a e [ 5 —7%—~] for which

(6.79) P{ 3 occupied horizontal crossing r' of

[0,2]] x [0,25] with zz(r') < (.03)25 ,

zh(r') > (.97)25, and which contains some vertex

v = (v(1), v(2)) with |v(1) - a] <t and

ki, =12 k, + 13

1 1
v(2) e [0, =55 %] UL —3g5— %5025 17 2 8y

Then the conclusion of Theorem 6.1 holds.

Proof: If the event in (6.79) occurs, then v(1) must lie in one
of the intervals [b,b+1], a -t<b<a+t and v(2) in one of

k] - 12 k] + 13
the two intervals [o, 50— 25], [ ——T55—-25,25]. From the by

now familiar argument using the FKG inequality it follows that one
of these eventualities has a probability at least

= 1/4t
819:= 1 - (1-510)

For the sake of argument let b be an integer with

P 2 a-t <bhbca+t<yg,

and such that

(6.80) P{ 3 occupied horizontal crossing r' of

[0,21] X [0,25] with zz(r') < (.03)JL5 ,

zh(r') > (.97)25 and which contains a vertex
v =(v(1), v(2)) with b<v(1) <b +1 and
k] - 12

V(2) € [0, "“‘-ro—(—]'——"QS:]} > 5]2
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If for a=b or a=>b+1

(6.81) P{ 3 occupied horizontal crossing r' of [0,2]] x [0,8:]

with zz(r') < (.03)25, zh(r‘) > (.97)25 and which

k, - 11
. . 1
intersects L(a) in {a} x [0, ~ 00— 25]} > 611
then we are done, by virtue of Lemma 6.7. Thus we may assume that
(6.81) fails for a=b and a =b + 1. The obvious generalization

of (6.21) to three events together with (6.80) then gives

(6.82) P{ 3 occupied horizontal crossing r' of [0,21] X [0,%5]
k1 - 11
which intersects L(b) only in {b} x (——756——-25,25]

k,y - 11
and L(b+1) only in {b+1} x (_1755"”—'15’25]’ but contains

a vertex v = (v(1), v(2)) with b <v(l) <b +1,

1 12 1—612
0<v(@) < —qgg— %t 2 1 -5 = &
(1-817)

When the event in (6.82) occurs, then the piece of r' from the last

edge of r' before v which intersects L(b) U L(b+1) through the

first edge of r' after v which intersects L(b) U L(b+1) contains
ky - 12 k, - 11

a vertical crossing of [b,b+1] x [ ]]00 25, ]100 25]. Thus,

(6.82) and periodicity implies

L
(6.83) P{ 3 occupied vertical crossing of [0,1] x [0, fﬁ%j - 2]}

2 O

As before let u be the number of vertices of QPQ in the
unit square [0,1) x [0,1), and Tet A as in (6.4) . Any vertical
2
: 1 - -————5 i
crossing r" = (wo,f1,....fp,wp) of [0,1] x [0, 00 - 2] intersects
j15
all the segments [0,1] x {L'§5ﬁﬁ 1¥s T <j<u+1. Let

Wig3) = (wi(j)(])’ wi(j)(Z)) be the last vertex on r" on or below

th

the j~ segment of this form. Then
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0<wi<j)(])<1 s 1_§jiu+1a
while for j # k, 1 < j,k <u+1

%5 Lg
i@ =@ 2 o - AT 2oy
provided L is large enough, or equivalently, Ny z.no(q,w) for
suitable g Any such point wi(j) is the translate by a vector
(O,m), m e Z, of some vertex in [0,1) x [0,1). Thus, by Dirichlet's
pigeon hole principle there must be a pair wi(j) and Wi(k) with
equal first coordinates, i.e., with

'}
- = 1 5
wi(j) wi(k) (0,m) for some integer m z_zﬁﬁi

Since 1 <j<u+1and
g g
w-](j) e (0,1) x [L300u.l - A, L300U ..l]s

there are at most A:=(A+1)2 uz(u+1)2 possibilities for the pair
wi(j)’ wi(k)' Thus, by periodicity and the FKG inequality, (6.83)
implies the existence of a vertex w e [0,1) x [0,1) and integer

m > (400u)7'ag  such that

(6.84) P{ 3 occupied path in [0,1] x R from w to

W (0m} > Gppt=1- (1-5”)”A

By periodicity (6.84) remains valid if w is replaced by w + (0,jm).
Moreover, if we combine occupied paths from w + (0,jm) to

w+ (0,(j+1)m) for j =0,...,v-1 we obtain an occupied path with
possible double points from w to w + (0O,uvm). We can remove the
double points by loop-removal (see Sect. 2.1). Since all the paths
which we combined 1lie in the strip [0,1] x R we obtain an occupied
vertical crossing of [-1,2] x [1,um-1]. Thus, by virtue of the FKG
inequality (6.84) implies

P{ 3 occupied vertical crossing of [0,3] x [0,uvm-2]}

Vv
813

>

This, together with (6.5), implies (6.9) - (6.11){this time we need



160

only Lemma 6.1). 1
Lemma 6.8 was the last reduction. With t fixed as in (6.61)

it follows from the preceding lemmas that it suffices to prove Theorem
6.1 under the additional hypotheses that (6.58) holds, but (6.79) fails
for every 511/8 < a 5_721/8 . Again by (6.21) we may therefore
assume that for such a 1in this interval.

(6.85) P{ 3 occupied horizontal crossing r of

[0,8;1 x [0,2;1 with 2z (r) < (.03)85, z,(r) > (.97)4>

and which intersects the strip [a-t, a+t] x R only in

ke - 12 ki + 13 1-8

1 1 9
fa-t, avt] x [=ygp— %50 —yo0 %1} 21 - 75 2 8

10
511 721

Lemma 6.9. If (6.85) holds for every integer a e ["§—" ~§—-], then

the conclusion of Theorem 6.1 holds.

Proof: Assume 0 < k; < 50. The case 50 < k, < 100 again only
involves an interchange of the role of top and bottom. If the event
in (6.85) occurs, then the segment of r between the points where
zz(r) and zh(r) are achieved lies (by definition of z, and zh)
in the vertical strip [0,%]/8] x R. Consequently, by periodicity
and (6.85).

(6.86) P{ 3 occupied vertical crossing r' of
(L e -1, TR e T +17 % [-(.01)2s (L93)8; =11 > 6
16 1 > 1 T6 M ’ 52 *° 5 =10

We shall again use Prop. 2.3 to find the "right most" of the vertical
crossings in (6.86). More precisely, let Vg € [0,1) x [0,1) , @ and

o have the properties discussed before the definition (6.61) of t;
(see also Lemma A.3). For a suitable choice of the integers ) and
m the path obtained by traversing successively o + (v1 + ja,vz),
j=0,1,...,m will be a self-avoiding path S on sz in the
horizontal strip Rx (—(.01)25,0) (provided N, 3_n0(q,w) again)
which intersects both the vertical lines

LA ey 1 -1 and LT3 2,7 + 1)

Denote by B] the segment of the path s from its last intersection
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with L([ 112, /16] - 1) to its first intersection with
L(r'13z]/16 T+ 1). Similarly s' will be a path in the horizontal

strip Rx (.92 )25 -1, (.93)25 -1) obtained by traversing
successively rot (v3 + ju,v4) » j=0,1,...,my and B, will be the
segment of s' from its last intersection with L(L}%-Qq/16 1-1

to its first intersection with L(['1321/16'1 + 1) (see Fig. 6.8).

B.
C A
0
d
/__—B\—/-N
cq 1 1
—(.01)25
Figure 6.8

By property (6.62), if a vertical T1ine L(b) intersects 82 in a
point of rot (v3 + jou,v4) then

(6.87) the paths rg + (vg + ja,v4), jgp <3 <m, are contained
in the halfplane [b-t,») x R.

We denote the endpoints of Bi’ i=1,2, by
11 13
([_73-21_j -1, ci) and (['Tg-z1'1 + 1, di)'

Furthermore A denotes the straightline segment
{['1321/16'] + 1} x [d],dz] and C the straightline segment
{L.11£]/16J -1} % [cl,cz]. (see Fig. 6.8). The composition of

B],A,B2 and C is a Jordan curve which we denote by J. If the event
in (6.86) occurs, then the path r' begins below B1 and ends above

Bz. Since sz is planar r' dntersects B] as well as 82 only
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in vertices of PR In particular r' must contain an occupied
path p = (wO,fT,...,fT,wT) with the following two properties

(6.88) p'\{wo,wT} c int(J)

(6.89) Wh e B

0 19WT€B

2

These are the analogues of (2.23) - (2.25). Again we denote the
component of int(J)\ o which contains A in its boundary by

J (p) whenever p is a path satisfying (6.88) and (6.89). Prop. 2.3
with S = RZ shows that as soon as such an occupied path p exists,
there also exists one with minimal J (p) . As in Prop. 2.3 we denote
the occupied path p for which J (p) is minimal by R whenever

it exists. By Prop. 2.3 and (6.86).

(6.90) P{ R exists } > P{ 3 occupied path p which satisfies

(6.88) and (6.89)} > 610
Now assume that R exists and equals some fixed path
og = (WO’fl""’fT’wT) . Set

b=w (1) ,a=b] =Lu(],

and denote the highest intersection of o0 with L(b) by (b,bz).
Since the endpoint of Pgs W = (wT(1), wT(Z)) Ties on L(b) we have
b, > wT(Z). We write I for the segment {b} x [bz,L_5£5/4 11 of
L(b), and 04 for the segment of Py from its initial point Wy
to the intersection (b,bz) of fo and L(b). Then oy Ul

contains a crosscut of the rectangle

To=(Lqg -1 TR a1+ x (0,15%/4 1),

because fo begins on B] which 1ies below the lower edge of this
rectangle (see Fig. 6.9). This crosscut divides T in a left and a
right component, W lies on BZ’ hence belongs to

(ro + (v3 + jou,v4) for some jO. The piece of B2 which belongs to
Fr(J'(po)) then consists of pieces of o * (v3 + ja,v4) with

jg <3 <m. By (6.87) and the construction of B, B, Fr(3” (o)
contained in the rectangle



-(.01)25

Figure 6.9 B] and 82 are dashed. o is drawn solidly; the
boldly drawn part of fo is oy

[o-t, [ 122, T + 11 x [(.92)25 - 1, (.93)2]

We show first that this implies

(6.91) B, N Fr(J'(pO)) N left component of T

c[b-t, b+t -1]x [(.92)%5 -1, (.93)15]

From the preceding it follows that it suffices to show that the left
hand side of (6.91) is contained in (-», b + t - 1] x R. Now assume
x is a point of rot (v3 + ju,v4) n Fr(J'(po)) for some
jo <Jj<m If rot (v3 + ju,v4) lies entirely strictly to the
right of L(b), then so do ro * (v3 + j'a,v4) for j' > j, because
a >1 . In this case there is a path from x to the right edge of
T which consists of pieces of o + (v3 + j‘a,v4), ' -3, j+l,...,m.
This path neither intersects I < L(b) , nor does it intersect
since Py n B2 = {wT} . Consequently, x can be connected in
T\ Po UI to the right edge of T, and x cannot 1ie in the left
component of T. If on the other hand ro ¥ (v3 + ju,v4) is not
entirely strictly to the right of L(b), then
ro t (v3 + ja,v4) c (-», b+ t-1] x R by the choice of t in
(6.61). Thus (6.91) holds.

Assume now that the translate of the event in (6.85) by

pO’

2
(O,L_7§—J) occurs. Then there exists an occupied horizontal crossing
r of

25 25 25 525
[O,Q,]] X [L'[l_"_la LTJ + 2'51 = [O:Q']] x [LT_I: LT_J]

which intersects the strip [a - t, a + t] x R only in
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k1 + 12 k, + 38

1
[a-t,a+t]x][ 00 %

5° ~ 700 54 -
Moreover, r passes through a point z = (z(1), z(2)) with

2
0<2(1) <4, 2(2) > (1.22)2 - 1

2
before it reaches L( 3%-) . Since this horizontal crossing r begins
118 132

to the left of L(L_TE—J-J - 1) and ends to the right of L([_j?rl-w +1)
it must intersect the crosscut of T contained in o UI. We claim
that r intersects Pg> but not I, and does not hit Fr(J'(po))
before it hits po). To prove this claim we first note that r cannot
intersect

IU {B2 n Fr(J'(po)) N left component of T} ,

since this set is contained in

[a-t,a+t]x [(.92)IL5 -1, L_525 /417,

which is .disjoint from

ki +12 k, + 38
1 % 1
100

[a't’a+t]x[ 53_T0‘6""’"215].

To see this we use (6.91) and the facts bz.i w(2) > (.92)25 - 1 (recall
that the lower endpoint of I, (b,b2) 1ies no lower than W_ e Bz) and
k] < 50. In particular r does not intersect I and must intersect
Py Moreover, r does not get below the horizontal Tine

R x {L 25/4~j} and therefore cannot hit B] or the Tower edge

of T. Neither does r get above the top edge of T and therefore
cannot enter the right component of T through the upper edge of T
without hitting Po UI first. Lastly, since r stays between the
upper and lower edge of T and begins to the left of T, it cannot
reach the right edge of T without hitting Po UI. Al in all we
see that r cannot enter the right component of T without hitting

fo UI. A fortiori r cannot hit

B, N Fr(J'(pO)) N right component of T

without hitting fo UI first. Combining the above observations we
see that r must hit Po U I (and hence po) before hitting the
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other parts of Fr(J'(pO)) (since these other parts 1ie in

Rx (-, 0] U B2 U right edge of T. This substantiates our
claim.

An immediate consequence of the claim is that the piece of r from
jts initial point to its first intersection with Po is a path
s = (uo,gl,...,gc,uc) with the following properties:

(6.92) s\ Qugd = (Ugsdqse- sty 129, \ (U d) @ (37(py))C,
and s N py = {u_}

(6.93) s 1is contained in the horizontal strip
['A3241] X R s
(6.94) s contains a point z = (z(1), z(2)) with

2(2) > (1.22)8; - 1.

and

(6.95) Ugs---sUg_q are occupied

Clearly the existence of such a path s depends only on the occupancies
of vertices outside 3'(p0) , and by Prop. 2.3, these are independent
of the event {R = po} . Just as in the proof (6.25) - in particular
the estimates following (6.28) - it follows from this and (6.85) that

(6.96) P{R = fo and there exists a path s with the properties

(6.92) - (6.95)} > &4 PR =0

Finally observe that if R = Po and there exists a path s with the
properties (6.92) - (6.95) then s and Po together contain an occu-
pied path from the initial point of pg On 81, (and hence below

Rx {0}) via uo(the intersection of Po and s) to z above the
horizontal 1line Rx {(1.22)25 -1} . This path also lies in the
strip [—A,z]] x R and consequently °o U s contains an occupied
vertical crossing of [- A - 1,21 +1] x [0, (1.22)25 - 1]. Thus,



166

P{ 3 occupied vertical crossing of [- A - 1,2] + 1]

x [0,(1.22)8 - 11} > ) P{R = py and
Py satisfying

(6.88), (6.89).
there exists a path s with properties (6.92) - (6.95)}

> Sy ) PIR = oo} (by (6.96))
fo satisfying

(6.88), (6.89)
afo (by (6.90).

v

By periodicity this implies for 21 =n > 20 + 3,
. 2
o((28y, (1.22)85 - 1)3 2,p.G) > 8

Since we also have

(by virtue of (6.85)), and (1.22)25 -1 > %%?-25 we can now obtain

(6.9) - (6.11) from Lemma 6.4 and 6.2 1in the same way as in Lemma

6.5 (provided n, z_no(q,ﬂ) again). ]
As pointed out before Lemma 6.9 takes care of the last case and

the proof of Theorem 6.1 is therefore complete. ]

Proof of Corollary 6.1. It is easy to see that if " and r, are

occupied horizontal crossings of [-2(m+3)ny, 2(m+3)n;]1 x [-3n,, -n,]

and [—2(w4-3)n1, 2(n-+3)n]] X [n2,3n2] , respectively, and if rs

| r S
‘. !
\ [
\ {
1 {
i
I )
} [
r.) |Y‘4
3 I
1 1}

\ ]
21 I
W

- " /

Figure 6.10
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and r, are occupied vertical crossings of [—2(w+3)n],—(w+3)n]]

x [—3n2,3n2] and [(ﬂ+3)n],2(ﬂ+3)n1]x [—3n2,3n2], respectively, then
" U ro Urg U ry contains an occupied circuit surrounding 0 inside
the annulus [~2(n+3)n1, 2(ﬂ+3)n]]><[-3n2,3n2}\(-(w+3)n], (w+3)n])

x (-n2,n2). (See Fig. 6.10).

Therefore the left hand side of (6.12) is at least equal to the prob-
ability of such ry-ra existing. However, by the FKG inequality this

is at least
4
T P{r.
i=1 ]

(by (6.9) and (6.10)).

exists} > £4(5,,6,,m,41+12)
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7. PROOFS OF THEOREMS 3.1 AND 3.2.

The first step is to show that for a parameter point Po which
satisfies Condition A or B of Ch. 3 there exist large rectangles for
which the crossing probabilities in both the horizontal and vertical
direction are bounded away from zero. The RSW theorem will then show

that with Pp -probability one there exist arbitrarily large occupied
0

circuits on G surrounding the origin. From this it follows that there

*
are no infinite vacant clusters on G under Pp 1l An interchange of

0
the roles of G and Q* and of occupied and vacant then shows that

there is also no percolation on G under Pp . This is just the con-
0
tent of (3.43), which is the most important statement in Theorem 3.1(i).

Clearly the above implies that for p', p" such that p'(i) E.po(i)
<p"(i), 1 =1,....,0 also

Pyi{#i(v) = =} =0 and Pp"{#w*(v) = w} = 0.

The above conclusions are basically already in Harris' beautiful
paper (Harris (1960)). The first proof that percolation actually occurs
for p" >> Po is in Kesten (1980a). The proof given below is somewhat
simpler because we now use Russo's formula (Prop. 4.2) which only
appeared in Russo (1981). Actually we prove the dual statement that
for p' << Py infinite vacant clusters occur on Q*. An easy argument
shows that it suffices to show Ep.{#W(v)} < o, and by Theorem 5.1 this
will follow once we prove that the crossing-probabilities <t(N;1,p')
and t(N;2,p') of some large rectangles are small for p' << p. This
is done by showing that é%—r(ﬁ}i,p(t)) is "large" for 0<t< 1,

p(t) = (1-t)p‘-+tp0. By Russo's formula, this amounts to showing that
there are many pivotal sites (see Def. 4.2) for the events

(7.1) A(N;i) = { 3 occupied crossing in the i-direction of T(N;i)}.

1) In this part we shall use some simplifications suggested by
S. Kotani.
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This last step is the same as in Kesten (1980a). The pivotal sites for
A(N;1) for instance are found more or less as the sites on the lowest
occupied horizontal crossing of T(N3;1) which have a vacant connection
on Q* to the upper edge of T(N;1) (see Ex. 4.2(iii)). To enable us
to talk about a "lowest horizontal crossing" the actual proofs are car-
ried out on ng, QSQ » rather than on G, Q*. For the remainder of this
chapter (G,G*) 1is a matching pair of periodic graphs imbedded in R
based on (7%,3) and sz, QSQ their planar modifications (see Ch.2.2,
2.3). U]""’bk is a periodic partition of the vertices of G (and
hence of the vertices of Q*). For pe® , P 1is the corresponding
A-parameter periodic probability measure (see Ch.3.2). P_ 1is always
extended to a measure on the occupancy configurations of sz and qgg
by taking the central vertices of sz occupied and those of Q;l
vacant, i.e.,

(7.2) Pp {w(v) = #1} =1 if v is a central vertex of some
face F ¢ &,

(7.3) Pp{w(v) = -1} =1 if v 1is a central vertex of some
face F e 3*-

Lastly, we assume that the second coordinate axis is an axis of symmetry
for G, Q* and the partition Ul""’bk . As we saw in Comment 2.4
(iii) we may then also take sz and 9;2 symmetric with respect to
the vertical Tine x(1)=0, and by periodicity also with respect to any
line x(1) =k, k € Z . We always assume that sz and C};g have been

imbedded in this symmetric way.

Lemma 7.1. Assume that Pg € Fa satisfies Condition A in Ch. 3.3 and
that

(7.4) 0 <<py<<1.

Then there exists a vector A = (A(1),A(2)) and a sequence
{m_= (mn1’mn2)}nzj of integral vectors such that mi > (n » o,
i =1,2) and such that for all large n (with & as in Condition A)

=

(7.5) c(ﬁh;l,po) > & and o(ﬁn+7K;2,p0) > 6.

*
Also, for some sequence {mn}

- 3 _'* .
n>1 of integral vectors with mn(1) +
— K
(n »»; i=1,2) and a vector A
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(7.6) o (mn,1,p0) >8§ and o (mn+-A ;2,p0) > 8

eventually.

Proof: First we show that there exists a constant C = C(Q,po) such
that

(7.7) Tim c((n,ecn);1,p0) =1 and Tlim o((ecn,n);z,po) = 1.

| ard n->o

We prove the first relation in (7.7). Choose Ay = A3(Q) such that
each horizontal (vertical) strip of height Aq (width A3) possesses
a horizontal (vertical) crossing on % (and hence also on G, as well
as on Q*). Such a A3 exists by Lemma A.3. We also pick a constant
A= A(Q,Q*) for which

(7.8) diameter (e) < A for each edge e of G or G* or
- *
ng or qu .

We set

(7.9) U= u(Q,Q*) = number of vertices which belong to

G or G* in [0,1)x[0,1) .
Now consider the strips
Sk = [0,n]><[2kA3,(2k+1)A3] .
Each Sk contains a horizontal crossing of at most

(n-+2A)A3u 5_2A3un

vertices, for n sufficiently large. Therefore

Pp { 3 occupied horizontal crossing on G of Sk}
0
2A3un

v

[min P_ {v is occupied}]
veG Po

>e M

for some vy = y(pO,Q) <o , Finally, since the Sk are disjoint, we
have for C > vy
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o((n,ecn);l,po) = Pp { 3 occupied horizontal crossing on §
0
of [0,n]><[0,ecn]} z_Pp { 3 occupied horizontal crossing on
0

G of some S, with 1 <k 5_—1—-ecn— 1}
k 2A3
o (205) 7T
> 1-(1-e7Th +>1 (n~» o).

This proves (7.7).

Now let C be such that (7.7) holds. For the sake of argument
assume that the implication in (3.36) is valid for j =2. Let n be

so large that c((n,exan);],pO) 3_%—. We can then choose m = m(n)
as the smallest integer < exp Cn for which

(7.10) a((n,m);1,py) z_%—-

In exactly the same way as we proved (7.7) we prove
(7.11) 1im c*((n,%ﬂog n);2,p0) = 1im P{ 3 vacant vertical crossing
n-co k->c0

of [0,eK]1x[0,k] on ¢*} = 1.

But if there exists a vacant vertical crossing r of [O,n]]><[0,n2]
for some Nys Nys then there cannot be an occupied horizontal crossing
r' of [0,n1]><[0,n2]. For r and r' would have to intersect,

necessarily in a vertex of 7 (see Comment 2.2 (vii)) and this vertex

in r 0 r' would have to be vacant as well as occupied. This is clear-
ly impossible. Consequently

(7.12) o((nyan,)315pp) < 1-0™((ny.n,)32,p)).

Taking ny =n,n, = %—109 n we obtian from (7.11) and (7.12) that

1 .
o((n,E-log n),1,p0) +0 (n -+ ).

Comparing this with (7.10) and using the monotonicity property of o
(Comment 3.3 (v))we see that

(7.13) m(n) 3_%—109 n eventually.

We now use Prop. 2.2 to prove that the inequality in (7.12) can
almost be reversed. More precisely, let
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hy= Thg+ AT +1

and assume nysn, > 2A4. Then for any p ¢ F& one has

*
(7.14) c((n],nz);l,p)+ o ((n14-2A4,n2-2A4);2,p) > 1

as well as

(7.15) o((n]-P2A4,n2-2A4);2,p)-+c*((n1,n2);1,p) >1.

We only prove (7.14). For (7.15) we only need to interchange the roles
of G and G* and of occupied and vacant. To prove (7.14) we take a
self-avoiding vertical crossing ryon 7 of [—A4,-A-1]><[0,n2]. Such
a vertical crossing exists by Lemma A.3 and our choice of A3. Similar-
1y we take a selfavoiding vertical crossing rg on n of
[n]+1\+1,n1-FA4]><[0,n2] and horizontal crossings ro and rg of
[-Aganq + Mgl x[A+1 ,/\4] and  [-Ag.nq+ hgd = In, - Agony = A=-11, respec-
tively (see Fig. 7.1). Once again we remind the reader of the observa-

Figure 7.1 The solid rectangle is [ O,n]] x [ O,nz]; the outer dashed

rectangle is [—A4,n1+A4] X [O,nz]; the inner dashed rectangle
is [O,n]] X [A4,n2—A4].

tion at the beginning of Sect. 2.3: Since 7 1is planar, and rs is
self-avoiding, the curve made up from the edges of r; is a simple
curve. ry contains therefore a simple curve, by say, inside the
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rectangle [-A4,—A—1]><[0,n2], and connecting the top and bottom edge

of this rectangle. Similarly rs contains a simple curve ¢3 inside
[n1+A+1,n1+A4], and connecting the top and bottom edge of this rectangle.
Now, both ry and ry must intersect ¢] as well as ¢3. Starting
from the left endpoint of rs (r4) Tet Uy (u3) be the last inter-
section of 1, (r4) with 91 and Us (u4) the first intersection of
ro (r4) with ¢ Denote the closed segment of 91 from u, to u
by A]’ the closed segment of ro from Uy to Uy by A2, the closed
segment of 93 from Uy to Us by A3, and the closed segment of s
from us to Uy by A4. By construction A1 is strictly to the left
of the vertical line x(1) = -A and A3 to the right of x(1) = n]-+A.
Similarly A2 is below the horizontal line x(2) = A4 and A4 above
x(2) = hy- In addition, the A; are simple curves. It is not hard to
see from this that the composition of A1,A2 A3 and A4 is a Jordan
curve, J say. Any path on G inside J =J U int(J) from a vertex

on A] to a vertex on A3 has to contain a horizontal crossing of
[0,n1] X[O,nz], since A2 lies strictly above the horizontal line

x(2) = 0 and rg strictly below x(2) = ny- If all vertices on r in
int(J) are occupied then r contains an occupied horizontal crossing
of [O,n ]X[O n2] Thus, if there does not exist an occupied horizontal
cross1ng of [0,n ] x [0, n2] then no path r of the above nature can
exist. By Prop. 2 2 this implies the existence of a vacant path r on
Q* and inside J\A1 u A3 with 1n1t1a1 point on A2 and final point
on A4 Finally, any such path r* contains a vacant vertical crossing
of [-A4,n]+A4] [A4,n2— 4]. For the crossing probabilities this implies

1-0((n],n2);1,p) = Pp{there does not exist an occupied
horizontal crossing of [0,n1]><[0,n2] on G}
g_Pp{ 3 vacant vertical crossing of [—A4,n]+A4]x [A4,n2—A4]
*. * _ .
on G} =0 ((ng+20,.n,-21,)32,p)
(use periodicity for the last equality). This proves (7.14).

It is easy now to complete the proof. For n, > 2A4 and
m(n)-1 3_%'1og n-1 > 2\, we have (7.10) as well as

(7.16) o((n,m(n)-1)31,pg) < 5 »

by virtue of the definition of m(n). Then, by (7.14)
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0*((n+2A4,m(n)—2A4—1);2,p0) >

| —

and finally, by (3.36) in Condition A

o(n+2A4-p;',m(n)—2A4-1-p’z‘);z,po) >5 .
This, together with (7.10) implies (7.5) with —h = (n,m(n)) and
A= (2A4-p¥,—2A4—]—p;). When (3.36) holds for j = 1, then one merely
has to interchange the roles of the first and second coordinate. To
prove (7.6) one interchanges the roles of G and Q* in the above
proof. []

Lemma 7.2. Assume that Po satisfies (7.4) and Condition A or B in
Ch. 3.3. Then there exist sequences of vectors {N@ = (N

1Ny 2ot
M, = (M21’M22)}22] , and for each integer k a number 8y > 0 such

that
(7.17) Nli > oo Mli +oo 5, i=1,2,8 &>,
and
(7.19) 0™ ( (kMg 1My 5)31505Gpg) 2 8 > 0,
* .

) ((M21’kM12)’2’p0’qp2) b 6k > 0.
Moreover
(7.20) Pp { 3 occupied circuit on Qpl surrounding 0

0

and inside the annulus ["2N21’2N£1]><['2N22’2N22]\

4

and
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(7.21) Pp { 3 vacant circuit on le surrounding 0
0

and inside the annulus {—2M£1,2M21] x[‘2M12=2M12]

4
(—M,Q,] ’MQ«-I ) X ("MQ’Z st)} _>__ 54.

Proof: Again we restrict ourselves to proving (7.18) and (7.20). First
assume Condition A is satisfied. By the last lemma we then have (7.5).
With A as in (7.8) this implies, by virtue of Lemma 2.1b,

(7.22) o((mn]—ZA,mn2+2A);1,pO,sz) > 6 and

O( (mn]+l\(] )+2A,mn2+/\(2)-2/\) ;2 9p0 squ) bl J

(Basically an occupied horizontal crossing on G 1is turned into a
horizontal crossing on sz by inserting central vertices of . These
central vertices are occupied with probability one by virtue of (7.2).
The resulting horizontal crossing on ng is therefore again occupied.
The same argument applies to vertical crossings.) We can now apply the
RSW theorem (Theorem 6.1) with 7 =2, n = (mnl'ZA’mn2+2A) and
m = (mn1+A(1)+2A,mn2+A(2)-2A). (7.18) 1is then immediate from (6.9) and
(6.10) and the monotonicity properties of o (see Comment 3.3 (v)) with
N@ = 55@ and §, = f(6,5,2,10k). (7.20) follows from (7.18), because
one can construct a circuit from two horizontal and two vertical cross-
ings of suitable rectangles, as explained in the proof of Cor. 6.1 at
the end of Ch. 6. This proves the lemma under Condition A.

Now assume that Condition B holds. Instead of (7.22) we now obtain
from (3.38) and Lemma 2.1b

o((n21-2A,n22+2A;1,pO,ng) > 8 and
o(a]n2]+2A,a2n£2-2A);Z,po,qpl) >4

The Lemma again follows from the RSW theorem (this time with
_ -1 -1
™ = Zrmax{a-l sazsa] saz }—])' D

Lemma 7.3. Assume p € vy satisfies

0<<p<<T1.
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If for some vertex v of §

(7.23) Ep{#W(v)} <o,

then for every vertex w of Q*

(7.24) pp{#w*(w) =w} >0 .
Also

(7.25) Ep{#w*(w)} <
implies

(7.26) Pp{#W(v) = w} > 0.

Proof: We shall show that (7.23) implies

(7.27) Pp{ an infinite vacant component on G* inside
the first quadrant} = 1.

This will imply that
* —
Pp{#W (w1) = »} >0
for some W, € G*. (7.24) follows then for any w by (4.8) (with

n =), Asimilar proof will work for obtaining (7.26) from (7.25).
To prove (7.27) we first use (7.14) with

_ oK
n-l - 2 "2A4 »

2k+'l

n +2A

2 4 -

We obtain
k ,k+1
. )3

12,0,G) < o((2%-2a,,2K*]

(7.28)  1-0"((2%,2 2

45 +2A4);]’p’Q)'

Next we claim that (7.23) implies

k+]+A6);1,p) <w

(7.29) I (2,2
k=1

for any AS’ A6. This was essentially already proved in Lemma 5.4.

Exactly as at the end of the proof of that lemma (cf. (5.55)) one shows

that



177
o((2%4ng,25* T +15)31,p)

< u(2A+])(2k+1+AG+2A+1) sug Pp{W(vo) contains a vertex

v0(1 <A

to the right of x(1) = 2k+A5-A}

k+1

< u(2a+1)(2 +A6+2A+1)

. 1,.k
P {#(v,) > —(2 +A_-2M)}
v0€[0,1§X[0,1) P 07 =A™ 75

(use periodicity for the last inequality). But (7.23) for some v
implies
Ep{#W(VO)} < o

for all Vo (see the Application 4.1 of the FKG inequality) and conse-
quently

k+2
)y 2 Pp{#W(VO)‘Z

(2K40_-21)} < w .
voe[0,1)X[O,1) k )

5

I

(7.29) follows.

From the Borel-Cantelli lemma (Renyi (1970) Lemma VII.5.A), (7.28)
(7.29) it now follows that

(7.30) Pp{ 3 vacant vertical crossing on q* of [0,2k]x [0,2k+1]

for all large k} = 1.

In the same way one sees
(7.31) Pp{ 3 vacant horizontal crossing on Q* of
[0,2k+]]><[0,2k] for all large k} = 1.

Since a horizontal crossing of [0,2k+1]><[0,2k] or of [O,2k+3]><[0,2k+2]
must intersect a vertical crossing of [O,2k+]]><[0,2k+2], one easily

sees that if for all large k there exists a vacant horizontal crossing
on Q* of [0,22k+]]><[0,22k] and a vacant vertical crossing on Q*

of [0,22k+]] x[0,22k+2], then these crossings combine to an infinite
vacant cluster on q* in the first quadrant. Thus (7.27) follows from
(7.30) and (7.31). ]
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Remark.

(i) The above proof is taken from Smythe and Wierman (1978),
Theorem 3.2. Together with parts (ii) and (iii) of Theorem 3.1 it will
show that one actually has infinite occupied clusters on G 1in the
first*quadrant under Pp" with p" > Po: and infinite vacant clusters
on G in the first quadrant under Pp. with p' << Po-

Proof of Theorem 3.1 (i): With ﬁi as in Lemma 7.2 consider the annuli

(7.32) Uy r= [-2Mpqa2Mp 1] [-2M) 5,2M) 51N (=M, 1,M, 1) x (Mg o.M, ).

Without loss of generality we may assume these annuli disjoint. In this
case the occurrences of occupied circuits in different Uz are inde-
pendent of each other. Therefore, by (7.21) and the Borel-Cantelli

Lemma (Renyi (1970), Lemma VII.5.B), with Pp -probability one infinite-
0
ly many Ug contain a vacant circuit on le surrounding the origin.

. - . . *
If M21 > A, MQZ > A, and Uz contains a vacant circuit on qu

surrounding 0, then by Lemma 2.7a

(7.33)  [-2Mp -A,2Mp +A] x [-2Mp,-0,2M +0] \

('Mz +A,MM-A) x (-M

1 +A,M

22 A)

22"
contains a vacant circuit on Q* surrounding 0. In fact this latter
circuit must surround all of (—MR]+A,MQ1—A)><(—M22+A,M22-A). Hence
for all N

(7.34) Pp { 3 a vacant circuit on G* surrounding
0

['N ,+N] X ['N ’+N]} = 1.

In the same way we obtain arbitrarily large occupied circuits on G, and
(3.45) follows. (3.43) is immediate from this, because if

v e [-N,N]x[-N,N] and [-N,N]x[-N,N] 1is surrounded by a vacant
circuit J on G*, then W(v) is contained in int(J), and hence

#(v) < ». In fact any path on G from v to the complement of

int(J) would have to be intersect J, necessarily in a vertex of G

and G* (see Comment 2.2 (vii)) and this vertex would have to be vacant.
Thus no vertex in ext(J) or on J can belong to W(v). Similarly
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#W*(v) is shown to be finite with probability one.
Finally, (3.44) is a consequence of (3.43) and Lemma 7.3. 1
Lemma 7.4. Assume Po satisfies (7.4) and Condition A or B. lLet §

{N@} and {ﬁz} be as in Lemma 7.2 so that (7.17)-(7.21) hold. Then
for

k,

p' << pg << p"
(7.35) Tim T(2ﬁ2;1 :pl3Q) =0, 1=1,2,
L0
and
(7.36) Tim < (2N,31,p",G) = 0, 1 = 1,2,
Qo0

(see (5.5) and (5.6) for T and T*).

Proof: We shall only prove (with A as in (7.8))

(7.37) Pp.{ 3 occupied horizontal crossing on ka of

[A,ZMM—A] X [—A,6M£2+A]} >0 (2~ ).

By Lemma 2.1b T(2ﬁ£;1,p',q) = Pp.{ 3 occupied horizontal crossing on
G of [0,2M21]><[0,6M22]} is bounded by the left hand side of (7.37).

Therefore (7.37) will imply (7.35) for i = 1. The proofs of (7.35) for
i =2 and of (7.36) are similar.

To prove (7.37) take A3 and A4 as in the proof of Lemma 7.1.
Suppress the subscript & for the time being. Very much as in the
proof of Lemma 7.1 take self-avoiding vertical crossings r and r
on 7 of the strips [A,A4—1] X[—A4,6M2+A4] and [2M1—A4+1,2M1-A]
x [—A4,6M2+A4], respectively. Also we take horizontal crossings Tz
and rg on m of [0,2M1]><[-A4,—A-]] and [0,2M1]><[6M2+A+1,6M2+A4],
respectively (see Fig. 7.2). Again 91 (¢3) is a simple curve in
[A,A4—1]><[-A4,6M2+A4] (ZM]—A4+1,2M]-A]><[-A4,6M2+A4]) connecting the
top and bottom edge of this rectangle. Starting from the left endpoint
of r, (r4) et u, (u4) be the last intersection of ry (r4) with
913 and Us (u3) the first intersection of rs (r4) with ¢ We
denote the closed segment of ¢1 from Uy to Uy by B1, the closed
segment of ¢3 from Ug to u, by BZ’ the closed segment of )
from Uy to Uy by A and the closed segment of ry from Uy to ug

3
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Figure 7.2 The solid rectangle is [0,2M1] X [0,6M2]; the outer dashed
rectangle is [0,2M1] x [-A4,6M2+A4]; the inner dashed rectangle

is [A4—1, 2M1—A4+1] x [0,6M2] .

by C. As in Lemma 7.1, as soon as M] > 2/\4 the composition of B],
A, B2 and C 1is a Jordan curve, which we again denote by J. Also

(7.38) [A4,2M]—/\4] x [—A,6MZ+A] < int(J).

Any horizontal crossing ¥ on sz of [A,2M1-A]><[-A,6M2+A] contains
some point v = (v(1),v(2)) 1in the interior of the rectangle in the
left hand side of (7.38), and hence in 1int(J). Let y be the segment
of ¥ from its last intersection with the vertical Tline x(1) = A to
the first intersection with the line x(1) = ZM]-A . Then 1y starts on
x(1) = A to the "left of B1" and when it reaches v it lies to the
"right of B1". Since y minus its endpoints 1ies between the horizontal
lines x(2) = -A and x(2) = 6M,+A, ¥ must intersect B between its
initial point and v. (Note that B] runs from Uy below x(2) = -A
to u, above x(2) = 6M2+A.) Similarly the piece of y between v

and its final point must intersect BZ‘ The piece of ¥ between the
last intersection before v with B1 and the first intersection after

v with B, is therefore a path r = (vo,e],...,ev,vv) on G

2 pL
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with the following properties:

(7.39) (v1,e2,...,ev_1,vv_]) < int(J),
(7.40) ey intersects J only in the point Vg € B],
(7.41) e, intersects J only in the point v, € BZ'

Thus if we introduce the event

= { 3 occupied path r = (vo,e1,...,ev,vv) on sz
with the properties (7.39)-(7.41)},

then the left hand side of (7.37) is bounded by Pp.{E}.
We now introduce

Ng = NO(E,m) = # of pivotal sites for (E,w) which

are vertices of 7
and

p(t) = tpgt(1-t)p', 0 <t < 1.

Since E 1is an increasing event we can apply Russo's formula (4.22) to
obtain

(7.42) - {E} > inf{P_ {v is occupied} - P {v is occupied}}
dt ( ) i/ Po

p(t){N }.

Since p' << Pg and Pp and Pp. are periodic, the constant
0

(7.43) a := inf{P_ {v is occupied}-P_,{v is occupied}}
vem Po P

is strictly positive. We now write (7.42) as

-1 d
Pore) Bt Pp(e) B 2 o Eprg) olET

and integrate over t from 0 to 1. We obtain the inequality

1
(7.44) Py {E} g_PpO{E}exp—u fO E ){NOIE}dt

p(t
1



182

It therefore suffices to prove

(7.45) ){N0|E} + o yniformly in t as M- «

Ep(t

through the sequence ﬁi .

for this will imply that the left hand sides of (7.44) and (7.37) tend
to 0 as & -+ o,

We follow the lines of Kesten (1980a)to prove (7.45). (7.39)-
(7.41) are just (2.23)-(2.25) in the present set up. E is the event
that there exists at least one occupied path r with these properties.
Proposition 2.3 (with S = Rz) states that if E occurs, then there
exists a unique minimal occupied path r satisfying (7.39)-(7.41),
i.e., a path r for which the component of int(J\\r with A in its
boundary is as small as possible (see Def. 2.11 and 2.12). As in Prop.
2.3 we denote the minimal occupied path satisfying (7.39)-(7.41) by R.
In Kesten (1980a)the sucgestive term "lowest (occupied) left-right
crossing" was used for R because there we could take for J the peri-
meter of a rectangle. The above comments imply

(7.46) E=UR=r},

where the union is over all paths r = (vo,e1,...,ev,vv) on sz

which satisfy (7.39)-(7.41). Next we use Ex. 4.2 (iii) to find pivotal
sites for E. We restrict ourselves to pivotal sites which are ver-
tices of 7, because these are the only ones counted in NO' A vertex
v of 7% on R Nint(J) which has a "vacant connection on Qpl to ¢
above r" is pivotal for E. To be more specific, for any path r on
Qpl which satisfies (7.39)-(7.41) and vertex v gf m on r N int(J)
we shall say that v has a vacant connection to C above r if there
exists a vacant path s* = (va,eT,...,e;,v;) on QSQ which satisfies
(7.47)-(7.49) below.

(7.47) there exists an edge e* of G* between v and

*
v
o pL 0
such that e* C:J+(r)

oo

(7.48) v; €

* % * * * % * +
(7.49) (vo,e],...,vp_],ep\{vp}) =5 \{vp} <Jd (r)

(see Def. 2.11 for J'(r)). Note that p = 0 is permitted in (7.47)-
(7.49). In this case s* reduces to the single point {VS} and (7.49)
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becomes vacuous . (7.47)-(7.49) are merely the conditions (4.13)-(4.15)
with R replaced by r, except that in (7.47) we require e* to belong
to Q;ﬁ rather than to W$£ , as in (4.13). The latter change does

not constitute a real change from (4.13) since we assumed here that v
is a vertex of 7, i.e., of Q* and Q;z . If sucha v is connected
by an edge e* to the vertex va of Q;Q then e* automatically
belongs to Qsl . (The vacant connections defined here correspond to
the weak cut sets with respect to r of Kesten (1980a)) Ex. 4.2 (iii)
now shows that any vertex v of % on R Nint(J) with a vacant

connection to ¢ above R is pivotal for E. Thus

N0 > # of vertices v of 7% on R 0 int(J) which have
a vacant connection to 8 above R.

For the remainder of the proof we use the abbreviation

(7.50) N(r) = N(r,w) = # of vertices of 7 on r 0N int(J)
which have a vacant connection to ¢ above r.

Then NO(E,w) > N(R,w), and by virtue of (7.46)

(7.51)  Ej(4)WglE3 2 ; Po(e) R = FIEYE () IN(P) R = r}

By Prop. 2.3 the event {R = r} depends only on the occupancies of
vertices in J (r) (note that 81 is made up from edges of 7% and a
fortiori of WBZ here). Moreovez, for any v on r the existence of
a vacant connection from v to C above r depends only on the
occupancies of the vertices in J+(r) u e, (see (7.48), (7.49)) which

js disjoint from J (r). This allows us to drop the condition R = r

in the last expectation in the right hand side of (7.51). More precisely

(7.52) Ep(t){N(r)}R = yr}= et ﬂzint(d) Pp(t){v has a vacant

v a vertex of 7

connection to C above r|R = r}

) P {v has a vacant
ver Nint(J) p(t)
v a vertex of 7

Q
connection to C above r} .
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Clearly

{ 3 vacant connection from v to E above r}

is a decreasing event. Lemma 4.1 shows that the Pp(t)-measure of any
decreasing event is decreasing in t. It follows that the last member
of (7.52) is also decreasing in t. Thus for 0 <t <1

(7.53) Ep(t){N(r)[R = r} 3_EpO{N(r)}.

Substituting this estimate into (7.51) and using
; Po(t)fR = rlE} =1 (see (7.46))

we obtain

(7.54) Ep(t){NolE} z_min EPO{N(F)},

where the minimum is over all paths r on sz satisfying (7.39)-
(7.41). Fix such an r. Let its initial point on B1 be Vo and its
final point on B2 bg v, ang consider the following curves on 7
(and hencs on W$22: B1 := C, A := closed segment of B1 between Uy
and VO’ B2 := r, C := closed segment of 82 between v, and u3

(see Fig. 7.3). Together these curves form a Jordan curve, which we

u, C=B uq
A c
Mo v,
B] B,
uy A U,

Figure 7.3
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denote by 3, and which is precisely Fr(J+(r)). Now let
Q
ver Nint(d) e B2 be a vertex of 7 and consider vacant paths

s* = (v,e*,va,eT,...,e;,v;) on QSQ which satisfy
(7.55) s* minus its endpoints < int(J)
and

]

(7.56) one endpoint of s* 1lies on §1 and one endpoint of

o

’\4* . ~
S lies on 82 .

(Paths of this type correspond to the strong cut sets of Kesten (1980a).)
Clearly if there exists such a vacant path, then its endpoint on

r = §2 has a vacant connection to C above r. Me again want to
apply Prop. 2.3, EhismtiTe with ~sz replaced by QSQ and J,A.B,,C,
82 replaced by J,A,B1,C and BZ’ respectively. Analogously to Def.
2.11 we set for any path $¥ satisfying (7.55) and (7.56)

J7(s*)(3T(5*)) = component of int(J)\s* with A(C)
in its boundary.

Prop. 2.3 will give us an s* with minimal J7(s*). For later esti-
mates (see (7.64), (7.65) and their use at the end of the proof) it is
important that this minimal path is not too far to the right. We shall
therefore consider only vacant connections in the vertical strip

X = [A4+1,M +A4+1]>< R

1

We remind the reader that for any subset S of R2

s* €S means that
all edges (and hence all vertices) of s* 1ie in S. We need to con-

sider the event
F(r) := { 3 vacant path s™ on Q;Q which satisfies
(7.55), (7.56) and s* <y}

From Propositon 2.3, applied to le rather than sz and with S
taken as the strip x above we conclude that when F(r) occurs there
is a unique S* with minimal J7(s*) among the vacant paths on 6;2
which satisfy (7.55), (7.56) and are contained in . We denote this
path by s*, (Intuitively, S* is the "left-most vacant vertical cross-
cut" of int(J) in x.) As we saw above S* provides us with a vacant
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o)

connection from its endpoint on Ez = r\\{w],wz} to E above r.
Before we estimate the number of sites which have such a connection we
estimate the probability of having at least one such site by estimating
the probability that S* exists, which equals PpO{F(r)}. Let

(us,f?,...,f* u;) be a vacant path on Q;2 with

T,
*
(7.57) ug € As
* =
(7.58) u¥ e B = C,

(7.59)  (F}\luglsu],e.oul_ X \{U*]) < int(9) 0 x .

Since yx 1is closed any such path lies entirely in x; and since B,
and 82 separate A and C on J the path must intersect r. The
last intersection of this path on Q;Q with r - which is a path on
ng - is necessarily a vertex of Q*Z and of sz (see Comment 2.3(v)).
Thus this last intersection of (ua,f?,...,fi,uz) with r is one of
the u:, say u;, and also equals one of the Vj’ but not Vg Or v,
since the latter two lie on B1 v 82, hence outside x. One now easily
sees that if one takes s* = (u;,f;+],...,f:,u:) then the requirements
(7.55) and (7.56) are fulfilled. Of course this s* is also contained
in x to that

(7.60) PpO{F(r)} _>_Pp0{ 3 vacant path (ug,f],....fr.u’)

on Q;Q with the properties (7.57)-(7.59)}.

In turn it is easy to see that any vacant vertical crossing on Q*2 of
[A4+1,M]+A4+1]x [-A4,6M2+A4] contains a path with the properties (7.57)-
(7.59). Indeed any such vertical crossing contains a continuous curve

¥y which connects the horizontal lines x(2) = —A4 (which lies below

rz) and x(2) = 6M2+A4 (which lies above r4) (see Fig. 7.2). )

therefore intersects ro in a point of A and ra in a point of BT;
¢ also lies in x. Combining this observation with (7.60) we obtain

(7.61) P {F(r)} >P_ { 3 vacant vertical crossing on G*, 6 of
Po - Pg pL

[A4+1 ,M]+A4+1] x [-A4,6M2+A4]}

> 0™ ((M},7M,)32,p,G ) > 85
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as soon as M},M2 > 2A4+1, by virtue of (7.19). By Prop. 2.3 also

* : -
(7.62) Pp {S™ exists} = PpO{F(r)} > &

0

The next step in estimating Ep {N(r)} is to write
0

(7.63)  E_{N(r)} > ¥ P{S* = s™}E_ {N(r)|S* = s*}
Po T Po
> 8, min Ej {N(r)|s* = s*} ,

S 0

where s* ranges over all paths on Q;l which 1lie in x and satisfy
(7.55) and (7.56). For the remainder of the proof we fix a path

s* = (v,e*,...,e;,v;) on q;z which lies in x and satisfies (7.55)
and (7.56). The initial point v = (v(1),v(2)) 1lies on r and is a

vertex of 7 while v* lieson CNX<c@ . Let the annulus U, be
defined as in (7.32) and let Vi be Uy translated by

(Lv(1) J,Lv(2) ]), i.e.,

k

Vk = [L V“) _}’ZMk] al_ V“) _J+2Mk]]x [L V(Z) J—ZMkz,LV(Z) J+2Mk2]\

(LV(-I) __J"Mk'l ’LV(])_I+Mk'|) X (LV(Z) _['Mkzsl_v(z) _l+Mk2)-

=
(e K4

1

S 1 !
I

i

Figure 7.4 Vk is the region between the dashed rectangles.
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We restrict ourselves to k with

(7.64) M > 1s My > 1 and M < M, 20,1

k1 4

(Note the MQ] in the last expression in (7.64); we reintroduced to
subscript £ to distinguish ﬁk and ﬁi.) Under (7.64) v 1lies in-
side the center rectangle

(L VA1) S Lv(1) 1o ) x (L v(2) J-M L v(2) J4m,)

of V.. Moreover, since s*cy , v(1) < Mp#A,+1  and consequently

(7.65) V(])+2Mk] < ZMM—A4 .

Assume now that there exists a path t* = (w,g*,wa,gT,...,g;,w;) on

q;Q with the following properties:

(7.66) we Ve, w is a vertex on r N int(J)
(7.67)  wie C\{v¥} or wt Tieson s*,

(7.68) (g"\{w },WS,---,W;_1,gg\iw;})

= t*\(w W} < J37(E%) Ny,
and

* * . *
(7.69) Wos---aWg_p are vacant, and if w e C\v]}
then also w; is vacant.

Again we allow o = 0, t* = (w,g*,wS), in which case (7.68) reduces to

§*C23+(§*) AV, . We claim that if such a t* exists and S* = §*,

then w, the initial point of t*, has a vacant connection to ¢ above
r. This is obvious if w” ¢ C‘\{v;} (see (7.47)-(7.49)) and recall
that J7(5%) < int(J) = J7(r); also wg_e closure of (JF(3%) n Vi)
n(C‘\v;) implies w} e ¢ (use (7.65).) But also in the other case -
when w; lies on s*— it is easy to substantiate this claim. Indeed,

. * _ % . * o (¥ o F * ok L Kk
if WO Vs for some 0 < i <p then t] : (W0’91=---’95’Wg v,

i
e$+],...,e;,v:) is a path on Q*Q consisting of t*\ g% followed by a
piece of g, 1t is self-avoiding since t \{w;} does not intersect

§* (see (7.68)). There is an edge g* of QSR from w to wS with

g e d(r), while t? ends at v; e C. Also tf‘\{v;} <3 (r) by
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(7.68) and (7.55). Finally tf is vacant by (7.69) and the fact that

§*=S*

js vacant whenever S* exists. Thus indeed w has a vacant
connection to € above r. The last conceivable case with w; = v
cannot occur, since v ¢V, while w; is the endpoint of g* or g;,
hence w; € Vk = Vi» by (7.68). This proves our claim.

As before we may assume the Uk of (7.32) disjoint. Then the
Vk are also disjoint and then distinct Vk for which there exist a
t*
a vacant connection above r to C. In view of the definition (7.50)
we therefore have

as above provide us with distinct vertices of % on r which have

(7.70) E IN(r)|S* = 3%} > ) P { 3 path t*
Po k satisfying Po
(7.64)

which satisfies (7.66)-(7.69)] S* = §*} .

We now complete our proof by showing

(7.71) { 3 path t* which satisfies (7.66)-(7.69)|S* = §*}

P
Po
2.52 ,
whenever (7.64) holds and 3% ©x satisfies (7.55) and (7.56). This
will indeed imply (7.45) by means of (7.54), (7.63), (7.70) and the
fact that the number of k which satisfy (7.64) tends to = as & + =,
Now for the proof of (7.71). To begin with observe that we may drop
the condition S* = §*, because the existence of a path t* which
satisfies (7.66)-(7.69) depends only on the occupancies of vertices
in 5+(§*) n Vi or vertices on C\\{VS} which are an endpoint of some
edge of ng with interior in J'(3*). None of these vertices lie in
J7(3*). The only vertices for which this is possibly in doubt are those
on C‘\{v;}. However, these vertices would have t9+be in 3}(5*), since
they are an endpoint of an edge with interior in J (s*). But the only
vertex on C in J'(s*) N J7(s*) is v¥, the final point of s* . On
the other hand, by Prop. 2.3 the event {S* = $*} depends only on the
occupancies of vertices in j;(§*). Therefore the conditional probabi-
lity in (7.71) is the same as the unconditional probability. Next et
c* be a vacant circuit on Q*z surrounding the point
(Lv(1) J,L v(2) ]) and with all its edges and vertices in V- We
want to show that if such a c¢* exists, then it contains a t* with
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the properties (7.66)-(7.69). This is intuitively clear from Fig. 7.4
if one takes into account that by (7.65) the right edge of Vk is on
the vertical Tine x(1) = | v(1) J+2Mk1< 2My -0y, while C is part of
rs and hence to the right of the vertical line x(1) = 2M2]-A4. A
formal proof was given in Kesten (1980a) Lemma 3 for the case where the
upper edge of Vk also lies below C = §1 (as depicted in Fig. 7.4).
Here we shall appeal to Lemma A.2. Let J] be Fr(3+(§*)), viewed as
a Jordan curve. J] is made up of the following four arcs: A1] = {v}
(i.e., consisting of the single point v only), A]2 = §* followed by
the piece of C from v; to ug (v; ~1's the intersection of S* and
C, us ~1S the intersection of C and C; see Fig. 7.3 and 7.5),

A]3 = C and A]4 = Eiece of r between v, and v (v\J is the inter-
section of r and C, v 1is the intersection of r and 3* (see

Fig. 7.3-7.5). For J2 we take c*, viewed as a Jordan curve. Then

Figure 7.5 Uk is the region between the dashed rectangles.
— - — - denotes the circuit c*.

under (7.64) c* also surrounds v, i.e., A]] = {v} < int(Jz), and
A]3 = C Ciext(Jz), since by the above C lies outside the exterior
boundary of Vk whenever (7.64) and hence (7.65) holds. Therefore,

by Lemma A.2 c* contains an arc, t* say, with one endpoint each on
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312 cs*UC and 314 Cr, and such that t* minus its endpoints is
contained in int(J1) = 5+(§*). If t*x-= (w,g:,wa,...,g;,w;) with w
the endpoint on r and wg the endpoint on A]Z’ then t* satisfies
(7.6?)—(7.69) (recall that c* C--Vk and that c¢* 1is vacant; also

WE A14 C int(J)). Thus the existence of c* 1implies the existence of

t* as desired. Consequently,

(7.72) { 3 path t* which satisfies (7.66)-(7.69)|S* = §*)}

p
Po

Pp { 3 path t* which satisfies (7.66)-(7.69)}
0

|V

P { 3 vacant circuit on Q*z surrounding
Po p

(Lv(1) 1, v(2) ]) and inside Vk}.

Since V, is just the translate by ([ v(1) |, v(2) ]) of Uy » the
last member of (7.72) equals the left hand side of (7.21) (with ¢
replaced by k), by virtue of periodicity. Thus (7.71) follows from

(7.72) and (7.21). The proof is complete. ]

Remark.

(ii) In Ch. 10 it will be necessary to have an estimate for the
conditional distribution of N(r), given {R = r} under Pp t)? instead
of just for the conditional expectation of N(r). This estimate was
already given in Kesten (1980a),Steps (i) and (ii) in the proof of
Prop. 1. We shall want to restrict ourselves in Ch. 10 to counting
only vertices with vacant connections in

_ = 1 3
T =Ty = [ Mys 5 M IxR

More precisely let Nr(r) be the number of vertices v of sz on r

for which there exists a vacant path s* = (va,e?,...,e;,v;) on G*
which satisfies the following properties

(7.73) there exists an edge e* of W%Z between v and v6
such that e* <Jd™(r) N T,

(7.74) v; e C

(7.75) (v6,e7,...,e;_1\\{v;}) = s*\\{v;} = J+(r) nr .
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(Note that we dropped the restriction v ¢ %, and therefore only re-
quire e* is an edge of Wbl in (7.73)). Let r be as in (7.39)-
(7.41) and

By 5
o' = [ty Mypl~ R

The desired estimate is that for & greater than some lo(m)

(7.76) Pp(t){NF(r) > m|R = r}

3.%-Pp { 3 at least one v on r and a vacant path
0
s* which satisfy (7.73)-(7.75) with T replaced
by T'},

uniformly in r, 0 <t < 1. Ue briefly indicate the trivial changes
necessary in the proof of Lemma 7.4 to obtain (7.76). Instead of (7.52)
and (7.53) we have

Po(e)yINp(r) 2 m[R = v} = Py NG (r) > m} > PpO{NF(r) >m} .

Also, for fixed r we again consider vacant paths S$* satisfying
(7.55) and (7.56) with the right hand side of (7.55) replaced by

int(J) NT' . Again S* will be the left-most of all these paths. Then
there exists at least one v on r and a vacant path s* which sat-
jsfies (7.73)-(7.75) with T vreplaced by T' whenever S* exists.
Instead of (7.63) we get

Ppo{Nr(r) > m}

> P_ {S* exists} - min P_ {N.(r) > m|S* = s*}
- Po % Po T o
s

Now if S* ©T' then its endpoint v on r Tlies in T'. Thus, if we
strengthen (7.64) to

(7.77) M,>1, M 1 and 2M,, <+ M -1,

> 1
k1 k2 k1 =4 "1

then the whole annulus Vk lies inside T . Instead of (7.70) we
therefore obtain
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(7.78) p {NT(r) >m|S= s*} > P {# of k satisfying (7.77)
po - - po

for which there exists a path t* which satisfies
(7.66)-(7.69) at least m|S* = s*}

As in the proof of (7.72) we may drop the condition $= s* and re-
place "path t which satisfies (7.66)-(7.69)" by "vacant circuit in
Vk” in (7.78). 1In other words the right hand side of (7.78) is at least

(7.79) Pp {# of k satisfying (7.77) for which V. contains
0

a vacant circuit on Qsﬁ surrounding | v | s at
least m} .

However, the Ppo-probability that any fixed Vk contains a vacant
circuit on Q;Z surrounding [ v | is at least 63 (cf. (7.21) and
Lemma 4.1) and the different Vk are disjoint. Vacant circuits in
different Vk occur therefore independent of each other. Moreover,
as & » o the number of k which satisfies (7.77) also tends to .
If we call this number v, then the number of k satisfying (7.77) for
which V,  contains a vacant circuit on Q;Q surrounding [ v | has
just a binomial distribution corresponding to v trials with success
probability 3_62 . Clearly the probability that such a variable is
>m tends to 1 as v -+, Thus (7.79) is at least 1/2 for all
large 2. This implies (7.76). ///

Proof of Theorem 3.1 (ii) and (iii). It suffices to prove part (ii),

since part (iii) then follows by interchanging the roles of G, p and
"occupied" with those of Q*, T-p and "vacant", respectively.

(3.46) follows from (7.35), Theorem 5.1 and Lemma 7.3. To see this
note that (7.35) implies (5.10) with N = Zﬁi, 2 large and p=p' .
Thus by (5.11)

(7.80) Pp.{#w(v) = «} = 0,

which is the first relation in (3.46). It is also immediate from (5.11)
that (3.48) holds. To obtain the second relation in (3.46) pick a

pe P such that p' << p << py. Then automatically 0<<p<<T1 and
by the above (applied to p instead of p') also

Ep{#W(v)} < o,
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Lemma 7.3 now shows

Pp{#w*(v) = o} > 0.

But {#W*(v) = «»} 1is a decreasing event so that Lemma 4.1 implies

Pp.{#w*(v) = w} Z_Pp{#w*(v) = o} >0 .

The second relation in (3.46) follows. Finally, we have from Lemma 4.1
and (7.34)

(7.81) Pp.{ 3 a vacant circuit on G surrounding

[N,N]x [-N,NT} 3_Pp { 3 vacant circuit on G* surrounding
0

[-N,N]x[-N,N] =1 for all N.

If v; and v, are two vertices of G* in [-N,N]x[-N,N] and
#w*(v]) = #w*(vz) = =, then there exist vacant paths, n? and wz say,
on G* from vy to « and from Vo to « , respectively. Both
these paths have to intersect any vacant circuit c* on G* which
surrounds [-N,N]x [-N,N] (and hence vy and VZ)' The intersection
of ﬂ? and c* does not have to be a vertex of G*, but nevertheless
ﬂ? and c* must contain a pair of neighboring vertices on G*, as
explained in Comment 2.2 (vii). Consequently c* has to belong to
w*(vi) for 1 =1,2. Thus, if a vacant circuit c* as above exists,
then w*(v1) and w*(vz) have c¢* in common and w*(v]) = w*(vz).
Thus (7.81) shows w*(v1) = W*(vz) whenever #w*(v]) = #w*(vz) = ®

so that there is at most one infinite vacant cluster on G*. The fact
that there actually exists an infinite vacant cluster follows from
Birkhoff's ergodic theorem (Walters (1982) Theorem 1.14) since for fixed
veG*

| 133

%ki T[A(vekey) = =] > P LAR(V) = =3 > 0 ace. [P]

(compare Harris (1960), Lemma 5.1 and Lemma 3.1). (3.47) is immediate
from these considerations. ]

Proof of Theorem 3.2. Let Py € Pk be such that the set in the right

hand side of (3.56) is nonempty, so that tO in (3.56) is well defined.
Assume further that 0 << Py = toPy << T. We shall now give an indir-
ect proof of
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(7.82) Tim inf o*((dzn,dBn);l,po) >0
n—‘)m

and

(7.83) 1im inf o*((c,n,cn);2,p,) > 0
n 23 0

Assume for the sake of argument that (7.82) fails. Then there exists

a sequence n, > « such that

1im o*((d,n,,d4n,)31,p4) = O
o 2293 )3 15Pg

and by (3.55) also
Tim o*((nﬁ,d1n£);2,p0) = 0.

Qo0

If this is the case, then we see from (7.14) and (7.15) that

(7.84) Tim o({(n,-27,,d.n_+27,)31,p,) = 1
AR A S B b TN

as well as

}le o((d2n£+2/\4,d3n2—21\4);Z,pO) = 1.
By virtue of Lemma 2.1b the probabilities of occupied horizontal and
vertical crossings on sz of suitable rectangles also tend to 1.
More precisely, the existence of an occupied horizontal crossing on G
of [O,n—2A4]><[0,d]n+2A4] implies the existence of an occupied hori-
zontal crossing on G of [A,n—2A4-A]x [—A,d]n+2A4+A]. Therefore
(7.84) implies

pR
lim o((nz-2A4—2A—1,d]n1+2A4+2A+]);1,pO,QDZ) = 1.
fro0 !
Similarly

Tim o((dznl+2A4+2A+1,d3n2-2A4—2A—]);2,p0,Qp2) = 1.
Lo
By virtue of the RSW theorem (Theorem 6.1) (and Comment 3.3 (v)) there

d,,d. only) such that for all k

must exist a 7 (depending on dl’ 934y

Tim o((kng, (m+3)n))31.p,Gyp) = Tim o((m+3)n ok )52.pg.G)) = 1.

frroo 200

By Lemma 2.1a we can now go back to G to obtain
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(7.85) lim o((kny,(m+4)n;)31,p4.G) = lim o(((m+4)n, ,kn )32,py,G) = 1.

o0 00

Finally, by (7.12) we have for any integers my, m,

(7.86) o((my,my)315pg)+o*((my.m,)52,p) <1

and by interchanging the horizontal and vertical direction also

(7.87) o((m],mz);Z,p0)+c*((m],mz);1,po) < 1.
(7.85)-(7.87) show that

Tim o*((kng, (m+4)n,)52,pg) = Tim o*({(n+4)n,,kn;);1,p,) = 0.

o0 R0

If we take NZ = (n+4)n2 and k = 3n+12 this implies
(7.88) T*((NQ,NQ);i,posQ) = T((NQ,NQ)31,T;POsQ*) >0

as L+« for i=1,2. Indeed (3n+12)n2 = 3N, so that

L

T*((NQ,NQ);1,p0,Q) = P_{ 3 vacant horizontal crossing on
Po

G+ of [0.N,1x[0,3N]} = o*((n+a)n,,(3r+12)n,)51.p,),

and similarly for the vertical direction. In particular (7.88) allows
us to pick on N with

T((NN)31,T-psG) < 7 k(2), 1 = 1,2,

where k(2) 1is defined by (5.9). By continuity we can then also find
a 0 <ty <ty such that 0 << tipy << T and

(7.89) T((N.N)31,t9p15G) = T*((N,N)31,T-t,py,G%) < k(2).

This, however, contradicts the definition of tO via Theorem 5.1.
Indeed (7.89) and Theorem 5.1 applied to G* show

—c2n

(7.90) ,n>0

Pt]p]{#w*(v) > n} < Cqe

for any vertex v of G*, which implies
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Tim 0*((n+2A4,a]n—2A4);t1p],2) =0,

n-o
by the same argument as at the end of the proof of Lemma 5.4 (especially
(5.55)). Together with (7.14) this finally gives

Tim 0((n,a1n);t]p1,1) =1,

n->oo
contradicting (3.56) since t, < tp- It follows that (7.82) must hold
and (7.83) is proved in the same way. (3.39) for some choice of &,
ﬁk is now immediate from (7.82) and (7.83). (Note however, that the
b],b2 for which (3.39) holds are not the b1,b2 of (3.53).)

Interchanging the role of G and G* one proves in the same way

that

1im inf o((bzn,b3n);1,p0) =0

n->>~

implies for some t, >ty with 0 << typy << T

Tim 0((n,a1n);1,t2p]) = lim o((n,b]n);Z,th]) = 0.
n n->oo

->00

Again this contradicts (3.56), since t2 > tO. Hence
1im inf o((b,n,b,n):1,p,) > O
e 2"°"3 0
and similarly
1im inf 0((a2n,a3n);2,p0) > 0.

N>

Thus also (3.38) holds, i.e., Condition B is fulfilled for Py ]



198

8. POWER ESTIMATES .

In this chapter we study the behavior of the percolation proba-
bility and the expected size of an occupied cluster in a one-paremeter
problem. As defined in Ch. 3 this means that we consider probability
measures for which

Pp{v is occupied} = p

is the same for all vertices v of the studied graph ¢ , and the
occupancies of all vertices are independent. We want to know the
asymptotic behavior of

6(p) = 6(p,z;) = Pp{#w(zo) = w}
and of 1)
Ep{#W(zo); #W(zo) < »}

as p approaches the critical probability Py (see Sect. 3.4).
By analogy with results in statistical mechanics, and on the basis
of numerical evidence (see Stauffer (1979) and Essam (1980)) it is
generally believed that

) 8

(8.1) 8(p) ~ Co(p-pH s P ¥ Py

(8.2)  E {#M(z)s #(zg) < =) ~ C (p-py)™"* , P ¥ py

and

(8.3)  E {#H(z))} ~ C_(pyP) =, bty

for suitable constants C0 C, and 0 < B, y,<= . Similar power

Jaws are conjectured for other quantities. It is also conjectured
that the so-called critical exponents B8, y, do not depend (or
D £rx;a)

stands for E{XIA } , i.e., the integral of X over
the set A.
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depend very little) on the detailed structure of ¢ , but depend
(almost) entirely on the dimension of G only. In other words, these
exponents should be (almost) the same for all periodic graphs G
imbedded in Rd with one particular d . As far as the author knows
powerlaws like (8.1)-(8.3) have been established mathematically for
very few models, and not at all for any of the percolation models
discussed in this monograph. It is not even clear how strictly (8.1)
should be interpreted. Does it mean

lim 2B - ¢ ? 0,

B
p+Py (p-py)
or
zgiEls—— is a slowly varying function of P-Py 35 P ¥ Py
P-Py

or perhaps only

. Tog 6( _ ”
1im - Jog (p-py) B!

P¥Py,

A similar comment applies to (8.2), (8.3) and other conjectured
power laws. The best we can prove so far is that the left hand
sides of (8.1)-(8.3) are bounded above and below by suitable powers
of [p—le for percolation problems on certain two dimensional graphs
G. We believe that the method of proof will work for many graphs in
the plane in which the horizontal and vertical direction play
symmetric roles, but to simplify matters somewhat we restrict ourselves
here to site - and bond - percolation on the simple quadratic lattice.
The graph for site percolation on 122 is Go of Ex. 2.1 (i). In
keeping with the tenor of these notes we treat bond percolation on
Z? in its equivalent version as site percolation on the graph G of
Ex. 2.1 (ii) (see Sect. 2.5, especially Ex. 2.5 (ii)). We also deal
with the matching graph QS of %o described in Ex. 2.2 (i)
and the matching graph q? of Q] . qT is isomorphic to q1 (see
Ex. 2.2 (ii)). When ¢ = q? s i=00r 1, then G* will be the
graph G; itself, in accordance with Comment 2.2 (v) .

The principal result of this chapter is the following theorem.
Theorem 8.1. For one-parameter site-percolation on G = G; »
Gy qa or q? there exist constants 0 < Ci’ Bi’ Yy < such that
for py, = pH(q) one has
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By By
e t Y2
(8.5) Colpyp) ~ < E UM} < Colpp-p) 5 p<py s
and
-.-Y3 -Y4
(8.6) ¢, (p-py) f_Ep{#W, #l < =} < Colp-p,) » P> py -

In the course of proving this theorem we derive the following
estimates, some of which will be used in the next chapter.
Theorem 8.2. For one-parameter site-vercolation on ¢ = QO’Ql’QS’ or
q? there exist constants 0 < C,, v; <« such that uniformly for
0<pcl

-'YS
(8.7) Pp{n < #W < o} f.cgn
and 1
(8.8) E {(#w)§Y5 : #W < o} < C
) p ’ =10

Also, at  p = py, = pH(Q)
Ys'] -
n <P {#d >n} =P {n < #0 < =} < C,n
— Py T Py~ -
Remark .

Y5
(8.9) Cy X

For G =Gy or G& py(g) = by Application 3.4 (ii). Also,
by Application 3.4 (iv) (see also Russo (1981))

In the graphs considered here all vertices play the same role
so that e(p,zo) and the distribution of #W(z0
all vertices zg - Therefore no reference to =z

) are the same for
0 is necessary in
the theorem. Finally, for p < Py #W < o with Pp—probabi]ity one
(see Theorem 3.1 (ii)). $herefore, for p < p,

5
RICOERDEY 111

(8.8) simply becomes

In each of (8.4)-(8.6) one of the inequalities is much easier
to prove than the other one. In (8.4) the first inequality is the
difficult one. To motivate our principal Temma we shall work backwards
from this inequality. Assume then that we want to prove

B
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First we fix a vertex z, - If g-= QO or q6 we take z, = (0,0) ,
the origin, and if ¢ = q] or q? we take zy = (%30) . We intro-

duce the following notation. For any vertex v = (v(1),v(2)) of ¢
(8.10)  S(v.,M) = [v(1)-M, v(1)+M] x [v(2)-M, v(2)+M]

(a square around v). The topological boundary of S(v,M) is denoted
by

(8.11)  AS(v,M) = {x = (x(1),x(2)): |x(1)-v(1)]

or |x(1)-v(1)] <M, |x(2)-v(2)]

M, x(2)-v(2)] <M

M} .

If some point y ¢ AS(ZO,M) belongs to an edge in W = W(zo) R
then W can be finite only if there exists a vacant circuit on ¢*
surrounding Zg and y , by virtue of Cor. 2.2. Such a circuit c*
must contain at least M vertices. (e.g. if y 1is on the top edge
of AS , then c¢* must contain a vertex below the horizontal Tine
x(2) = 0 and a vertex above the horizontal line x{(2) = M.) Conse-
quently, for any M

8(p) Z.Pp{ 3 occupied path on G from z, to some y

on AS(VO,M) but there does not exist a vacant circuit on
G* surrounding z, and containing at least M vertices} .

By the FKG inequality this implies

(8.12) 8(p) Z.Pp{ 3 occupied path on G from 2z, to some y

0
on AS(zO,M) . Pp {there does not exist a vacant circuit

on G* surrounding 0 and containing at least M vertices}.

It is not hard to prove (see Smythe and Wierman (1978), formula (3.34);
a better estimate is in Lemma 8.4 below) that the first factor in the
right hand side of (8.12) is at least CTZ/M for any p >, - To
estimate the second factor, observe that any circuit on G* surrounding

z, and containing & > M vertices must intersect the first coordi-

0

nate axis in one of the vertices (j,0) ((j + %3 0)) , 1<ji<a,

1 = * * = * i

if =g, or Gy(Gy or G3) . IfG =g, or Gg and there exists
a vacant circuit on G* through (j,0) which contains & vertices,
then W*(j,0) , the vacant component of (j,0) on G* contains at

least & vertices. Consequently
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(8.13) 6(p) > P { 3 occupied path on G from Z4 to some y
L
on AS(z..M)} {1 - 2 2 P {#W*(J 0) > 2}}
0 g=M =1

P { 3 occupied path on G from z, to some

0
y on AS(zy,M)H1 - z LP {#W*( ) > 21}

(8.13) remains valid when ¢ = Gy Or G} . The difficult part is
now to find a good upper bound for
*
Pp{#w (zo) > 4}
when p > Py but p close to Py - For this we use Theorem 5.1,
applied to G* . By Theorem 3.1 (iii) , for p > Py
* [¢ o]
Ep{#w (20)} <

and thus, by Theorem 5.1 (with the role of occupied and vacant
interchanged)

—CZQ
*
(8.14) Pp{#w (zo) > 1} §_C1 e
and the problem is reduced to getting a grip on C1, C2 . Lemma 5.3
shows that we can take
7,2 -C A
(8.15) ¢, = (D (o) , e Z-27h,
where
(8.16) a=L L
49 N
as soon as N 1is so large that
. _ -121 .
(8.17) T*((N,N); i, ps G) < K= (50e) i=1,2

Actually (5.42) still contains the quantity

(8.18) ™ ((N,N); 1, ps G) + T*((N,N)3 2, p, G)

but one easily sees from (5.46) that our upper bound (8.14) is
increasing in the quantity (8.18), and we may therefore substitute
2¢< for the quantity (8.18), as long as (8.17) holds. On the graphs



203

which we consider here the horizontal and vertical directions are
equivalent so that it suffices to choose N such that (8.17) holds
for i =1 . For any such N (8.14)-(8.16) yield

* _(Jog 2 1
(8.19) Pp{#w (zO) > 2} §_C1 exp - ( 75 N2 L) .
To find an N for which (8.17) holds we reexamine the proof of

Theorem 3.1. Specifically we shall go back to Russo's formula in the
form (7.44). We write E* = E*(N) for the event

(8.20) E* = { 3 vacant horizontal crossing on q;g of
[0,N] x [0,3N]}

and N§ for the number of pivotal sites on 7 for E*. (Here
and in the sequel, we view (G,G*) as a matching pair, based on
(m,3) as described in Sect. 2.2. The planar modifications Goy and
Gpg Were defined in Sect. 2.3.) '

Note that we are dealing with crossings on Q*Q rather than
G* in (8.20). The planar modifications of the graphs are useful
whenever we want to use the RSW theorem (Theorem 6.1) as we shall
have to do repeatedly here. For the present graphs we always choose
the central}vert1ces in QO .02 and q] ,pL at points of the form
(k +2,2 7) s k.el , and 1in q],pz at points (k1,k) .sl.
The edges incident to the central vertices are straight line segments
as illustrated in Fig. 8.1. Of course QO ) = Gpe and q?,pz is
obtained by translating Q],pk by ( ) One of the simplifications

x
Go,pe G1.p2

Figure 8.1 Illustration of Gy by and G oy - Each

black circle represents a vertex. In q1 ")
the origin is marked by *; it is not a vertex of
*

Q],pz
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obtained by this construction is that for each of the graphs QO and
Gy an edge of qu or of Q;z intersects each vertical line

x(1) = n or horizontal line x(2) =n , neZ , in a vertex of
sz or QEQ » respectively. It is not hard to check the proof of
Lemma 2.1b and to verify that for the special graphs QO,Q],Qa and
Q? the existence of a vacant horizontal crossing on @G* of

[0,N] x [0,3N] implies the existence of a vacant horizontal crossing
on QSR of [0,N] x [0,3N] 1) . (One just inserts central sites of
q;i wherever necessary; these are vacant by our convention (7.3)).
Therefore

(8.21) *((N,N)5 1,p,G) = T((N,N); 1,9,G*)
< T((N,N); 1,q,q;;£)= Pp{E*(N)} (g = 1-p)

We now apply Russo's formula (4.22) as we did in (7.42)-(7.44). QEQ .
E* are substituted for G and E , respectively. We also have to
replace p by q = Pp{v is vacant} . The quantity o in (7.43)

is to be replaced by

Jinf (P_ {v 1is vacant} - P {v is vacant}) = p - Py >
ver,  PH P

and if we take p(t) = tpH + (1-t)p then we find exactly as in (7.44)
(8.22) T((NN)3 1,0.0) < P EX(N)}
- - ] * *
<exp - (p-p,) [y Ep(t){NOIE Jdt . p > py

In the present setup a vacant horizontal crossing on QBQ of

1 * = * * * *
[0,N] x [0,3N] 1ds a vacant path r* =(v O’e1""’ev’vv) on q;z
with the properties (8.23)-(8.25) :

(8.23) (v*],eg,...,eg_],vt_]) cint (J) ,

where J 1is the perimeter of [0,N] x [0,3N] viewed as a Jordan
curve.

(8.24) e? intersects J only in the point v6 which belongs

to {O} X [033N] .

D This fact is not at all crucial; it merely allows us to do away
with A on most places in the proof. Also we do not have to construct
J laboriously as in Lemmas 7.1 and 7.4.
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(8.25) e; intersects J only in the point vs which
belongs to {N} x [0,3N].

Note that v c int(J) and (8.24) together imply e¥\\{v6} < int(J).
Similarly (8.23) and (8.25) imply e;\ v} < int(J) . By Prop. 2.3,
whenever E* occurs, then there exists a unique vacant horizontal
crossing r* of [0,N] x [0,3N] for which the component of

int(J) \ r* below r* (i.e., with the lower edge of J = [0,N] x {0}
in its boundary) is minimal. We shall denote this lowest vacant
horizontal crossing by R* . As in (7. 46)

E* = U{R* = r*} R

where the union is over all paths r* = (VO’ e1, ..,e:, vc) on
q;z which satisfy (8.23)-(8.25) . Also, when {R* = r*} occurs,
and v* s a vertex of 7 on r* [ int(J) , then v* is pivotal
for E* whenever it has an occupied connection to E:= (0,N) x {3N}
above r* . Analogously to Lemma 7.4 we mean by this that there
exists a path s = (vo,e],...,ep,vp) on ka such that

(8.26) there ex1sts an edge e of ¢ D2 between v* and Vo
such that e cJ (r*)
(8.27) v, € C R
+ *
(8.28) (vo,e1,...,ep’\ {vp}) cd(r),
and
(8.29) all vertices of s are occupied,

where J+(r*) is the component of int(J)\ r* with C = [0,N] x {3N}
in its boundary (compare (7.47)-(7.49)).
Sti11 following the proof of Lemma 7.4 we now set

(8.30) N*(r*) = N*(r*,N) = # of vertices v* of % on

r* n int(J) which have an occupied connection to C
above r*.

Exactly as in (7.54) we then have

* * 1 * *
where the minimum is over all paths r* on QER satisfving (8.23)-
(8.25). Together with (8.22) this yields
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(8.31) T*((NsN)31.psG) < exp - (p-py) min E_ (N*(r*,N)) ,
rx Py

and we finally must estimate how fast

(8.32) min E_ (N*(r*,N))
rx Py

grows with N.

The argument so far has been largely a repetition of the proof
of Lemma 7.4 with qu and "vacant" taking the place of sz and
"occupied". One could continue to imitate the proof of Lemma 7.4.

For this we would first show that there exists Gk > 0 such that

(8.33) o((kes2); 1.p4(G), qu) >8>0 , 2>1,

and

.3 P { 3 occupied circuit on surrounding 0
(8.34) py(@) P %pg 3

and inside the annulus [-28,22] x [-22,22]\ (-%,%)
x (=2,2) 2_62 s N>1 .

((8.33) and (8.34) will be needed in any case and will be demonstrated
below; see Lemma 8.1). (8.33) and (8.34) are just (7.18) and (7.20)
for the present graphs; they show that we may take ﬁé = (2,2) in
(7.18) and (7.20) . However, for Lemma 7.4 we wanted disjoint annuli
so that we rather take N& = (221,222) . The analogues of (7.62),

(7.70) and (7.72) then yield

(8.35) min E_ {N*(r*,N)} > 8'(# of k with N, < l-N) > §" Tog N
r* Py - k 2 Z

for some &', 8" > 0 . When this estimate is substituted in (8.31)
one obtains

o ((NN)5 1apag) < N0 (PPY)

so that (8.17) holds when N > exp C(p-pH)_1 for some constant
C. Next, by (8.19) this would give

o]

!

)21 <y
=M

2 Pp{#N*(vO

whenever

M > exp{(2+e) C (p-pH)'1}
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for fixed € >0 and p close to Py - Finally, (8.13) with an
estimate of order M'] for the first factor in the right hand side
would show

6(p) > exp - {2+€)C((P-PH)—]} > P ¥y

Obviously this is much weaker than the left hand inequality in (8.4).
The reason for this is the poor Tower bound (8.35) for (8.32).
Retracing the above steps we see that we will obtain the first
inequality of (8.4) when we improve (8.35) to

(2+e)/8,
min E_ {N*(r*,N)} > CN

rx Py B
The principal step of our proof is therefore to obtain this improvement

on Lemma 7.4. It is established in Lemma 8.3.

Lemma 8.1. For ¢ = Go> Gy> QS, or Gy and integral k there exists
a & >0 such that

k
(8.36) o((k2,62); 1, py(G).Gp, ) =
o((62:ke); 2, py(G)sGy, ) > &
and
(8.37) P { 3 occupied circuit on G surrounding the origin in
Py(G) p4

[-122, 122] x [-122,122] \ (-62,62) x (-62,62)} 3_62 2> 1.

Remarks .

(i) This lemma proves (8.33) and (8.34) with & replaced by
62 . Using monotonicity properties such as in Comment 3.3 (v) we could
obtain (8.33) and (8.34) for all & , but this will not be needed.

(ii) For @G = Go OF Qa this lemma was proved by Russo (1981)
by means of Theorem 5.4. For G =G, or Q? the lemma was proved
by Seymour and Welsh (1978), but formulated for bond percolation. Their
argument for Q] runs roughly as follows in our notation: By a simple
variant of Prop. 2.2

(8.38) o((2,2); 1,p,q1 pz) + Pp{ 3 vacant vertical crossing on

G pp OF 3+ 250 % Guagld 20
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(compare (7.14). Now use the fact that G} b2 is just ) shifted
by (%—, 10 and the fact that the horizontal and vertical direction
play identical roles on q]’pz to obtain

1

. . 1 1
Pp{ 3 vacant vertical crossing of [2, 2-2] x [2,

1
1—2] on

Gy pz} = P1_p{ 3 occupied vertical crossing of

[0,2-1] x [0,2-1] on Gy ,} = 0((2-1,%-1);1,1-p,q]’p2) .
Together with (8.38) this gives for p =-%

N .1 1
O((SL,,Q,), 1; 23 Q-] ,pl) + U((Q“'] 52/'])9 1: 23 q-l’p2) _>_]
so that for each N

for m=2-1 or m= & .

roj—

o((m,m); 1, %3 Gy) >

This is essentially (8.36) for k =6 , since pH(Q1) = %— (see
Application 3.4 (ii)). From this one can easily obtain Lemma 8.1
by means of the RSW theorem.

Our proof below is essentially as in Russo (1981), and works
simultaneously for all the ¢ under consideration. The only
difference is that we use Theorem 5.1 instead of Theorem 5.4.
Proof of Lemma 8.1. Theorem 5.1 implies

(8.39) t((2,2)5 1,p,4(G)s G) >« = k(2) for =1 and i=2,
for otherwise by (5.11)

E. (#W) <o .

pH( ) <
But this is impossible since p, > p; and by (5.17)

) = o,
EpT( )

while Ep{#W} increases with p (Lemma 4.1). Thus (8.39) holds.
However, for the graphs G considered in this Temma the horizontal
and vertical direction play identical roles so that

(8.40) o((2y:%,)315 Ps G) = 0((25521)5 2, P, G) .

In particular
a((2,32); 1, pysG) = ol(38,2);5 2, pys G) =
T((/Q,"Q); 1: pH’q) = T((Q,,Q,); Za pHa Q) _>_ K
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We also saw above (see the argument before (8.21)) that the existence
of an occupied horizontal (vertical) crossing of a rectangle
[0,21] X[O,Ez] on G implies the existence of such a crossing on

ka (2], %, integral). Thus

O((£’32)31’pH(Q)’qu) 3_0((2332);1,PH(Q),Q) > K o,
0((32,2);2,13}1((}),%2) > 0((382,2)32,p,(G),G) > « .
(8.36) and (8.37) now follow from Theorem 6.1 and (the proof of)

Corollary 6.1. []

We need some preparation for Lemma 8.2. Let a and © each be
a vertex of qpl or of ng’ and &, N integers > 0 such that

(8.41) s(a,3.2%) < 5(0,N)

(see (8.10) for S and (8.11) for AS). Let r = (vo,e1,...,ev,vv)
and S = (wo,f],...,fg,wc) be two paths on sz with the following
properties:

(8.42)

a, v, € AS(O,N),

(8.43) (vo,e1,...,v ,ev\\{vv}) = e‘\{vv} < $(o,N),

<
]
—

(8.44) a, W e AS(O,N),

H

(8.45)  (Wg»fyse.-oW_1oFo\ (1) = s\ {w 3 = 8(o,N),

(8.46) rNs = {a} .

If (8.42)-(8.46) hold then r and s are two paths in S(O,N) from

a to AS(0,N) which intersect only in a. (This can only happen if

a is a vertex of G_,.) The reverse of r followed by s 1is a simple
curve which divides S(O,N) into two components, each of which is
bounded by this simple curve and one of the arcs of AS(0O,N) between

W, and v, (see Fig. 8.2). Denote these components in arbitrary order
st =5S'(e,r,s) and S" = S"(0,r,s).

Def. 8.1. For any subset R of S(0,N) and vertex Vi on r we say
that Vs is connected to s in R if vy =a or if there exists a

path t = (uO,g1,...,gT,uT) on ng which satisfies
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wU
<
X QS \\
NN
S
WX v,
s(a,3.2%)

S(o,N)
Figure 8.2 The outer square is S(O,N); the inner square is
S(a,3.22). S' 1is the hatched region.
(8.47) (g]\\{uo},u],...,uT_],gT\\{uT}) = t\\{uo,uT} C R,
(8.48) ug = v; and u_ = W, on s for some 1<j<o,
and
(8.49) Ups...sl _q are occupied.

Next we set

(8.50) Y(V.i saQ

and

(8.51) Z(8) =

where the min

1T if Vi is connected to s in

L) = 9 $*(0,r,s) N S(a,3.2%),

0 otherwise,

-~

min E { Y(v.,3,2,r,S)
pH(Q) visrﬂs§a,3.2£) 1 I

v; a vertex of 7

w(v) = e(v), v e $"(0,r,s)},

in (8.51) is over all a, ©, N, r, s which satisfy

(8.41)-(8.46) and over all choices of +1 or -1 for e(v) with

/1]

V'
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a vertex of Qp£ in S". Note that the sum (8.51) is simply the num-
ber of vertices of 7 or r inside S(a,3.22) which are connected
to s in S§' N S(a,3.22). This sum depends only on occupancies of
vertices in S', and hence is independent of {w(v): v € S"}. Thus,
the conditioning in the expectation in the right hand side of (8.51)
does not influence the expectation. It is nevertheless useful for the
proof of the next lemma to introduce this conditioning.

We shall also need an analogue of Z when r is replaced by a
path on le (instead of on sz). In other words

- * * * s . . .
r = (va,e],...,ev,vv) will now be a path on ;2 which satisfies
(8.52) v6 =a, We AS(0,N)
and

(8.53)  (v§»e%,...,v5 e\ {¥21) = r*\ {v*} < §(o,N).

s = (wo,f1,...,f0,w0) will again be a path on Qpﬁ which satisfies
(8.44) and (8.45). Analogously to (8.46) we require

(8.54) r* Ns = {a} ,

which can happen only if a is a vertex of G and G*, i.e., a ver-
tex of 7. Def. 8.1 can be copied without change for vertices v? on
r* instead of vertices v; on r. Finally Y*(v?,a,xr*,s) is

defined as in (8.50) by replacing v and r by v¥ and r*. Similar-
ly Z*(&) 1is defined by replacing Y(vi,a,z,r,s) by Y*(v?,a,z,r*,s)

and S"(0,r,s) by S"(0,r*,s) in (8.51).

Lemma 8.2. There exist constants 0 < C]2’ ay <=, such that for
G=Gp» Gy G§ Or G

u12
(8.55) (%) 2.0122 » 2>0,
and

a1l
(8.56) Z*(2) > Cy,2 » 2>0.

12

Proof: We restrict ourselves to (8.55) since the proof of (8.56) is
practically the same. Throughout we fix G as one of the four graphs

C;O, C}],%‘ or Cﬁ‘- If G =G5, then Q*=C31.,1'=0,1.
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The idea of the proof is very similar to the Tast part of the
proof of Lemma 7.4 (but s* is now replaced by s). Let r and s
be as in (8.42)-(8.46). Again we start with considering disjoint
annuli centered at | a | := ([ a(1) ], a(2) ]) (a = (a(1),a(2))
= Vg = wO). In view of (8.37) suitable annuli to take now are

v = S(La ],6.2%)\8(La ],6.2%%T).

As in the argument for (7.72) we estimate the probability of some vy
being connected in Vk to s by the probability of there existing
an occupied circuit surrounding | a | in Vi Assume now that there

is a vertex Vs of r 1in Vk which is connected by a path

k
t = (uo,g1,...,gT,uT) in Vk ns'(o,r,s) to s. In Lemma 7.4 we only

used the estimate that Vk contains at least the one vertex Vi of

k
r connected to s, in this situation. Here we shall be less casual

with our estimation. Let U s the final point of t, equal wj on s.
Consider the path S consisting of t followed by

(wj,fj+],...,fc,wc) (a tail piece of s). Just as s itself, s, s

S(®,N)

Figure 8.3 r and s are drawn as solid curves. t is
dashed. Sk is the composition of t and

the boldly drawn part of s.

a path on S(6,N) from a point of r to AS(o,N), and Sk intersects

r only in the initial point Vs of S+ Therefore s can take
k
over the role of s. If some Vs is connected to Sk in S'(o,r,s)
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then Vs is connected to s itself in S'. We can therefore obtain
new points connected to s, by looking for points which are connected
to Sy This is done by considering the annuli

S(Lvy ,6.22m)\§(l_v1.k 1.6.25™1)

centered at L_vi | o= ([_vi (1) _],l_v1 (2) |). This procedure can
k k k

be repeated and we obtain something resembling a branching process in

which the first generation consists of the Vi . Each vertex v which
k
in some generation has been found to be connected to s by a path 3

"produces" a next generation of vertices connected to s, namely the
ones connected to 3§ inside suitable annuli centered at | v |. Closer
scrutiny would show that we are dealing with a supercritical branching
process with mean number of offspring per individual equal to m> 1,
say. Estimating Z(2) would then amount to estimating the total num-
ber of individuals in the branching process after €% generations, for
some e > 0. This number would have an expectation

. zl(e log m/log 2).

This is precisely the kind of estimate claimed in (8.55). Rather than
follow the above outline in detail we shall prove the recursion relation

(8.57) 2(2) > (1+63)2(2-3), &> 4,
with $

branching process into the separate branching processes generated by
the individuals of the first generation of the original branching

30 35 in (8.36). This corresponds roughly to decomposing the

process. The (e%)-th generation of the former branching process is the
sum of the (e%-1)-th generation for the latter branching process.

Now for the detailed proof of (8.57). Fix a, ©, N, 2, r and s
such that (8.41)-(8.46) hold. Obviously (8.41)-(8.46) continue to hold
when & is replaced by 2-3 in (8.41), and also

Y(V.I 3a91:r95) _>_ Y(V_i ’a:2‘3,r35) for V_‘- € S(a,3.29‘_3).

Consequently
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(8.58) E_ { Y(v.,a,%,r,s)|w(v) = e(v),v e S"}
Py vierﬂS(g,3.22’_3) i llv) = elv).v e
vidm
>E | ) o Y(v:,a,2-3,r,s) |w(v) = e(v),v e S"}
PH v.erfs(a,3.2" 3y o
vidw
> 2(2-3).

Next define the closed annulus
(8.59) v :=s(Lal,32" T+ 223\ (L a J,302% 1 - 223y

< 5(a,3.2%) < §(o,N),

where as above a = (a(1),a(2)), | a ] = (La(1) ], a(2) ]). We shall
apply Prop. 2.3 with S taken equal to V. For J we take the peri-
meter of S'(0,r,s) and for the arcs Bys A, By, C making up J we
take

B, = reverse of r, A = {a} (a single point), B, = s and
(8.60)

C = arc of AS(O,N) from W, to v in the boundary of
S'(e,r,s).

We shall be concerned with the collection of paths t = (uo,g],...,gT,uT)
on qu which satisfy

(8.61) tcy

3

(8.62) (91\\{u0},u1,...,uT_},gg\fuT}) = t\\{UO’“r} c S'(0,r,s),

(8.63) Uy is some vertex Vi on r with 0<i<wv,

and

(8.64) u_ is some vertex wj on s with 0< j<o.

Let G(r,s) be the event

G(r,s) = { 3 occupied path t on sz which satisfies
(8.61)-(8.64)1 .
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The properties (8.62)-(8.64) are the properties (2.23)-(2.25) in the
present set up. Therefore Prop. 2.3 can be applied, and on the event
G(r,s) there exists a unique occupied path t satisfying (8.61)
-(8.64) for which

J7(t) = component of int(J)\t with {a} in its boundary

component of S'(@,r,s)\t with {a} in its boundary

is minimal. We shall denote this path with minimal J (t) by T when-
ever it exists. Then Prop. 2.3 implies

(8.65) G(r,s) = U (T =t},

where the union is over all t satisfying (8.61)-(8.64) (compare
(7.46)). Also, as in (7.72), any occupied circuit ¢ on qu and 1in

V, surrounding | a |, contains an occupied path t satisfying (8.61)
-(8.64). (This time apply Lemma A.2 with J] =J, J2 = ¢ and note that,
by virtue of (8.59) and & > 4

ccVvec §(®,N), a = vy =W, £ Vs

consequently any vertex v; of r on ¢ must have 0 <1 < v and
any vertex Wy of s one must have 0 < j < o and hence the require-
ments 0 < i <v in (8.63) and 0 < j <o in (8.64) are automati-
cally fulfilled.) It follows that
(8.66) Pp{G(r,s)}‘z Pp{ 3 occupied circuit on sz in V

and surrounding | a |}
As in the proof of Cor. 6.1 from Theorem 6.1 one can find an occupied
circuit in V surrounding | a | as soon as there exist occupied

vertical crossings on Qpl of the two rectangles (one corresponding
to the plus signs and one to the minus signs)

[La(n) ]+ 3.2 123223, a(1) J,x 3.2% T+3.2% 3] «

[ a(2)]- 3% 1+ 22'3)'La(2) IE 32¥ V4 2v 3] |

as well as occupied horizontal crossings on pr of the two rectangles
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[La() - 32" +2%%), La(1) ]+ 32" T+ 2431

[La(2) | £3.2%1-3.2%3,| a(2) | #3.2% T +3.2%3).

By the FKG inequality and (8.36) the right hand side of (8.66) is there-
fore at least 630 , when p = pH(Q). In other words
4
. P R .
(8.67) pH(q){G(r s)} 3.630
Now let t = (uo,g],...,gT,uT) be a fixed path satisfying (8.61)-
(8.64) (no reference to the occupancies of the us is made at the
moment). Then t s a crosscut of J and divides 1int(J) = S' (0,r,s)
into two components. The one which contains {a} 1in its boundary we
denoted above as J (t), while the one with C 1in its boundary is
denoted as usual by J+(t) (see Fig. 8.4). It is important to give

SI

S(e,N)

Figure 8.4 V is the annulus between the dashed lines. The
small squares centered at a and b are

S(a,3.22'3) and S(b,3.2z'3). r and s are
drawn solidily; t 1is indicated by — - — - — .
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another equivalent description of J+(t). Let

u0 v1.0 and denote

by o the subpath (vio,e10+],...,ev,vv) of r. Let u, = wjo
denote by Sy the following path, consisting of t and the piece of

s from w. on:
o

and

S0 = (UO’QT""’QT’UT =wW. o f oW

. seeosf
JO ‘]O Jo'ﬂ

).

w
oo

Finally, we write b for Ug = Vi - Then the paths o and Sg on

0
sz satisfy the following analogues of (8.42)-(8.46)

ViO =b, v, € AS(O,N),

(yoﬁwﬂ,uq%\ﬁub=r@@KQC§wML

Uy = b, wooE AS(O,N),
(uoag]s---agTsuT = wjoafj0+]9---swo_1:fc\\{NU})

TANURES S(0,N) (use t <V <§(a,N)),
o n 5g = {b} .

In addition, since b =u; eV (8.41) implies
0

(8.68) s(b,3.2%"3) < s(a,3.2%) < s(0,N).

Therefore ro» So and b can take over the roles of r, s and a,
respectively. In particular the simple curve consisting of the reverse
of ry followed by 50 divides g(@,N) into two components
S‘(e,vo,so) and S“(e,ro,so), where we now choose S'(e,ro,so) to be
that component with the arc C between W and v, in its boundary.
(This arc is also in the boundary of S'(0,r,s); see (8.60).) Also

(8.69) E_{ Y o
PH visroﬂs(b,3.22 3
Vidm

Y(Visb3£'39r03so)lw(V) = E(V), vV g

§“(e,r0,so)} > Z(2-3).



218

We claim that S'(e,ro,so) is the same as J+(t). This follows
immediately from the fact that these two Jordan domains have the same
boundary. Indeed, the boundary of J+(t) consists of t, the piece

of s between its intersection with t, i.e., wj , and its endpoint
0
W (these two pieces make up sO), the arc C and the piece of r

from u, to the intersection uy of r and t. These same curves
0
make up the boundary of S'(@,ro,so). It immediately follows from this

claim that

(8.70) $'(0,rgssq) = 37 (t) € int(d) = s'(0,r,s)
and
(8.71) S"(e,r,s) UJ (4) ©S"(0,rg.sp) -

Let us now assume that in addition to (8.61)-(8.64) t satisfies
(8.72) Ups-..»U _q are occupied .

Then t satisfies (8.47)-(8.49) with i = i, and

0

R=VNSs'(o,r,s) < $(a,3.2%) ns'(o,r,s)

(see (8.62) and (8.59)). Thus v; is connected to s 1in
0
Ss'(o,r,s) N S(a,3.22) and Y(vi ,a,%,r,s) = 1. However, more is true.
0

We claim that if t satisfies (8.61)-(8.64) and (8.72) and v, er is
connected to s in S'(e,ro,so) n S(b,3.2£'3), then v, is also
connected to s in S'(e,r,s) N S(a,3.22). In formulas

(8.73) Y(vi,b,2—3,r0,so) =1 1dmplies Y(vi,a,m,r,s) = 1.

To prove (8.73) assume that Vi €1y and that ty = (xo,h],xz,...,h ,xp)
is a path on sz satisfying

(8.74) £\ (XgsX,} & 5" (0,rgus0) N s(b,3.2%°3),

(8.75) Xg = Vj and X, = some vertex of 50 other than

(8.76) XqseeesX are occupied.

p-1

Observe first that (8.68) and (8.70) imply
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(8.77)  S'(8,ryssg) N S(b,3.2°3) ©5'(0,r,5) N S(a,3.2%).

Thus, to\\{xo,xp} is also contained in the right hand side of (8.77),
and if its final point X, equals a vertex w., of s with 1<j<o
(i.e., other than wo) then v, is connected in S'(0,r,s) N S(a,ZZ)
to s, i.e., Y(vi,a,z,r,s) = 1. The next case to check is when xp

is a vertex of h other than Wiseo.sW O Ug- Then xp must be
one of the vertices Upseossl - Moreover, u. = W, for some

0 < j0 <o (see (8.64)). Let X, = uko, 1 g_ko 5_9 and define

e (xO,h],...,hp,xp = uko,gk0+1,...,gT,uT). t] consists of t,
followed by a tail piece of t. All vertices of t, other than its
initial and final point are occupied, on account of (8.72) and (8.76).
Moreover

t

£\ {xgsu.} ©5'(0,r,s) N5(a,3.2%)

by virtue of (8.74), (8.77), (8.62), (8.61) and (8.59). Thus, again

Y(vi,a,z,r,s) = 1. The last case to check for (8.73) is when Vi = b

= V; = Ug. But in this case we already saw, just before (8.73) that
0

Y(v; »a,b1r,s) = 1, so that (8.73) has been verified.
0

The proof of (8.57) is now merely a matter of assembling some of
the above results. If there exists a path t = (uo,g],...,gT,uT) on
sz which satisfies (8.61)-(8.64) and (8.72) then b = ug € V. Then,
by definition of V,

-1 A2-
1583y

la(i)-b(i)| > 3(2¥ 1-2%3)

and 5(a,3.2%°3) and s(b,3.2%73) are disjoint. Thus, by (8.73)

(8.78) Y(v;5a,2,r,s)

vierﬂS%a,B.Zz)
vie?i’l

|V

Y(vi,a,l,r,s)+

) ) ) 2 Y(v:,a,2,r,s)
visrﬂs(a,B.Zl 3) vierﬂS(b,3.2£ 3) !
visﬁl vis%
> ) Y(v.,a,2,r,s)+ % o Y(v.,b,2-3,r,5,).
 vierns(a,3.2%73) vierms(b,3.2%73) 0%

V.7
visW? ="
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Now , as we saw before, the left hand side of (8.78) is independent of

the w(v) with v e S"(6,r,s). Therefore, by virtue of (8.58)

(8.79) EpH(Q){v.erﬂs%a,B.zz)Y(vi’a’g’r’S)lw(V) = e(v),v € S"(0,r,s)}
v1.€7/'(

= E

pH(q){ Y(V1 ,a,l,r‘,s)}

viarﬂS%a,3.2x)

- €
Vs m

3_2(1-3)-+% P (@ T = 0

E { Y(V:sUnqs2-3,r05S,)|T = t} ,
pH(Q) vier‘ﬂS(EO,B.ZQ_?’) 770 0°70 |

vism

where the sum is over those path t which satisfy (8.61)-(8.64), Uy

is the initial point of t and rg> Sg are defined in terms of r, s

and t as above. However, by Prop. 2.3 the event {T = t} depends

only on the occupancies of the vertices in J (t) Cf§"(e,r0,so) (see
(8.71)). Therefore

EpH(Q){vigrns(ug,3_22—3)Y(V1’“0’2'3’r0’50)‘T =t
vidW
zmn EpH(Q){Visrns(ug’3_21-3)Y(V1’”0’1’3’r0’50)‘
v; /i
w(v) = e(v), ve §“(@,ro,so)}
> Z(2-3).

Substitution of this estimate into (8.79) and using (8.65) and (8.67)
yields

EPH(Q){vierns(g,a.zﬂ)y(vi’a’2=r=5)lw(v) = e(v),v e §"(0,r,s)}
v1.57/’l

3_2(2—3)(1+PpH(q){G(r,s)}) > (1483,)2(2-3).
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(8.57) now follows by minimizing over a,o,N,r,s and «(-).

To obtain (8.55) from (8.57) we merely have to show that
Z{(%2) > 0 for each %2 > 0. This is easy to see, though, since by
Def. 8.1 always VY(a,a,&,r,s) = 1. If a is a central vertex of G -
and hence lies inside a face F of 7, but is not a vertex of 7 (see
Sect. 2.3) - then a 1is not to be counted as one of the Vs in the
sum in (8.51). However, in this case r and s both have vertices
on the perimeter of F, and these vertices belong to G (and hence 7).
In particular there will be a vertex v of 7 on r and a vertex
w of . on s on the perimeter of F, such that an open arc of the
perimeter of F from v to w 1lies inside S'(o,r,s) N S(a,3.22).
(See Fig. 8.5 for an illustration which applies when G = QS ,Q] or
Q? . a cannot be a central vertex when G = QO.)

Figure 8.5 The center is the vertex a; it is a central
vertex in the square, which is a face F of
7. The hatched region belongs to S'(8,N).

The edges from a to vy and from Vs to
Vit belong to r. The edge from a to Wy

is the first edge of s. In this illustration
the open edge between Vil and Wy belongs to

S'(e,r,s) N S(a,3.2£) and Y(vi+],a,l,r,s) = 1.

This open arc contains at most two vertices of G and hence the ver-

tices on this open arc are all occupied with a probability at least

(pH(Q))2 . If this happens, then Y(v,a,%,r,s) = 1. Consequently
2(2) > (p,(6))* > 0.

This completes the proof. ]
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We remind the reader that N*(r*) = N*(r*,N) was defined in
(8.30).
Lemma 8.3. There exist a constant 0 < C]3 < o sych that for G equal
* * = * gk *
to Gy» Gy» Gy or Gy and any path r* (va,e*,...,ev,vv) on qpﬁ
which satisfies (8.23)-(8.25) one has

o
* * ]
(8.80) EpH(Q)N (r*,N) > CygN

Qo
(8.81) T*(N,N)31,p,G) < exp-Cy5(p-py(G)N LIS py> 1= 1,2

and

Q
(8.82)  T((N,N)31,p,G) < exp-Cy4(p(G)-pIN |, p < pys 1 = 1,2,

Proof: Again fix G. Let J be the perimeter of [0,N]x[0,3N]
viewed as a Jordan curve, and set

A = [0,N]x {0} = bottom edge of J,
C = [0,N]x{3N} = top edge of J.

Also fix a path r* = (va,e?,...,ec,vs) on ;2 which satisfies
(8.23)-(8.25). It will turn out to be convenient to estimate the left
hand side of (8.80) somewhat indirectly, by means of the expected

number of occupied connections above r* to the interior of

Cy := [O,NT x {4N}

(rather than to C idtself). To be more specific, let J1 be the peri-
meter of [0,N]1x[0,4N]. Then A 1is also the bottom edge of J1 and
C] is the top edge of J]. The path r* 1is also a horizontal cross -
ing of J;, and we define J{(r*) and JT(r*) as the components of
int(J])\\r* with A and C1 in their boundary, respectively. We say
that a vertex Z* on r* Nint(Jd) = r* N int(J1) has an occupied
connection to C] above r* 1if there exists a path

s = (vo,e],...,ep,vp) on sz which satisfies (8.26)-(8.29) with J
and C replaced by J] and C1. Analogously to (8.30) we write
N?(r*,N) for the number of vertices v* of % on r* N int(J1)

which have an occupied connection above v* to C1 . If X* has an
occupied connection s = (vo,e],...,ep,vp) above r* to C], then s
must intersect C, necessarily in one of the v; (see Fig. 8.6). If
'0

is the smallest index i with v; €C, then (vo,e],...,e. Vi )

0 o o
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A
Figure 8.6

(an initial piece of s) is an occupied connection above r* from v*
(o]

to C. Thus any vertex counted in N?(r*,N) rmust also be counted in

N*(r*,N) so that

(8.83) N*(r*,N) > N?(r*,N).

The first step in estimating the expectation of N1 is again an
imitation of Lemma 7.4. Let & be the unique integer for which

(8.84) 3.2% < § < 3.2

and let
X =[1,3.2%11xR.

We denote by F*(r*) the event that there exists an occupied path
§ = (wo,f1,...,f0,w0) on pr with the following properties:

(8.85) Wg s a vertex of 7 on r* Nint(J) N x

(8.86) W, € C] Nxc C]

(8.87) (F\ g awysfosenaw 1uf \ W 1)

~ +
= S\{WO’WG} <9y (r*) [ X



224

0f course W, has an occupied connecton to 81 above r*, whenever
such an § exists. Furthermore, if we denote the perimeter of the
Jordan domain J;(r*) by Jo, then such an § is a crosscut of
JT(r*) = int(Jz) and divides this domain into two components, J;(§)
and J§(§) say. J;(§) (J§(§)) is the component with a piece of the
left edge of J,, {0} x [0,4N], (the right edge of J], {N} x [0,4N] )
in its boundary. By Prop. 2.3, if F*(r*) occurs, then there is a
unique occupied connection § with the properties (8.85)-(8.87) with
minimal J;(§). WeNSha11 call this the "left-most occupied connection"
and denote it by S whenever it exists. As in (7.60) any occupied
vertical crossing t on sz of [1,3.22+1]x [9,4N] contains an

occupied connection from some point of r* to C] inside  X. Thus

(8.88) P {S exists} = P_ {F*(r*) occurs}
PH PH

> P_ {3 occupied vertical crossing on § of
- pH pL
[1,3.2%17x [0,4N7}

2+4),

> o((3.2%,3.2 $2,py05,) > Sgg -

For the one but last inequality we used (8.84) and Comment 3.3 (v),
while the Tast inequality comes from (8.36).

Now let S be a fixed path satisfying (8.85)-(8.87). This brings
us to the setup for Lemma 8.2. Take a = Wys O = (-3N,0) and
ry = the piece of r* from w, to the right edge {N} x [0,4N] of
I (i.e., if Wg = vi, then r, = (w0 = v?,e$+],...,e3,v3)).
Then (8.42)-(8.46) with r replaced by ry» s replaced by § and N
replaced by 4N are clearly satisfied, since

S(0,4N) = [-7N,N] = [-4N,4N] = [0,N] = [0,4N]

and the top right corners of the two rectangles coincide. (8.41) is
replaced by
S(a,3.2%) = s(0,4N),

which holds by virtue of (8.84) and the fact that a = wo lies in

r* N X < [0,3.2%1] x [0,3N].

We now take for S‘(@,r],g) the component of $(0,4N) \ ry U s)
= [-7N,N]><[—4N,4N]\r1 U§ which is in the "upper right corner" of



225

S(0,4N)

Figure 8.7. r consists of the dashed curve followed by r

~ ~ 1
S'(O,r],s) = Jg(s) is the hatched region.

S(0,4N), i.e., the component which is bounded by r US and the arc
of AS(0,4N) from w, to vy which goes through the upper right
corner (N,4N) of S(0,4N) (see Fig. 8.7). The latter arc is also an
arc of J, and one easily sees that S'(@,r],§) is precisely J§(§).
$"(6,ry,8) will be the other component of S(@,4N)\\r1 U3. Then
(8.56) implies

(8.89) Ep {# of vertices of 7 on r n S(a,B.ZQ) connected to
H

5 in S'(0,r),3) NS(a,3.2%) [w(v) = e(v),
oy 2
<u ~ 1
veS (O,r],s)} 3_0122
for any choice of e(v) = #1, v e S" .

We can derive the required estimate (8.80) easily from (8.89) by
an argument already used in Lemma 7.4. Firstly

(8.90) E_ {N*(r*,N)} > E_ {N¥(r*,N)}
Py Py

= TP {5 =3IE_IN*(r*,N)|S = §

Z pH{ $} pH{ ](r )| 3}

S
> P {S exists}min E_ {N*(r*,N)|S = 3}
= Py : Ph!

> 8gg m;n EpH{N7(r*,N)1§ = ¥} (by (8.88)).
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The sum and minimum in (8.90) are over all § satisfying (8.85)-(8.87).
Secondly, any vertex v on r, n S(a,3.2£) which is connected to §

in S'(e,r1,§) n S(a,3.2£)o (in the sense of Def. 8.1) has an occupied
connection above r* to (. The argument for this is practically
identical to the argument following (7.66)-(7.69) in Lemma 7.4. Conse-

quently
NT(r*,N) > # of vertices of 7 on r n S(a,3.21) which is

connected to $ in S'(@,r],§) n S(a,3.22).

Lastly, by Prop. 2.3 the event S=%§ depends only on the occupancies
of the vertices in

3(5) ©T,\35(3) < S(0,80\ 5'(0,r,,8) = T'(6,r),3).

Consequently

~

E {N?(r*,N)]S = s} > min E_ {# of vertices of 7 on
PH e PH

ry N5(a,3.2%) connected to 3' in S'(e,ry,3) N S(a,3.2Y)]

w(v) = e(v), ve §“(@,r],§)}

This, together with (8.90), (8.89) and (8.84), gives
%

.. (N

EpH{N*(r*,N)} > 846C12(77

96

whence (8.80).

(8.81) s immediate from (8.80) and (8.31) (and the symmetry
between horizontal and vertical for the graphs under consideration).

Finally (8.82) is nothing but (8.81) with G* and "vacant" replaced by
G and "occupied". (Recall that

Pp {v vacant} = 1-p = 1-Pp {v occupied}
and

(8.91) py(G) = 1-py(G*)

for the graphs of this chapter, by virtue of Applications ii) and iv)
in Sect. 3.4.) 1
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Another application of Lemma 8.2 will be needed for Theorems 8.1
and 8.2. It provides us with a lower bound for Pp (B(N)), where
H

(8.92) B(N) := { 3 occupied path on G 1in S(zO,N) which
connects z; with a point on AS(ZO,N)} .

Here Z is as before, i.e., zg = the origin if G is QO or G* ,
and zy = (5,0) if G is G or GF.

Lemma 8.4. There exists a constant 0 < C14 < ® such that

a]—1
(8.93) PpH{B(N)} Z_C]4N

Remark.

It is easy to use the argument at the end of the proof below and
(8.36) to obtain

-1
PpH{B(N}} > G N7

Such an estimate already appears in Smythe and Wierman (1978), formula
(3.34). However, to obtain the lower bounds in (8.5) and (8.6) it is
crucial to have an estimate like (8.93) which decreases only as a power
of N which is strictly larger than the minus first power. Lemma 8.5

below will give an upper bound for Pp {B(N)} which decreases like a
H
negative power of N. It is not known whether there exists an o for

which No‘Pp {B(N)} has a nonzero (but finite) Timit as N -« . If such
H
an o exists it must 1ie strictly between zero and one by (8.93) and

(8.101). This is closely related to questions about the behavior of

Pp {#W > N} for large N, or the cluster exponent <t of Stauffer (1979).
H

Proof of Lemma 8.4. For simplicity take G equal to QO, QS or ql
so that sz has edges along the lines x(i) =k, i=1,2, ke Z.
Since the left hand side of (8.93) has the same value on Q] as on Q?
these choices for G suffice.

Fix % as the unique integer with

22 243

(8.94) 2 N <2

Consider the collection of occupied vertical crossings on of

G
pL
[-22,22J><[0,N], j.e., the collection of occupied paths
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s = (wo,f],...,fc,wo) on G which satisfy

pi
(8.95)  (F1\ Dugdswyse s 15\ i 3) = s\ Wy b < (-2%,2%) x (o),

(8.96) Wy € [-2%,2%1x {0}  and

w_e [-28,2%]x (N

Denote by F the event that there exists at least one such occupied
crossing. Then, by (8.36) and Comment 3.3 (v)

- 241 Wy
(8.97) PpH{F} = o((27 uN)s2opnG ) 2 8

Let J be the perimeter of [—22,22]><[0,N] and A = {-22}><{O,N]
its left edge, C = {ZQ}X [O,N] its right edge. For any crossing s
satisfying (8.95) and (8.96) Ji(s) are defined as before (see Def.
2.11). Prop. 2.3 tells us that whenever F occurs there is a unique
left-most occupied crossing s of J, i.e., an occupied path s with
minimal J (s) among all occupied paths satisfying (8.95) and (8.96).
We denote this left-most crossing by S whenever it exists.

Now .let s = (wO,f1,...,fO,wG) be a fixed path on sz satisfy-
ing (8.95) and (8.96). We shall apply Lemma 8.2 with the following
choices: © = the origin, a = Wys T = the path along the first coordin-
ate axis, x(2) = 0, from Wy to the point (N,0) on the right edge
of S(O,N). N and £ satisfy (8.94), so that (8.41) holds since
a=w = (w0(1),0) with -2% 5_w0(1)‘§ o (by (8.96)). We view r
as a path on sz . (8.42)-(8.46) are trivially fulfilled for r and
s. For S'(0,r,s) we take the 'Upper right corner" of S(@,NY\ rUs,
i.e., the component of S(O,N)\ r Us which contains the corner vertex
(N,N) in its boundary (see Fig. 8.8). S"(0,N) 1is the other component
of S(6,N)\r Us. It is clear that Fr(J7(s)) intersects Fr(S'(0,N))
only in the path s, which is common to both these boundaries. More-
over, the point (N,N) of Fr(S') 1lies in ext(J (s)). Consequently
Fr(S') < closure of ext(J (s)). Therefore J (s) either lies entirely
in S' or entirely in S". Since A <Fr(J (s)) can be connected by
a horizontal line segment to the left edge {-N}x[-N,+N] of S(o,N)
without entering S' it follows that

(8.98) J7(S) € s"(0,r,s).
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Figure 8.8 r 1is the boldly drawn path. J is the dashed
rectangle. The large square is S(0,N).

We shall write B for the upper edge, [-N,N]x {N}, of S{(O,N). We
shall say that a vertex v of 7 in S(O,N) has an occupied connec-
tion to B 1if there exists an occupied path t = (uo,g],...,gp,up)

on Qpl which satisfies

(g]\\{uo},u],...,up_],gp\\{up}) = t‘\{uo,up} < §(o,N),
Ug = Vv and up e B.

Assume now that {S = s} occurs so that s 1is occupied. Exactly as
in the argument following (7.66)-(7.69) one now sees that any vertex v
of M on r which is connected to s in S'(0,r,s) N S(a,3.22) (in
the sense of Def. 8.1) automatically has an occupied connection to B.
Therefore

(8.99) Ep {# of vertices of 72 on r which have an occupied
H

connection to B|S = s}

>E Y(vs,a,2,r,8)[S = s} .

{ )
PH vierﬂs(a,B.ZZ)
vism

Proposition 2.3 shows that the event {S = s} depends only on the
occupancies of vertices in J (s) <S"(e,r,s) (see (8.98)). Conse-
quently the right hand side of (8.99) is at least
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min E_ { Y(v;,a,2,r,s)|w(v) = e(v),v e S"(0,r,s)}
e PH vier‘ﬂs%a,3.22) !
v1-€778
> Z(2) 2 €2 7 2 Cqp2 N

(see (8.55) and (8.94)). Finally, since r < [-N,+N]x {0},

(8.100) Ep {# of vertices of 7 on [-N,N]x{0} which have an
H
occupied connection to B}

s “H H
connected to s in S'(o,r,s) N S(w

>y Pp {s-= s}Ep {# of vertices of 7 on r which are
L
0°3-2 )|S = s}

-Sa] 0y

> Cq,2 N )P {S=s}

=712

-304 O ~304 Q
2 ]N]Pp{F}zd .2 I

> C
= H 32712

12

In (8.100) the sum is over all s which satisfy (8.95) and (8.96), and
the last inequality relies on (8.97). (8.93) follows from (8.100)
since any vertex v of 7 on [-N,N]x{0} which has an occupied
connection to B also is connected by an occupied path on G 2 to a
vertex on AS(v,N), because B 1lies in the complement of §(V,N).

From Lemma 2.1a we see that any such v is then also connected by an
occupied path on G to a point on AS(v,N-1). The probability of this
event 1is PpH{B(N-1)}, the same for all v of 7 on [-N,N]x{0}.
There are at most (2N+1) such vertices v on [-N,N]x {0}, so that
the left hand side of (8.100) is at most equal to (2N+])PPH{B(N—1)}.

(8.93) follows. 1
We turn to the upper bound for Pp {B(N)}. The method for this

estimation is due to Russo (1978) and Seymour ana welsh (1978).

Lemma 8.5. There exist constants 0 < C15, Gy < such that

-a,
(8.101) PpH{B(N)} SCeN C

Proof: Consider the disjoint annuli
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(8.102)  V, := 5(0,3.22%\ 5(0,3.22% 1) for

. 1
Tog §(N-2)
2 = ],2,...,20 = LW

These are all contained in S(zo,N-l). If any one of them contains a
vacant circuit c¢* on Q;Q surrounding the origin, then there cannot
exist an occupied path on G from zy toa point on AS(ZO,N). Indeed
such an occupied path would start at Z4 in the interior of c* and end
in the exterior of <c¢*, and hence would have to intersect c*. But if

a path on G intersects a path on Q;Q s
a vertex of G in common (cf. Comment 2.3 (v)). In our case there

then the two paths must have

would have to be a vertex on c* (hence vacant) which would also be a
vertex on an occupied path from zy to AS(zO,N), which is impossible.
It follows from the above that

(8.103) Pp{B(N)} j_Pp{there is no vacant circuit on Q;&

surrounding the origin in any VQ, 1 <2 5_20}
%
= I P _{there is no vacant circuit on G*
=1 P pL
surrounding the origin in Vz}
But (8.37) applied to G* (and with 2 replaced by 222'2) states

PpH(Q*){ 3 occupied circuit on Q;Z surrounding the origin

. 4
in Vol >6,, 22>1.

It we interchange "occupied" and "vacant" and take (8.91) into account,
this means

(8.104) PpH(Q){there is no vacant circuit on QER surrounding

o 4
the origin in V } 5_1-64 » > 1.

Substituting this estimate into the right hand side of (8.103) yields

L
4)0

{B(N)}5(1-54

PpH(C;)

from which (8.101) is immediate. |
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Proof of (8.4). The left hand inequality will be seen to follow quick-

1y from (8.13), (8.93), (8.19) and (8.81). Indeed, by virtue of (8.81),
(8.17) holds for 1o

N = Coglpopy(@) .

(We continue to denote by Ck various finite but strictly positive
constants which depends on G only.) (8.19) now shows that

2/a
(8.105) P {#*(zj) > 2} < Cqexp - Cyy(p-py(Q)) s op> py(Q).

Since

oo o) - M
-X4 d -x%y _ e X ]
(8.106) J oge™® = oS (] e =2 (4

9=M dx*pZy 1-e X 1-e™X

one easily sees from this that

) QPp{#W*(zo) > 2} <

1
=M 2
as soon as

—3/0L.l
(8.107) M > Ciglp-py(G))

Thus, by (8.13), and the definition (8.92) of B(M)
1
8(p) 2 7 PLB(M)}, p > py

for any M which satisfies (8.107). Finally, since B(M) is an in-
creasing event we obtain from Lemma 4.1 and (8.93)

1 1
6(9) 2 7 PpBINY 2 3 Py ) (B(:
‘I "3/0«-] OL-I"]
_>_‘2' C]4{C]8(p“pH(Q)) } s P> PH(Q) .

This gives the left hand inequality in (8.4).

The right hand inequality in (8.4) is much easier to prove. Indeed,
if #W(ZO) =~ then z, is connected by occupied paths to AS(ZO,N)
for all N. Consequently, for each N

6(p) i.Pp{B(N)} .

However, B(N) 1is an increasing event which depends only on the
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occupancies of vertices in S(zO,N), and for our graphs there are at
most 2(2N+1)2 vertices of G in S(zO,N). Thus for Py 2Py (4.2)
applied to f = IB(N) gives

p, 2(2N+1)?

(8.108) PpZ{B(N)} 5_(5?) Pp]{B(N)}

If we use (8.108) with Py =Py <Py =P then we obtain from (8.101)
2(2N+1)2

p ~%2

o 2(2N1)?

6(p) S.(E*J
H

This holds for all N, and the right hand inequality of (8.4) now fol-

lows by choosing

1/2

N=1] (log gaJ_ 1~ (pH)1/2(p—pH)'1/2, P> py - L]

Proof of the left hand inequalities in (8.5) and (8.6). Whenever B(N)
occurs, then w(zo) contains an occupied path from zy to AS(ZO,N),
and any such path contains at least N vertices of G. Therefore

Ep{#w;#w < w} Z_NPp{B(N) occurs and 3 vacant circuit on

* 1 3 .
sz surrounding 0 in V£0+3}
Here V, and %, are as in (8.102) and we again use the fact that any
vacant circuit on Sz which surrounds Z4 must contain all of
N(zo) in its interior (cf. proof of Lemma 8.5). But B(M) depends
only on the vertices 1in S(zO,N) < S(0,N+1) in the graphs G under

consideration. Moreover S(O,N+1) 1is disjoint from V for

2,0+3

N>5. It follows that for N > 5
Ep{#W;#w < o} > NPp{B(N)}

C N . .
. Pp{ 3 vacant circuit on Qpl surrounding 0 in V20+3}.

Now we first take p > p, . Then we obtain from the fact that B(N)

is an increasing event and (4.1), (8.93)

a]-l

(8.109) Ep{#w;#w < o} >N C14N

. . * . .
.Pp{ 3 vacant circuit on sz surrounding 0 in V20+3} .
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Next we use Lemma 4.1 with f the indicator function of the event

that there exists a vacant circuit on G*, surrounding 0 in V .
pL 20+3
This event depends only on the occupancies of the vertices of Q*z in
V2 +3 Actually, it depends only on the vertices of 7t (or G*) in
0

Vz +3 ° since the other vertices of Q;% are all vacant by our con-

0
vention (7.3). There are at most C N2 vertices of G* in V .
19 £0+3

Therefore by the version of (4.2) for decreasing f, and (8.104)

L * . .
Pp{ 3 vacant2c1rcu1t on sz surrounding 0 1in V£0+3}
. C]QN
> (——qu P {3 vacant circuit on G* 6 surrounding O
) in V20+3}
C19N
1-p 4
z_(1_pH) §g P 2Py -

From this and (8.109) we obtain

2
C+oN
u]—l 1 19 4

AN < oo Lp
Ep (AU < =) > NOpN T () 80 P 2 Py -

The left hand inequality in (8.6) follows by taking
T-p, -1/2
- H 1/2 -1/2
N=1[ (log4=57) 1~ (1-py) / (p-py) /2,05 Py -

To obtain the left hand inequality of (8.5) we take p < py- Then

Pp{#w(zo) < w} = 1-8(p) = 1.

(This is true even at p = p, by Sect. 3.3 or by (8.4).) We therefore
have the simple bound

E, (W} > NP {B(N)}

2(2N+1)2
> N(E) PpH{B(NH (see (8.108))

2(2N+1)2 0p-1

B
> N Cy g
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This time we take
-1/2

p -
N = | (Tog ??) -~ p;/z(pH-p) V2, p< Py - [

Proof of right hand inequalities in (8.5) and (8.6). The right hand
inequality in (8.5) comes from (8.105) with G and G* interchanged

and "occupied" and "vacant" interchanged. With these changes (8.105)
turns into

2/a
(8.110) P {#(zy) > 2} < Cyexp-Cy4(p,(G)-p) YL« PH(G)

(recall (8.91)). The right hand inequality in (8.5) is now obtained
by summing over &.

For the right hand inequality in (8.6) we need one more observa-
tion. Since S(zO,N) contains no more than 2(2N+1)2 vertices of G,
#W(zo) > 2(2N+1)2 implies that w(zo) must contain vertices outside
S(zO,N). This can only happen if Zq is connected by an occupied path
to the exterior of S(zO,N), and hence B(N) occurs. If in addition
#w(zo) < o, then - as we saw in the derivation of (8.12) - there must
exist a vacant circuit on G* surrounding Zg and containing at least
N vertices of G*. Therefore

(8.111) Pp{2(2N+1)2 < #i(zg) < =} < P_{B(N) and there exists a

vacant circuit on G* surrounding z, and containing

at least N vertices}

By the estimate used for the second factor in the right hand side of
(8.12) we obtain by means of (8.105), (8.106)

(8.112) Pp{2(2N+1)2 < t(zg) < =}

< v WP _{#W*(z,) > 2}
”QZN p 0% =

© 2/oc-I
ﬁ‘zZN Ci2 exp=Cq7(P-py(@)) " 2, p > py(G)

-2/oc1 -2/@1
_<_ CZO(p-pH(Q)) {N+(P-pH(Q)) }
2/a]
-exp-Cy,(p-py(G)) N
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Since

. oo ¥ 2 oo
Ep{#w(zo),#\f\l(zo) <} < 2+16 NZO(NH)PP{Z(ZNH) < #i(z;) < =}

the right hand inequality in (8.6) follows easily. ]

The above proofs of (8.4)-(8.6) constitute the proof of Theorem 8.1.
Proof of Theorem 8.2. We begin with the proof of (8.7). For p < Py

we have the simple estimate

—

Pin < #(zg) < =} < PUBGIEDZ - DY (by (8.111))

{B(%{ﬂ%l)]/z-%d} (since B s an increasing event)

A

P
Py

C]gn (by (8.101))

IA

For p > py Wwe estimate (8.7) more or less in the same way, as long as
p 1is close to Pys and by means of (8.112) for P-Py large. To be

specific, take

o,/16
m= %-min(n1/2,n 1 ).

Then, for large n 2(2m+1)2 < n so that by (8.111), (8.108) and
(8.101)

(8.113) P in < #illzg) < =) < Pp{2(2m+1)2< #(zg) < )

Jl_2(2m+1)2
P (B P (B
< p{ (m)} 5_(pH) pH{ (m)}
2(2m+1)2 -a,

EvC15(pH) m . P> Py

For —a]/8
O<p'pHin
the factor
2
2(2m+1) 1 -a,/8
() < exp{2(2m1)?10g(T+prTn )3
H

is bounded, so that (8.7) holds with Yg = min(uz/Z,a]uzllﬁ) for such
p. On the remaining interval —u1/8
p_pH _>_. n )
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we use (8.112) with
v e 1, y-4/a
N=g3n"">z(p-p) ™M
This gives
2
Pp{n 5'#w(zo) < «} f_Pp{2(2N+1) 5_#W(zo) < o}

3/2 1/2

Y
E.C21N exp - C]7N =0(n ),
for any choice of Yg > 0.

The above proves (8.7) in all cases. (8.8) and the last inequal-
ity in (8.9) are immediate from (8.7). Finally, the left hand inequal-
ity in (8.9) follows from the observation - made already in the proof
of the left hand inequalities in (8.5) and (8.6) - that #w(zo) >
on the event B(n). Thus, by Lemma 8.4

a]—1
PpH{#W(zO) > n} z_PpH{B(n)} > Cygn . 1
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9. THE NATURE OF THE SINGULARITY AT Py-

The arguments of Sykes and Essam (1964) which led them (not quite
rigorously) to values for pH(Q) for certain graphs were based on "the
average number of clusters per site". In a one parameter problem with

(9.1) Pp{v is occupied} = p

for all vertices v this average is, of course, a function, A(p,G) say.,
of p. Sykes and Essam's motivation for introducing this function lay
in analogies with statistical mechanics, and on the basis of such
analogies they assumed that A(p) has exactly one singularity as a
function of p, and that this singularity is located at p = Py This
assumption was actually their only non rigorous step. They then proved
that for a matching pair of graphs (G,G*) one has the remarkable
relationship

(9.2) A(p,G) - A(1-p,G*) = a polynomial in p.

It was for this relation that Sykes and Essam introduced matching pairs
of graphs. They then proceeded to locate Py» which was presumably the
singularity of A, by means of (9.2) for certain matching pairs in which
G and G* have a close relation. E.g. for bond percolation on 12 .
G¥ is isomorphic to G, and hence A(-,Q1) = A(-,Qf).

In this chapter we shall first give the precise definition and show
the existence of A(p), following Grimmett (1976) and Wierman (1978).
We then derive the Sykes-Essam relation (9.2) and show that for the
matching pairs (G,G*) to which Theorem 3.1 applies A(p,G) is analy-
tic in p for p # pH(Q). This justifies part of the Sykes-Essam
assumption: For various matching pairs A(:-,G) has at most one singu-
larity, and if there is one it must be at pH(Q). Unfortunately we have
been unable to show that A(-,G) has any singularity at Py as @ func-
tion of p only. (There is an obvious singularity if one brings in
additional variables; compare the study of the function f(h) in Kunz
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and Souillard (1978) or Remark 9.3 (iv) below.) We shall prove that for
site- or bond-percolation on Zz A(p) is twice continuously differ-
entiable at all p ¢ [0,1], including at Py- The belief is (see
Stauffer (1979), formula (6a) and Essam (1980), Formula (2.22)) that
A{p) also satisfies a power law, i.e.,
2-o.,

MpsG) ~ Colp-pyl = > P> pys

for some 0 < a, < 1 (a+ corresponding to p-#pH and o_ to pﬁ-pH).

In particular (HE) A(p) should blow up as p > py- So far we have
been unable to show that any derivative of A fails to exist at Py

9.1 The existence of A(p).

Intuitively, the average number of clusters per site should be the
1imit (in some sense) of

(9.3) (# of sites in Bn)'](# of occupied clusters in Bn)

as Bn runs through a sequence of blocks which increase to the whole
space. Sykes and Essam (1964) did not show that such a 1limit exists.
This was first done by Grimmett (1976), and an expression for the limit
was given by Wierman (1978). Their results follow quickly from the
ergodic theorem and are reproduced in Theorem 9.1. Of course we must
first define the expression ;n (9.3) properly.

Def. 9.1. For a block B =1 [ai’bi] and a vertex v of G 1in B, the
1

occupied cluster of v {on G) in B 1is the union of all edges and
vertices of G which belong to an occupied path on G contained in B
and with initial point v. /17

This is the obvious analogue of Def. 2.7. Note that two vertices
vy and Vo may belong to different occupied clusters in B, even
though they belong to the same occupied cluster on the graph as a whole.
This will happen if and only if there exists one or more occupied paths
from Vq to Vo> but all such paths go outside of B. When counting
the number of occupied clusters in B the clusters of vy and Vo will
be counted as two separate clusters in this situation.

We also need the following notation. For any block B = H[ai’bi]
and v a vertex of G in B we set
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0 if v 1is vacant,

(9.4) T'(v,B) = (# of vertices of G 1in the occupied
cluster of v in B)'] if v is occupied.
Also
0 if v is vacant,
(9.5) r'(v) =

(#H(v))'] if v is occupied.

(If #W(v) = » , then T(v) = 0.)

Theorem 9.1. Let G be a periodic graph imbedded in Rd with
d
).

u = number of vertices of G in [0,1 Let Pp be the one-parameter
probability distribution on the occupancy configurations of G deter-

mined by (9.1) and let B(n1,...,nd) = [O,n]] X ... x[O,nd]. Then

# of occupied clusters in B(n],...,nd)
# of vertices of G 1in B(n],...,nd)

(9.6)

S1y \d Ep{;ﬁf%vy; #v) > 1)

M vel0,1
=1 ) ; 1p {#(v) = n}
H ve[O,])d n=1 " P

as Ny > ©,... Ny > independently. The convergence in (9.6) holds

a.e. [Pp] and in every Lr(Pp)’ r > 0.

Special case: When all vertices of G play the same role such as on
the graphs QO’ Ql, Qa and Q? considered in the last chapter, then
the right hand side of (9.6) reduces to

e~ 8

1 -
ﬁ-Pp{#W(v) =n} .

n=1

Remarks.

(i) Theorem 9.1 remains valid if B(n],...,nd) is replaced by the
box [—n1,n1]x el X [—nd,nd] which is symmetric with respect to the
origin. This follows easily by writing [-n1,n]]x vl X [-nd,nd] as the
union of 2d boxes, to each of which one can apply Theorem 9.1 after an
interchange of the positive and negative direction along a number of
coordinate axes.

(ii) One can easily generalize Theorem 9.1 to A-parameter periodic
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probability measures Pp, but we shall have no use for this generaliza-
tion.

Proof of Theorem 9.1. By the periodicity of G

Ay (# of vertices of G in B(n],...,nd)) = 4.

It is also clear that

(9.7) # of occupied clusters in B(nl,...,nd)

= I'(v,B(nys...5n.)),
VEB(n],.?.,nd) N (n1 "d )

since for any occupied cluster W 1in B, containing exactly the n
vertices Vis-+esV, € B, the right hand side of (9.7) contains

- 1 _
F(V]’B)+T(V]sB)+--.+I‘(Vn,B) =n X re 1.

It is clear from the definitions (9.4) and (9.5) that

(9.8) r(v,B) > T(v), v eB.

Moreover, the ergodic theorem (Dunford and Schwartz (1958), Theorem
VIII.6.9 or Tempel'man (1972), Theorem 6.1 and Cor. 6.2; see also Harris
(1960), Lemma 3.1) applied to the bounded function T shows that

1

d
— T(v+) k&) >~ E {r(v)} a.e. [P]
nyn,...ny 0<k <n, 7 i p p

a5 NyseeenNy > @ for every v e [0,1)d. Since

Ep{r(v)} =

ne~-18

1 -
ﬁ-Pp{#w(v) = n}

n=1

it follows that

(9.9) (# of vertices in B(n],...,nd)'] ) T(v)
vsB(n],...,nd)

1 v ]
L1 ~ P {#W(v) = n} a.e. [P_].
H vs[O%])d nZ] np P

This together with (9.7) and (9.8) also shows that
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. #of occupied clusters in B(n],...,nd)
(9.10)  Tim inf # of vertices of G in B(n],...,nd)

n.->x
i

1
ﬁ'P

Ho~18

p{#W(v) =n} , a.e. [Pp].

1
>= )
¥ ye[6,1)4 n=1
To obtain a bound in the other direction we note that T(v,B) = T(v)

whenever W(v) 1is contained entirely in B. Consequently
(9.11)  # of occupied clusters in B(n],...,nd)

= T(v,B(Nyseuns
veB(n1,§..,nd) v " nd))

< ) I(v)+ # of occupied clusters in B(n],...,nd)
V€B(n PR ¢ )
1 d
which are part of an occupied cluster on G which contains
vertices outside B(n],...,nd).

The last term in the right hand side of (9.11) is bounded by z x the number
of vertices of G 1in B(B(n],...,nd)), i.e., z xthe number of vertices
outside B(n],...,nd) but adjacent to a vertex in B(n1,...,nd). This

is so because each occupied component which contains vertices inside

and outside B must contain a vertex in 5B (cf. (2.3) for z). If

A > diameter of any edge of G, then any v € 3B satisfies

A

=A< v(j) 5_nj+A for 1<j<d and

-A<v(i) <0 or ng < v(i)

A

ns+A for some 1 < i < d.

Thus the last term in (9.11) is bounded by

d
1 1 1
#S(B("l"“’"d)) < 2u(A+1)(ﬁ—]-+h—2—+ ...+;‘~(~i—) I]I(nj+2A+1).

This together with (9.11) and (9.9) shows

# of occupied clusters in B(n],...,nd)

1igii:p # of vertices of G in B(n],...,nd)
1 v 1

< = ¥ ) — P {#W(v) = n}, a.e. [P_].
Hveros)dn=1 P P

Thus the convergence in (9.6) holds a.e. [Pp]. The convergence 1in



243

Lr(Pp) follows from this since the left hand side of (9.6) lies between
zero and one. [:1

9.2 The Sykes-Essam relation for matching graphs.

In view of Theorem 9.1 we define for any periodic graph G and one-

parameter probability measure P_ the "average number of occupied

P
clusters per site" as

H

(9.12)  A(p) = A(pG) =+ T z P (v) =

H ve[0,1)

1 1
= = E ey ¢ MOV 2 1)
¥ yegotnyd A B

We now prove (9.2).

Theorem 9.2. Let (G,G*) be a matching pair of periodic groups in RZ.

Then there exists a polynomial &(p) = &(p,G) for which

(9.13) A(p,G) - 8(1-p,G*) = o(p,G), 0 < p < 1.

Remarks.

(ii1) The pair (G*,G) 1is also a matching pair (Comment 2.2 (v)).
It is obvious from (9.13) that the corresponding ¢(p,G*) is given by

(9.14) o(p,G*) = -o(1-p,G).

(iv) The proof below will give an explicit expression for ¢:

(9.15)  o(p,G) = €]+ (1-Cy)p+ (C4-Cy)p?

(1m%(m3 z Py *(m,3),

||M8

= -

n
where C, and C% are given in (9.21)-(9.25) and

Y (73) (y*(7,3)) = # of central vertices in [0,1)x[0,1)

of a face F of 7 in & (not in &) with exactly n
vertices of 7 on the perimeter of F.

For example, when G = QO, the simple quadratic lattice (see Ex. 2.1(i)
and Ex. 2.2 (i)) one has n =1, Y, = 0 for all n, y; =0 for m# 4
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while YZ = 1, and

8(p,Gg) = p-2pt+p’

o(p,G§) = 1+ (1-8)p+ (4-2)p7 - (1-p)* = p-apPrap®-p* .y

Proof: Sykes and Essam's proof works with G directly. We find it
easier to work with qu and so we shall first prove

(9.16) A(p,qu)-AU-p,Q;z) is a polynomial in p, @(p,qpx) say.

Following Sykes and Essam (1964) we first define the occupied and vacant
graphs. For some mosaic 7° and subset & of its faces, let (G°,G°*)
be the matching pair based on (7°,3°), and let Q;z, ;E and Wgz be
the corresponding planar modifications as in Sect. 2.3. Any occupancy
configuration w of 7 is also an occupancy configuration of @°

and G°*, and can be extended to an occupancy configuration of ng, Q;Q
and Q;E by taking all central vertices of a face of 7 in 3 (not
in 3°) as occupied (vacant) as we did in (2.15), (2.16). For a fixed
configuration w we define G° (w, occupied) as the graph whose vertex
set consists of the occupied vertices of G° and whose edge set consists
of all edges of G° connecting two occupied vertices of G°. QEQ (w,
occupied) is defined in the same way by replacing G° by Q;l .
Similarly G°* (w, vacant) and Q;z (w, vacant) are defined by replacing
G° by G°* and Q;* , respectively, and "occupied" by "vacant". Note
that the components of G° (w, occupied) are precisely the occupied
clusters of G°, and similarly the components of G°* (w, vacant) are

the vacant clusters of G°*,

Now, let our periodic pair (G,G*) be based on (7,%), a periodic
mosaic and periodic subset of its faces. We shall apply Euler's rela-
tion to the planar graph qu (w, occupied), or rather to a "truncated
modification" of this graph, which we construct as follows. Let J"
be a circuit made up of edges of W%Z’ surrounding (A ,n—A3)><(A3,n-A3),
and contained in the annulus

3

(9.17) [0,n]x [0.n]\(A5,n-73) x (Ag,n-A3).

Here Ag is a suitably large constant depending on W$2 only; we con-

structed this kind of circuit already in the proof of Lemma 7.1. Let

Wgz be the graph obtained by removing from W$2 all edges and vertices
. . . =N no, . n

which are not contained in J° = J U int(J'). Thus ng has exactly
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one unbounded face, namely ext(Jn), and the other faces of WQQ are
exactly the faces of W$2 in int(Jn). The unbounded face of WGE
contains no vertices and does not intersect any edges of ng. An
occupancy configuration w of g can be restricted to an occupancy
configuration on Wgz and the corresponding graph ng (w, occupied)
is then defined as above. It is a planar graph since it is a subgraph
of the planar graph ng. We therefore have Euler's relation

n n n _ .n
(9.18) sz' Ep2+'sz = Cp2+-1 .
where ng, Egg’ ng and Cn2 are the number of vertices, edges, faces

and components of ng (w, occupied), respectively. (Cf. Bollobds
(1979), Theorem I.11 if ng = 1; the general case follows easily by
induction on ng.) We need to look closer at Fn2 . Note first that
each vacant vertex of W$£ must be a vertex of Q;l, since the only
vertices of W%g which do not belong to Q;z are central vertices of
some face in & , and these have all been taken as occupied. Therefore,
if a face F of an (w, occupied) contains a vacant vertex of ng,
then it belongs to Qg; (w, vacant), and in this case F contains at
least one component of Q;Z (w,vacant). Some examples will convince the
reader that in this case F contains exactly one component of ng

(w, vacant). A formal statement and proof of this fact is given in

Prop. A.1 in the Appendix. Thus, if ng denotes the number of com-
ponents of Qg; (w, vacant)

(9.19) o= A" 44 of faces of G (w, occupied) which contain
pL _ “pa p

no vacant vertex of ng'

Let us call the faces of in (w, occupied) which contain no vacant
vertex of Wgz empty faces. Recall now that W%Q is completely
triangulated (Comment 2.3 (vi)). In other words each face of W$2

is a "triangle", bounded by three edges of Wﬁz » and containing exactly
three vertices of W$£ on its perimeter. We claim that the bounded
empty faces of le (w, occupied) are precisely those triangular faces
of W$2 in int(Jn) with all three of its boundary vertices belonging
to ka and occupied. Such faces are therefore also faces of ¢ e To
see this consider a face G of Q;£ (w, occupied) and let e be an
edge of W$2 in Fr(G).e necessarily is an edge of G . in ﬁh, and
its endpoints, v; and v,, say, are necessarily occupied. e belongs
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to the boundary of exactly two triangular faces, F1 and F2 say, of

E Each Fi belongs to a unique face, G. say, of an (w, occupied).
e belongs only to the boundary of G] and GZ’ but not to the boundary
of any other face of Q D2 (w, occupied), so that G is one of G] or
G, (G1 = 6, is poss1b1e though). Let W, the third vertex of Wkl
on the perimeter of F, (in addition to v; and vz) If F. Tlies
in ext(J ) then F. s contained in the unbounded face of q q» and
hence a]so in the unbounded face of Q 2 (w, occupied). In this case
G, equals the unbounded face of sz (w, occupied). If F. < int(Jn)
and LF is occupied, then in particular Wi cannot be a central vertex
of sz , since these are taken vacant. Therefore all vertices on the
perimeter of F belong to Q b2 and are occupied, and consequently
be]ong to Q 2 (w, occupied). In this case Fi is itself a face of
Fio. Finally if Fi © int(Jn) but W is
vacant then Gi contains the vacant vertex W, . (Since no edges of

pz (w, occupied) are incident to w., so that a full neighborhood of
W; belongs to one face of Q (w, occupied); this face must therefore
contain Fi and cannot be any other face than ) The only bounded
empty faces of Qpﬂ (w, occupied) which we encountered in the above list
was the triangle F}, in the case where W, was occupied and

qu (w, occupied) and G, =

s Ciint(Jn). This proves our claim. As a consequence (9.19) can be
written as

n

(9.20) sz = sz*'sz >
where
ng = # of triangular faces of W$l in ﬁh with all
three vertices on their perimeter occupied
and

1 1if the unbounded face of ng (w, occupied)
is an empty face,

0 otherwise.

We substitute (9.20) into (9.18), divide by un2 and take limits
as n -+ o, This gives

. 1 n n n n*
lim —s[V_,-E +T . +C ] =0 a.e. [P_].
e un2 P& PLT LT TPAC P
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It therefore suffices for (9.16) to show that a.e. [Pp]

:,iflj?vgﬂ = ci+Cip

tin L 5, - cjp et

1in—5 Toy = ¢

Tin j‘? Chy, = A(p,G)  and lin ;-:? crh = 8(1-p.G%)

for suitable Ci,C?,...,Cj. In fact these relations are easily proved
from the ergodic theorem, with the constants Ci and C% determined

as follows: Order the vertices of qu lexicographically, i.e.,

v = (v(1),v(2)) precedes w = (w(1),w(2)) iff v(1) < w(l) or v(1)=w(1)
and v{(2) < w(2). Then

(9.21) Ci = %{# of central vertices of sz in [0,1)x[0,1)},

(9.22) cy # of vertices of G in [0,1)x[0,1)} =1,

i
T:rL—-J

_— .
(9.23) C, = ﬁ{# of edges of sz between two vertices, 2 and )
say, such that v, precedes Vos Vq € [0,1) % [0,1)

and such that vy or v, is a central vertex of sz}

(9.24) Cg = %{# of edges of sz between two vertices, vy and
Vo say, such that v, precedes v,, v; ¢ [0,1) x[0,1)
and such that v and v, are both non-central

vertices of sz}

(9.25) C3 = %{# of triangular faces of Qpl with vertices v, 2
and Vo, Say, on its perimeter, with v preceding vy

and Vo and v e [0,1)x[0,1)).

We only prove

.1 -n _ 2
(9.26) Tim _"?‘sz = Cp

N+ un
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The other relations are proved in a similar way. Now, Jn is contained
in the annulus (9.17). Therefore

(9.27) ng < number of triangular faces of W%l contained in
[0,n]x[0,n] with all three vertices on their

perimeter occupied,

while the inequality has to be reversed if [0,n]x[0,n] 1is replaced

by (A3,n-A3)><(A3-n-A3). Now let

N(v) = # of triangular faces of W$2 with vertices v, W,
and Wy, say, on their perimeter such that v

precedes Wy and W, and such that v, W, and W,

are occupied .

Then the right hand side of (9.27) clearly equals

(9.28) N(v+k gtk E,) +0(n)

vs[0,1§X[0,1) O§k1<n

0<k,<n

2

where g1 = (1,0), £y = (0,1), and the 0(n) term is at most equal to
the number of triangular faces of W$£ whose closure intersects
Fr([0,n]x[0,n]). Thus, by (9.27) and the ergodic theorem (Dunford and
Schwartz (1958) Theorem VIII.6.9 or Tempel'man (1972), Theorem 6.1 and
Cor. 6.2)

. 1 n 1
(9.29) Tim sup — T, < — % EN(v) a.e. [P_].
un? PE T H e[0,17x[0,1) P P

To calculate EpN(v) we have to recall that W%g is constructed by
inserting a central vertex in each face F of 7, and by connecting

this central vertex v say by an edge to each vertex of 7 on the peri-
meter of F. This means that the triangular faces of W%Q all have one
central vertex w and two non-central vertices Vi and v, say on
their perimeter. If w 1is a central vertex of Q;Q , i.e., lies in a
face F ¢ &, then it is vacant and the triangle with vertices w, vy

and v, cannot contribute to any N(v). If w is a vertex of sz,
i.e., lies in a face F € &, then it is occupied with probability one,
the triangle with vertices w, Vi and Vo is a face of sz, and all

three vertices w, vy and v, are occupied with probability p2.
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Consequently

§ E N(v) = p2c3 .
ve[0,1)x[0,1) P

Together with (9.29) this shows that
. 1 -n 2
1im sup _~?'Tp2 §_C3p a.e. [Pp].
un
It follows similarly from the lower bound given after (9.27) that

.. 1 n 2
Tim inf — T _, > Cp
pn2 pe 3
This proves (9.26) and (9.16).

To obtain (9.13) from (9.16) we merely have to show that

a.e. [Pp].

(9.30)  A(p.G ) - A(p,G) = + ) T (1-p)"ILv is a

P Y ve[0,1)x[0,1) n=1
central vertex of a face of 7% in & with n vertices
on its perimeter].

Indeed the right hand side of (9.30) is only a finite sum by (2.3),
(2.4), hence a polynomial in p. Also, interchanging the roles of G
and G*,

A(]—p,QEZ)— A(1-p,G*) 1is a polynomial in p.

To prove (9.30) we use Cor. 2.1. This corollary shows that each occupied
cluster on G belongs to a unique occupied cluster on Qpl' Moreover,
if W(v]) and w(vz) are two distinct occupied clusters on G, then

the occupied clusters wpi(v1) and wpz(vz) on ng to which they
belong are also disjoint, since by (2.20) any vertex w of

wpz(v1) n wpz(vz) would have to be a central vertex of @, adjacent to
some W; € W(vi) for i=1,2. But then w; and w, would Tie on the
perimeter of a close-packed face of G (cf. Comment 2.3 (iv)) and would
be adjacent on G and hence belong to the same cluster. On the other
hand it is possible to have an occupied cluster on sz which does not
contain an occupied cluster on G. Again by (2.20), this can occur only
if the cluster on G 1y contains no vertex v of G - otherwise it
equals W z(v) which contains W(v). Since two central vertices are
never adjacent on qu (Comment 2.3 (iv)) this means that the only
occupied clusters on sz which do not contain a cluster on G are

isolated central vertices, i.e., central vertices of a face F € & with
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all vertices on the perimeter of F vacant (the central vertex is auto-

matically occupied by (2.15)). From the above observations it follows
that

| (# of occupied clusters on qu on B(n,n))

-(# of occupied clusters on G in B(n,n))

-(# of central vertices of sz in B(n,n) which belong to
a face with only vacant vertices on its perimeter)|

< z+(# of vertices of Qpl in 3(B(n,n))

(compare with the estimate for the last term in (9.11)). (9.30) now
follows from Theorem 9.1 and another application of the ergodic theorem.

L

9.3 Smoothness of A(p).

Theorem 9.3. Let (G,G*) be a matching pair of periodic graphs in RZ.
Then A(p,G) 1is an analytic function of p outside the interval
[pT(Q),l—pT(Q*)] (see (3.63) for pT). If the conditions of Theorem
3.1 are fulfilled for X =1 (i.e., in the one-parameter problem) and
some 0 < Py < 1, then A(p,G) is analytic for p # pH(Q) = Pp-

Remarks.

(i) In particular if G = QO or G = Q1, then A(p,G) is analytic,
except possibly at pH(Q).

(ii) The proof will also show that Ep{ﬂ(#N(ZO))} is an analytic
function of p on 0 < p< pT(Q), for any polynomial m . Theorem 5.3
shows that the function p » Ep{ﬂ(#W(ZO));#w(zo) < »} 1is infinitely
often differentiable on pH(Q) <p<1 (cf. Russo (1978)). i

Proof: This theorem is immediate from Theorems 5.1, 9.1 and 9.2. Indeed
for p<pg< pT(Q) we have by (5.11) and Lemma 4.1

-C,n
(9.31) Pp{#W(zo) > n} §_Pp]{#W(zo) >n} < Ce 2

for each vertex z, and some constants C1, C2 depending on P and
G only. Now take a(n,2) = a(n,z,zo) as in (5.18), (5.19). By (5.24)
(with q = 1-p)

(9.32) Pp{#W(zo) =n} =7 a(na)p"e = ¥ a(n,)p"(1-p)*
2 2
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and by (5.25) the sum over & may be restricted to ¢ = 1,...,zn. Thus
(9.12) can be written as

a(p) = 1 % § 3? %-a(n,z,v)Pn(T-p)l .
Hove[0,1)x[0,1) n=1 2=1
It therefore suffices to prove for fixed Z that
© zn
I 1 xaln,2)p(1-p)t
n=1 &=1

is analytic in p on [O,plj, whenever Py < pT(Q). But for any such
p# 0 and a complex number ¢z with

(9.33) lz-p| <8
we have for 2 < zn

|a(n,2);"(1—c)2[ 5_(E%§?n(l%?%§92 a(n,2)p"(1-p)*

pr8yM 1-ptsy*
< () (F5) Pyi#i(zg) > n)

A

-C
2 Sy 1-p+8,Z.N
e A

Thus for Q0 < p < pys We can choose § such that

n
I La(n.a)"(1-g)*
1 %51

nHe<-18

n

converges uniformly in the disc defined by (9.33). For p close to
zero we have the estimate

la(n,2)c"(1-2)%] < a(n,2)|z|™ < {z72(z+1)% ||},

by virtue of (5.22), so that analyticity holds on |z| < zz(z+1)'z'1.
A slightly improved version of this last argument already appears in Kunz
and Souillard (1978). This proves the analyticity of A(p,G) on
[0,p1(G)) and consequently also of A(p,G*) on [0,pr(G*)). But then
A(p,G) 1is also analytic on (T-pT(Q*),l], by virtue of (9.13). This
proves the first statement in the theorem.

If for some Pg € (0,1) Condition A or B of Sect. 3.2 holds, and
G has an axis of symmetry as required in Theorem 3.1, then Theorem 3.1
shows that
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pr(Q) = py(G) = pg = 1-p(G*) = 1-py(G*).

In such a case we obtain that A(p,G) is analytic for all p # pH(Q)
as claimed. ]

Theorem 9.4. let G = QO’ Q1, 96 or QT (see Ex. 2.1 (i), 2.1 (ii),

2.2 (i), 2.2 (ii) for these graphs). Then A(p,G) 1is twice continuous-
ly differentiable in p on all of [0,1].

Proof: In view of Theorem 9.3 and its proof it suffices to show that

Zn
" 251 %-a(n,l)l(%a)rpn(1—p)ll >0 (N =)

He~18

n

uniformly for p in some neighborhood of pH(Q), and r =1,2. Now,
with q = 1-p,

d n 2 n_2yn2g
=2 1- = (2-2% R
@ P (-P)7 = (G-glea
d2 n 1 n 232n % (n,8y\n3
— P (1-p)7 = (G-g) PaT- (F+5)pa
dp P q
We shall only prove that
© n
(9.34) I rama@-H%% a0 (N )
n=N 2=1 P9

uniformly in a neighborhood of Py- The other terms can all be handled
in the same way. To estimate (9.34) we split the sum over £ into two
pieces: the & with

bb
n_2 8'5
and the 2 with

L.
(9.36) D_L 552 85

where g is as in Theorem 8.2. The sum over the & satisfying
(9.35) contributes at most

o zZn =Y [}
(9.37) ;) n* % amnay =
n=N 2=] n

1 1
-7y Y -5y
<N 4’5 Ep{(#w)2 5;#N < o} < CinN 4’5

1
=Y
i

Il ~1 8

5 {#W = n} (see (9.32))
N p

10 ’
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by Theorem 8.2. For the sum over the & satisfying (9.36) we use
Lemma 5.1. We take

in (5.23). We then find that the sum over the & satisfying (9.36)
contributes at most

]
L 0+ )0 exp -3 0t 0 P
n =

which obviously tends to zero as N - =, uniformly for p 1in some
neighborhood of pH(Q) e (0,1). 1

Remarks.

(iii) Since we only know that Y5 > 0 we cannot push the argument
above further to obtain a third derivative of A(-). As observed in the
introduction to this Chapter it is assumed that (%BJ3A(p) blows up at
Py It should be noted that one needs none of the difficult estimates
of Ch. 8 for the present proof if p 5_pH(Q). Indeed, for such p one
obtains

o,

Pp{#w >n} < PpH{#w > n} < Coon
from the very simple Lemma 8.5 (cf. (8.113)). This is enough to make
the above estimates go through for p f_pH(Q) and to conclude that
A(-) has two continuous derivatives on [O,pH(Q)) and these have finite
limits as p‘pr(Q). Applying this to G* and using Theorem 9.2 we see
that there also exist two continuous derivatives on (pH(Q),1] and that
these have finite limits as p-&pH(Q). Thus the hard part of the above
theorem is that A' and A" do not have a jump at Py In fact Grimmett
(1981) already gave a simple proof of this for the first derivative.
For G = Q1 we can use the fact that QT is isomorphic to Q] whence
AC-,GY) = A(-,Gy) and

A(P,Q-I) = A(1"p9Q])+®(p=Q]) .

The polynomial & must be an odd function of p-%— therefore, and
@“(%,Q) = 0 1is then automatic. This shows that for G = G, even the
second derivative of A must be continuous at pH(Ql) = %—. It does
not seem possible to handle A"(p,qo) in the same simple way.

(iv) Kunz and Souillard (1978) discuss the series
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[oo]

T e ™r(n)P (#0 = n} = E_{n(#W)e MWy
n=1 P P

for a polynomial w or w(n) = %—. The series converges for all

p e [0,1], h > 0. It is not analytic in h at h=10,p > pH(Q), when-
ever m is always nonnegative. In fact, if we write ¢ for e'h, then

Y e "Mpd pp{#w =n} =) c"n5Pp{#w = n}

is a power series with positive coefficients in ¢, whose radius of
convergence equals 1 whenever p > pH(Q) (by Theorem 5.2). The same
is true for p = pH(Q) if G=G, or Q] by (8.9). Such a power
series has a singularity at z = 1 by Pringsheim's theorem (Hille
(1959), Theorem 5.7.1).

We also point out that if we view

A(p) = .

1
I —a(n,2)p
n

1 2

l~18

as a function of two independent variables p and q, then
2

(9.38) ji?_ ) %-a(n,l)pnqg
op n=1 2
=13 7 (n-Da(n,e)pet = Sy B {(#M-1)580 < )
p n=1 2 p p

on the set {q = 1-p}. By (5.17) the right hand side of (9.38) blows

up as p - pT(Q). Despite these facts we could not show that A(p) has
a singularity at p = Py when viewed as a function of the single
variable p.



10.  INEQUALITIES FOR CRITICAL PROBABILITIES .

We first give a theorem of Hammersley's (1961) stating that for
any connected graph G the critical probability in a one-parameter
problem for site-percolation on Q(==pH(q) in our notation) is at
least as large as the critical probability for bond-percolation on
Q(==pH(a), where é is the covering graph of G ; see Sect. 2.5).
Actually, the result is obtained by comparing the probabilities that a
fixed vertex Z4 is connected to some set of vertices V via a path
with all vertices occupied, and via a path with all edges open, re-
spectively. The proof given below is from Oxley and Welsh (1979).
Hammersley (1980) has generalized this further to mixed bond and site
problems (see Remark 10.1(i) below).

Special cases of the above mentioned inequality

~

(10.1) P(G) > py(Q)

are

(10.2) pH(QO) = critical probability for site-percolation on
2 1

y/A 2z PH(Q]) ='2—

(see Ex. 2.1(i), 2.1(ii) and Application 3.4(ii)) and

(10.3) pH(J) = %- > critical probability for bond percolation
on the triangular lattice = 2sin %%

(see Ex. 2.1(iii) and Applications 3.4(i) and (iii)). In (10.3) we
clearly have a strict inequalitysand various data (Essam (1972)) indicate
that pH(QO) % .59 so that one long expected (10.2) to be a strict
inequality as well. Higuchi (1982) recently gave the first proof of
this strict inequality. Intuitively, the most important basis for a
comparison of pH(qo) and pH(q]) is the fact that Gy can be
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realized as a subgraph of  G,; one obtains (an isomorphic copy of)
QO by deleting certain edges from Q1, see Fig. 2.1 and 2.2. and
Fisher (1961). The principal result of this chapter implies that for

many pairs of periodic graphs ¥, G with ¥H a subgraph of G one
has

(10.4) py(#) > py(Q).

0f course one always has pH(H)‘Z pH(Q) whenever H# is a subgraph
of G . The strength of Theorems 10.2 and 10.3 1is that they give

a strict inequality in many examples such as (10.2) and (10.3) (see

Ex. 10.2(i), (ii)). Theorem 10.2 is actually much more general, and
also gives strict inclusions for the percolative regions in some
multiparameter percolation problems (see Ex. 10.2(i) below). The

price for the generality is a very involved combinatorial argument in
Sect. 10.3. The reader is advised to look first at the simple special
case treated in Higuchi (1982).

10.1  Comparison of bond and site problems.

Let G be any graph with vertex (edge) set wu(e) , and Tet
Pp be the one-parameter probability measure on the occupancy configu-
rations of its sites, given by

P = 1T q

D v

with (3.61), as in Sect. 3.4. For a vertex
vertices V of G set

Z4 of G and a set of

op(zO,V) = cp(zO,V,Q) = Pp{ 3 path (vo,e],...,ev,vv) with

Vo = Zg» Yy € V and all its vertices occupied [zo is

occupied}

Analogously, we define Pp as a measure on the configurations of
passable and blocked edges of G . As in Sect. 3.1 we take

and
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Also, with z0 and V as above we set

Bp(ZO,V) = Sp(zO,V,Q) = Pp{ 3 path (vo,e1,...,ev,vv)

with Zg = Voo Y, € V and all its edges passable}

Lastly we remind the reader that e(p,zo) was defined in (3.25),
and define here its analogue

5(p,20):= 5p{ 3 infinitely many vertices connected to Zg

by a path with all its edges passable} .

Theorem 10.1. Let G be any connected graph, z, 2 fixed vertex of
G, and V a collection of vertices of G. Then

(10.5) op(zg V) < Bi(zpV) » 0<p <]
Moreover,
(10.6) 6(p.zy) < po(pszj) »

and consequently

(10.7) py(G) > py(Q) ,

where G is the covering graph of G .

Proof: We only have to prove (10.5). One then obtains (10.6) by
taking for V the set

Vn:={v: v a vertex of G such that all paths from

z to v contain at least n vertices}
and letting n -+ « . Indeed one has the simple relations

e(p,zo) = Tim Pp{z0 is connected by an occupied path

n >~
to Vn} = 1im p cp(zo,vn),

n > o

6(p,zp) =n1imm Bp(zo,vn) .

(10.7) in turn follows from (10.6), the definition (3.62) of pH(Q)
and the corresponding formula
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py(@) = sup{p ¢ [0,1] : &(p,z;) = 0}

(Here we use the fact that bond percolation on G 1is equivalent to
site percolation on G, as proved in Prop. 3.1.)

For proving (10.5) we shall drop the restriction that G is
connected. It suffices then to consider only finite graphs G, by
virtue of the following simple 1imit relation. Let qn be the
graph obtained from G by deleting all vertices in Vn and all
edges incident to some vertex in Vn' Then clearly

cp(zo,v,q) =nllmm op(zo,V n qn,qn) .
We now prove (10.5) for a finite graph G by induction on the
number of edges in G . First assume G has one edge e only. If
2y € V then op(zo,v,q) > Pp{z0 is occupied [zo is occupied} = 1.

Thus cp(zO,V) =1 and similarly B(zO,V) =1. If Z4 ¢V and e
is not incident to 24 then both sides of (10.5) are zero. If e
connects Z with a vertex Zys then both sides of (10.5) are still
zero if z4 ¢ V. If, however, ZT e V, then (10.5) follows from

cp(zo,v) = Pp{z0 and z; are occupied | Z3 is occupied}

=p = Ep {e is passable} = Bp(ZO,V)

(since z, can be connected only to 21). Now assume that (10.5)

has been proven for all graphs with m or fewer edges, and let G
have (m+1) edges. As before the case with zg € V is trivial.
Assume Zg ¢ V. If there is no edge incident to Zg» then again
gp(ZO,V) = Bp(zo,v) = 0 . Otherwise let e be an edge with endpoints

zy and some other vertex, zy say. Introduce the following two
graphs:
qd = graph obtained by deleting e = e\\{zo,z]} from G,
qc = graph obtained by contracting e,i.e, deleting
e = e\\{zo,z1}, but identitying z, with zy -
QC has as vertex set the vertex set of G minus 25 and has as

many edges from Z4 to v as there are edges in G from 2z. or
d

0
Z to v. Both G  and Qc have at most m edges. Next, denote
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by B(ZO,V,Q) (S(zO,V,Q)) the event that there exists a path
(VO’GT"“’ev’Vv) with Vg = Zys V€ V and all its bonds or edges
passable (all its sites or vertices occupied). One easily sees that
if e 1is blocked, then B(zO,V,Q) occurs if and only if

B(zO,V,qd) occurs, since any passable path from Z4 to V does not
contain e. Therefore

5 _ 3 dy, _ d
Pp{B(zO,V,Q) and e b]ocked}—-(1—p)Pp{B(zO,V,q )}-—(T—p)Bp(zo,V,q )

Similarly, if z is vacant and S(zO,V,Q) occurs, then there is an
occupied path on G from z0 to V, which does not go through e,
because any path which does not go through 2z, cannot contain e
either. In other words Z4 must be vacant and on the graph Qd minus
the vertex z1(and the edges incident to zy on G there must exist
an occupied path from Z, to V. Since this occupied path is auto-
matically a path on Qd we have

Pp{S(zO,V,Q) and z4 is vacant | 24 is occupied} ,
d
< (]'p)cp(zosv’(;) .

Next consider the case in which e 1is passable. Then, if
B(zO,V,QC) occurs, also B(zO,V,Q) occurs. Indeed, if

Cc

(zo,e1,v,...,ev,vv) is a passable path on G~ from Zq to

v, € V, then either (zo,e1,v],...,ev,vv) or (zo,e,z],e],v1,...,ev,vv)

is a passable path on G from Z, to Vv . (We abuse notation
somewhat here by using the same symbol for an edge or vertex on G and
the corresponding edge or vertex, respectively on QC . Also if

z; € V on G, then on qc the vertex Zg> resulting from identifying
z4 and z; on G, belongs to V). Conversely it is just as easy to
go from a passable path on G to a passable path with possible double
points on Qc by removal of the edge e and identifying z, and

Zq- Therefore

_ c
Pp{B(zO,V,Q) and e passable} =p sp(zo,v,q ) .

Finally, if z, is occupied, then S(zO,V,Q) implies that there
exists an occupied path on Qc from Zg to V. By considering
separately the cases zy e V and z4 ¢ V one obtains
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Pp{S(zO,V,Q) and  z, occupied]zO is occupied} = p cp(zo,v,qc) .

Finally, by the induction hypothesis

Bp(2goVG°)

Bp(ZO,Vde)

| v

C

|v

d
op(zo,V,Q )
Putting all these inequalities together we obtain

Sp(zo,v,q) = Pp{B(zO,V,Q) and e 1is blocked}

+ 5p{B(zo,V,q) and e 1is passable}

i)

(1-P) 8 (2g2V6) + p 8 (20,V,6°)

| v

(1-6) 0, (202¥:6Y) + o (2,V,6°)

[V

Pp{S(zO,V,Q) and z; vacant ]zo is occupied}

+

Pp{S(zO,V,Q) and z, occupied | 2, is occupied
Cp(zoavsq') . D

Remark .

(i) We can also ask for the probability

Y(p,p ,zO,V) : = P{ 3 path (VO’e1""’ev’Vv) with

Vo = Zg0 Yy € V and all its edges passable and all its

vertices occupied} ,

when each vertex is occupied with probability p and each edge is
passable with probability p' (all edges and all vertices independent) .
Hammersley (1980) gives the following generalization of a result of
McDiarmid (1980).

(10.8) y(Gp,p',zO,V) < Y(p,Gp',zo,V), 0<8,p,p' < 1.

Here is Hammerersley's quick proof of (10.8). Let ¥ be the random
graph obtained by deleting each site other than Zg of G with
probability 1-p and each edge of G with probability 1-p'. ¥ may
have some edges for which only one or no endpoint is a vertex of
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3 . Despite this slight generalization (10.5) remains valid for ¥
since one can simple ignore all edges which do not have a vertex of
# for both of their endpoints. Now take the expectation over ¥ of
the inequality

og(zpsVsH) < Bg(z.V3H)
This gives (10.8). E.g. in the left hand side one can pass through
an edge only if it remained in H; this event has probability p'.

One can go through a vertex only if it stayed in ¥ and is now
occupied in ¥; this event has probability 8p. Thus

E OS(ZO,V,H) = v(8p,p ’ZO’V)'

Similarly
E B5(zg.Vs#) = v(p,dp',z4,V).
(10.5) can be recovered from (10.8) by taking p = p' =1, since
o5(zgsV) = v(8,1,25,V) and  Bs(z4,V) = v(1,8,24,V) .

10.2 Strict inequalities for a graph and a subgraph .

The set-up in this section will be the following.

(10.9) (G,G*) 1is a matching pair of periodic graphs in RZ , based
on (m:3%),

(10.10) U],...,hk is a periodic partition of the vertices
of 7,

and P_ is the X-parameter probability measure defined as in (3.22),
(3.23). We further assume that

(10.11) one of the coordinate axes, call it L, is an axis of
symmetry for G,G* and the partition U1,..., by -

We shall later be interested in subgraphs ¥ of G and the inequality
(10.4). For the time being, though, we concentrate on comparing the



262

percolation probabilities on G (or rather pr) under two

different probability measures. We shall show after Theorem 10.2

how the case of a subgraph ¥® of G fits into our framework. For a
1ittle while our attention will be on sz . W will be a periodic
subclass of the vertices of sz . Unfortunately we have to impose

an ugly and complicated Tooking technical condition. It is a purely
combinatorial condition, whose purpose is to guarantee that sufficiently
many sites in W can be pivotal for the occurrence of occupied
horizontal and vertical crossings on qu of large rectangles. Despite
its forbidding appearance the condition is rather mild, as the examples
after Theorem 10.2 will show. We shall also show by example that

some condition of this form is needed to obtain the inequality (10.4).
Before formulating the condition we remind the reader of some of the
constants A,Ai introduced earlier. These depend on 7,G,G*,

and only.

*
Qpl pL

or G*

(10.12) A > diameter of any edge of G,G*, Qp he

L

Ay and AS > 1 are such that each horizontal (vertical) strip

of height A3(width A3) posseses a horizontal (vertical) crossing on
7 (and hence also on G as well as on G*) with the property that
for any two points Yy:¥o ON the crossing the diameter of the segment
of the crossing between Y and Yy is at most

A5(‘y] - y2] +1) .

Such A3, A5 exist by Lemma A.3 (Note that this lemma allows us to
construct crossings which consist of translates of a fixed path inde-
pendent of the length of the strip.) As before Ay = I Ay + AT+ 1.
We also choose A6 such that any two vertices of QPQ(QEQ) within
distance A3 + 10A of each other can be connected by a path on

Qpl(qu) of diameter <l - Further we use the following abbrevia-
tions

Ay = Ay + 40,
hg = (31\.5+ 1)(2A6+4A3+ 100 + 1),

Lastly we make the following definitions.

Def. 10.1. A path (VO’el""’ev’Vv) on sz is called minimal
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if for any i < j for which vy and Vj are adjacent on G
has j =1 + 1.

pe one

Def. 10.2. A shortcut of one edge of the path (vo,e],...,ev,vv) on

ng is an edge e of qu between two vertices v; and vy on the
path with j > 1i + 2.

Comment .

(i) A path is minimal exactly when it has no shortcuts of one

edge. /1/

Now let w be a periodic subclass of the vertices of qu .

Condition D. For some vertex x = (x(1), x(2)) € w there exists
a constant A > 2A8, a minimal path U= (uo,e1,...,ep,up) on
sz and a path V* = (vo,e1,...,e§,v;) on Q*pl such that the

following conditions are satisfied:

a) x = Uy for some 10, i.e., U goes through x.
0
b) If i and j>1i+2 aresuch that u. and uj 1ie on
the perimeter of a single face F e &, whose central vertex does not

belong to w , then either i+ 2 < < iy or io <i<j-2,

c) U 1ds a horizontal crossing of
B = B(x):=[x(1) - A, x(1) + Alx[x(2) - A, x(2) + A].

U 1lies below the horizontal 1line Rx {x(2) + A - A8} . Moreover,

(u10 = X, ei0-+1""’ep’up) lies to the right of the vertical

line {x(1) - A+ A} x R, while (u,,€ys...,8. 5u, = x) lies to
8 0°"1 ig’ g

left of the vertical line {x(1) + A - A8} x R,

d) V* connects x to the top edge of B inside the strip
[x(1) - A+ Ags x(1) + A-A8] x R, i.e., (va,e?,gf.,eg,v;) are

contained in this strip, (vg,ef,...,e§_1,v;_1) c B(x), but e;

intersects [x(1) - A + As,x(l) +A - A8] x {x(2) + A} . Moreover,
v6 and x are adjacent on sz.

e} U and V* have no vertex in common.
Comments .

(ii) Basically a),c),d) and e) state that there exists a horizontal
crossing U of B(x) on G through x, and a connection V* from
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x to the top edge of B above U. There are some restrictions on
the location of U and V*, and U has to be minimal. However,
condition b) may put a crucial restriction of another kind on U.
Basically it requires that the pieces of U before and after x
should not come too close to each other in a certain sense. On the
other hand, condition b) 1is vacuous if & =@ or if all central
qu belong to W . This happens in several of the
examples below. The reader is urged to look at these examples to get
a feeling for Condition D. Example v) also illustrates that some
restriction is necessary to obtain (10.4).

vertices of

(ii1) 1In condition c) and d) there is an asymmetry between
the roles of the horizontal and vertical direction, and between the
roles of the positive and negative vertical direction. This was
merely done not to complicate the conditions still further. One can
always interchange the positive and negative direction of an axis, or
the first and second coordinate axis by rotating the graph over
180° or 90°. /1]

We now turn to a discussion of the probability measures to be
considered. We assume that Pg € P is such that

A
(10.13) 0 << Py << T
and that Pp is given by (3.22), (3.23) with p = Py Further
0
(10.14) Condition A or B of Sect. 3.3 1is satisfied for Py

As usual we extend Pp to a probability measure on the occupancy
configurations of W&% by means of (7.2) and (7.3). The extended

measure Pp js still a product measure of the form (3.22), (3.23)
0

with U = vertex set of W%z . We shall also consider another
probability measure, Pp. » on the occupancy configurations of

W%z . Pp' too will be a product measure:

(10.15) P, = 1 v
P v a vertex

of W$£

with vy a probability measure on {-1, +1} . We assume that

v

(10.16) v, T W, for v£W
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but
(10.17) vv{m(v) =1} < uv{w(v) =1} ,vew »

where is a periodic subset of vertices of ng . Pp. is also
assumed periodic, i.e.,

(10.18) v, =V if w=v+ k]g1 + kzgz for some

k k2 e

1°
Thus, Pp. {v 1is occupied} takes still only a finite number of
values, on periodic subclasses of the vertices. We think of these
values as the components of a vector p', thereby justifying the
notation Pp. . Note, however, that p' can have more (or fewer)
components than p; Pp. does not have to be a A-parameter

probability measure. Also, for a central vertex v of ng which
belongs to w (10.17) and (7.2) imply

(10.19) vv{w(v) =1} <1 =“v{w(v) =1}

We are therefore no longer restricting ourselves to measures in which
all central vertices of . are occupied with probability one.
However, by (10.16) and (7.3) we still have

(10.20) vv{w(v) = -1} = uv{w(v) = -1} = 1 for every central
*
vertex of b2

It is also worth pointing out that (10.15) - (10.17) imply

Pp. {v is occupied} < Pp {v is occupied}
0

for all vertices v of W$2

Theorem 10.2. Assume Q,Q*,1;1,...,U , satisfy (10.9) - (10.11)
and that W is a periodic subset of the vertices of § 3 such that

Condition D holds. Further let Py be such that (10.13) and (10.14)

hold, and assume that Pp is extended such that (7.2) and (7.3) hold

0
for p = Py Let Pp. be defined by (10.15) and satisfy (10.16) and

(10.17). Then, for any vertex Z, of qu
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(10.21) Ep.{#sz(zo)} < o and Pp.{#wpﬂ(zo) = w} = 0,

where wpz(zo) is the occupied cluster on qu of zy -

We now explain how this result can be applied to deal with
subgraphs ¥ of G . We will consider subgraphs ¥H of G formed
by one or both of the following two procedures in succession:

(10.22) Remove all vertices of G 1in some periodic subclass
Vg of the vertices of G. Also remove all edges

incident to any vertex of UO .

(10.23) Remove the close-packing in all faces of 30, where
30 is a periodic subset of 3.

Note that we do not make any symmetry requirements for ¥ with
respect to any line. The periodicity requirement in (10.22) for y 0
means of course that (3.18) holds for v g» While for Fy in
(10.23) it means that if F ¢ 3 then also F + k1g1 + ko, € 3
for any integers k], k2‘ To remove the close packing of F means
to remove all edges which run through the interior of F and connect
two vertices on the perimeter of F. Recall that these edges where
inserted to manufacture G from % (see Sect. 2.2).

Now let Py satisfy (10.13) and (10.14) ((10.14) is a condition
on p, and G). PpO also induces a probability measure on the

occupancy configurations of  ¥(we merely have to restrict Pp to the
0

A
vertices of ¥, i.e., to U 1:§\110 ). To define P_, 1in the
3 i p
present situation we take
(10.24) b =1, U {the central vertices of faces F ¢ 30} (w is
a subset of the vertex set of ng - b =T g if only
(10.23) is applied to form H; also 30 =@ if only
(10.22) is applied to form H).
Next, we take for v a vertex of W%z

(10.25) Pp. {v is occupied} = Pp {v 1is occupied} if v # W,
0

and
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(10.26) Pp' {v 1is occupied} = 0 1if ve p
Later on we shall show the easy fact that percolation on 3 under

P is equivalent to percolation on under P_, , and that
Po pL p

(10.15) - (10.18) hold for the above w  and Pp. . This then leads
to the following result for subgraphs ¥ .

Theorem 10.3. Assume  G,G*, Upsennaly satisfy (10.9) - (10.11)
and p, satisfies (10.13) and (10.14). Let ¥ be a subgraph of

G formed by one or both of the procedures (10.22), (10.23) and assume
Condition D holds with w as in (10.24). Then, for any Py in
some open neighborhood (in @ A) of Py and any vertex zy of ¥ :

E_ {#(occupied cluster of z

p] o O W <=

Pp {#(occupied cluster of z, on H) ==} =0 .
1

Special case. In a one-parameter problem (i.e., X = 1) with g
and ¥ as in Theorem 10.3 one obtains

py&) > py(Q) .
Examples .

Before turning to the proofs we illustrate the use of Theorems

10.2 and 10.3 and the verifiability of condition D with a few examples.
(i) Let ¢ = Gy s the graph corresponding to bond percolation

on Z? , imbedded as in Fig. 2.3 (see Ex. 2.1(ii); the vertices are

A .. 1 ..
Tocated at (1 + 'é'a 12) and (11912, + ?)s 1-1,12 € Z) . has

Q'l ’pl
in addition vertices at (11,12), i],iz e Z. (see Ex. 2.3(ii) where

the same graph is discussed, but rotated over 45°). QT,pz is shown
1 .

. . . .. 1 .
in Fig. 10.1 below. It has vertices at (1],12 + ?J’ (11 + 5 12),
(1] + %3 12 + %J, 11, 12 e Z. For Ww we take the vertices of
2 .
Q]’pz on Z  ,i.e.,

b= {(i,1,) 1 i, e Z)

We easily see that condition D holds in this example with x = the
origin. For U we take a path from (-A,0) to (A,0) along the first
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Figure 10.1 g; . The solid segments are the edges of qf by
The dashed lines are the 1ines x(1) = ky or x(2) = k2 R
k el .
coordinate axis. For V* we take the path from v* = (0, 2) along
the 45° line to (2, 1) and then upwards along the vert1ca1 Tine

x(1) = %— to the point (;, A) (see Fig. 10.2). b) is automatically

fulfilled since  contains all central vertices of Gop -
. .
+V*
+
1 | + t
SR CE R el i
lk,’ N \\|
(NN }F\ A
4 s 1
A N A
I N ! N\ I
v |/, \l// N\
K\ /Y\ )
i N\ /’ I\\ //|
-t LU T A .
! !

Figure 10.2 The dashed lines represent edges of q1 pL The path

U 1is drawn solidly. The path V* 1is indicated by
+++ ; it runs on qT pg

Now as in Application 3.4(ii), let

A
U {1] t 5 12) SR Py ZY,

PP N

We consider the corresponding two-parameter problem, as defined in
(3.20) - (3.23). Take Py = (p0(1), p0(2)) such that
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po(]) +P0(2) =1, 0< p0(1) <1l,1i=1,2.

By Application 3.4(ii) condition A holds for such a Po- By Theorem
10.2 we therefore have

(10.27) By U (2g)} < =
for any Pp. of the form (10.15) with

(10.28) Pp. {v is occupied} =py(i), veyv,,i=1,2,.

(10.29) Pp. {(1'],12) is occupied} < 1, isi, e Z.

2

Actually the set of p >> 0 1in parameter space where (10.27) holds
is open, by Cor. 5.1. Thus (10.27) continues to hold when Po in
(10.28) and is replaced by p] sufficiently close to po, even

when p1(1) + p](Z) > 1. The best illustration for this is provided
by Theorem 10.3. We now define ¥ as the subgraph of G, obtained
by removing the close packing of all the faces which contain a point
(i], iz), i],iz € Z). (Thus, if we call this last collection of
faces 3,, then we only apply (10.23) with this 30). The resulting
H is clearly isomorphic to QO’ the simple quadratic lattice, and

Uy and U o, are such that the resulting two-parameter problem on

H is precisely the two-parameter problem for site-percolation on

Zz considered in Application 3.4(iv). We conclude from Theorem 10.3
that no percolation occurs under Pp for Py = (p](1), p1(2), in

some neighborhood of Po- In particular, the non-percolative region
for two-parameter site-percolation on 212 contains the (anti-) diagonal

{p: 0 < p(i) <1, p(1) + p(2) = 1}

strictly in its interior. Strictly speaking we only obtain this
conclusion from Theorem 10.3 for 0 << p << 1. However, we already
know from Application 3.4(iv) that no percolation occurs for

0 < p(1) f_pH(Qa), p(2) = 1, and hence by monotonicity (Lemma 4.1) no
percolation occurs for 0 < p(1) f_pH(Qa), p(2) > 1 - pH(Qa) (see
Fig. 3.8). Similarly no percolation occurs for 1-pH(Qf)_§ p(1) <1,
0 < p(2) < py(GE)-

When restricted to p(1) = p(2) the above shows that there is

no percolation in a neighborhood of p(1) = p(2) = %—. This shows
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that (10.2) is really a strict inequality .

(ii) This time let G be the triangular lattice. 1In order to
obtain the familiar picture we imbed this lattice in such a way that
its faces are equilateral triangles (i.e., we use the imbedding of
Fig. 2.4 rather than the one for J described in Ex. 2.1(iii).)

Qpl = G 1in this case. Let the vertices be located at
ko ko
(k-|+-'2—‘,‘—2~—\/§),k], kzsl,
and take

w={2k1+k23k2‘/§}5k1,k2€l.

In a way 1w consists of every other point; see Fig. 10.3.

Figure 10.3  The triangular lattice with the points of W indicated
by circles. V* is the dashed path.

Again condition D is easily seen to hold with x = the origin. For
U we take again a path from (-A,0) to (A,0) along the first coordinate
axis. For V* we take a path with "zig-zags" upward from the

point (%3 %~/§) alternatingly through points (%3(j - %) /3) and

(0, /3) ,3 = 1,25..., A.

We may therefore apply Theorem 10.3 to the one-parameter problem
on G . We know from application 3.4(i) that Pg = %—= critical
probability for site-percolation on G satisfies condition A. Let
H be the graph obtained by removing the vertices in W from G.(Thus

we apply only (10.22) with LU =W.) We conclude that pH(H) > %—.
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However, one easily sees that removing the sites in W from ¢
yields the Kagome lattice of Ex. 2.5(i) for ¥ . This is the
covering graph of the hexagonal lattice, so that pH(u) = critical
probability for bond percolation on the hexagonal lattice

=1 - 2sin f%— (see Prop. 3.1 and App]ic%tion 3.4(iii?.). Thus, we
obtained the obvious inequality 1-2 sin 35 = pH(n) > 5 -

Since by Application 3.4(iii) the critical probability for
bond-percolation on the triangular lattice equals one minus the
critical probability for bond percolation on the hexagonal lattice,
we also have

pH(bond percolation on triangular lattice) < %
This is precisely (10.3) with a strict inequality.
(iii) In this example we compare 23 with ZZ. We concentrate

on site-percolation, but practically the same argument works for
bond-percolation on 23 » or even the restriction of 23 to

7% x {0,1} (i.e., two layers of 22). The latter graph contains
the following graph G, which is obtained by decorating one out of
nine faces of Qo(see Ex. 2.1(i) for QO). Each face
(i],i] + 1) % (12,12 + 1) with both i] = 1(mod 3) and i
is decorated as shown in Fig. 10.4.

H]

5 1(mod 3)

{
1
'
1
1
]
1
!
I
1
1

S U

Figure 10.4 The graph ¢, obtained from G, by the indicated
decorations. The blackened cir91e is the vertex X.
The boldly drawn path is U . The path V* is dashed.
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G 1is a mosaic so that we can view G as one of a matching pair
based on (G,#). In this case G = qu . Both coordinate axes are
axes of symmetry for G. For the subgraph ¥ we take QO = the
simple square lattice. This corresponds to applying (10.22) only,
with 0° the collection of vertices used in decorating QO when
forming G . Condition D b) is vacuous since 3 =@, and Fig. 10.4
illustrates that the other parts of Condition D can also easily be
satisfied for any choice of x ¢ UO' Since G 1is invariant under a
rotation over 90° around the origin, it is immediate that (3.52) -
(3.55) hold for the one-parameter problem on  G; compare Applications
3.4(iv) and (v). As in those Applications it follows from Theorem

3.2 that Condition B of Sect. 3.3 holds for Pg = pH(Q). We therefore
conclude from the one-parameter case of Theorem 10.3 that

(10.30) pH(site—perco1ation on 23)

j_pH(site-perco1ation on two layers of 12

2

) 2 py(Q)

< pH(site—perco1ation on Z

) = py(Gp)-
To obtain a similar conclusion for bond-percolation on 23 we

compare the covering graph @ of G with the covering graph of 112,
(see Ex. 2.5(i1)). We draw some faces of G in Fig. 10.5. The central
square in this figure corresponds to one of the decorated faces in

G . # 1is now formed from @ by removing all vertices of ¥# which
correspond to edges of the decorations. These vertices are marked

by solid circles in Figure 10.5. We leave it to the reader to verify
that ¥ is nothing but Q]. We therefore conclude in the same way

as in (10.30) that

1

pH(bond—perco1ation on 23) <5 = pH(Q1)

(see Application 3.4(ii) for the last equality).

(iv) The graph G in this example will be ®&* , the matching
graph of the diced lattice 8. 8 was introduced in Ex. 2.1(v); &*
is illustrated in Fig. 10.6. One can think of ®* as a "decoration"
of the hexagonal lattice. Note that ®* 1is not identical with the
matching graph of the hexagonal graph, because ®* has a vertex in the
center of each hexagon (the solid circles in Fig. 10.6). S;Q is
also drawn in Fig. 10.6. It has a central vertex in each face of ¥
(see Fig. 2.7; these central vertices are indicated by the open
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Figure 10.5

Figure 10.6

The covering graph é of G . The dashed edges form the
decoration of one face of Gg -

8* drawn as a "decoration" of a hexagonal lattice.
The "decoration" is indicated by dashed lines. There
is a vertex of 8* at each center of the hexagons
(drawn as a solid circle). There is no vertex of g*
at the open circles; however, there is a vertex of
SBE at each open circle.
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circles in Fig. 10.6). For W we take the collection of these
central vertices. Condition D again holds. We content ourselves
with a picture of a possible choice for U and V* in Fig. 10.7 for
X an arbitrary vertex in W . Note that Condition D b) is again
vacuous since Ww contains all central vertices of qu = 852 .
Also (8*)* =8 and & 9 .

pL

Figure 10.7 The open circle is the vertex x . The boldly drawn path

is U . The dashed path is V* . The edges indicated by
— - — belong to spl .

Once more we apply Theorem 10.3. This time we take for ¥ the
graph obtained by removing the close packing in all faces of &%*, i.e.,
we apply only (10.23) with 3 all faces of 8. The resulting
¥ is just & itself. pg = pH(ﬂ*) satisfies condition B when G is
taken ®* ( by Application 3.3(v) and Theorem 3.2 ). (Actually we checked
(3.52) - (3.55) for G = 8. However, (3.52) - (3.55) remain
unchanged when G is replaced by G* and p by 1-p. Thus (3.52)-
(3.55) hold when G = ©*.) Theorem 3.2 then shows that Condition B

holds for p, = pH(s*). The conclusion of the one-parameter case
of Theorem 10.3 1is now

pH(ﬂ) > PH(E*)
But by Theorems 3.2 and 3.1 PH(S) = 1—pH(£*) so that we find

py(8) > 3 > p,(8%).
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From Fig. 10.7 one also sees that Condition D is fulfilled if
we take G =8, and W  the collection of the centers of the
hexagons. If 8 1is imbedded as described in Ex. 2.1(v) these
are the points

((k1 +%) 3, 3(k2+—12—9v)), k1. eZ, 2=0o0r1:

in Fig. 10.6 this means that we remove the solid circles. If we
apply (10.22) with v 0° W the resulting graph is the
hexagonal lattice and we obtain

pH(hexagonal lattice) > pH(diced lattice) > %—.

(these are critical probabilities for site-percolation).
Remark .

i) The procedure illustrated in this example will work in many

examples of matching pairs (G,G*) based on (%,@) to yield

py(@) = Py > 3 > py(G¥)

Indeed apply Theorem 10.3 with G replaced by G*, and 3 the
collection of all faces of 7 . When removing the close-packing
from G* in all faces of 7 as in (10.23),the resulting subgraph
¥ is just 7, or G. Lastly one uses pH(q) + pH(Q*) =1, as%uming
Theorem 3.1 or 3.2 applies. One could have obtained pH(QO) >3 in

Ex. 10.2(i) above in this way. /1]

v) This "negative" example shows that some kind of condition
1ike Condition D has to be imposed. We take for ¥ a mosaic, and
for G a graph obtained by decorating a periodic subclass of faces
of # . Choose the decoration in a face F such that it is attached
to only one vertex v , or two adjacent vertices v' , v", of H on the

Figure 10.8. F 1is the interior of the hexagon, which is a face of
H#. The vertices Wi, and the edges in F have

been used to "decorate" F.
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perimeter of F, e.g. as in Fig. 10.8. Even though ¥ 1is a subgraph
of G one always has p, (%) = pH(Q). Indeed in site-percolation, in
the situation of Fig. 10.8, the decoration could be of help in forming
an infinite occupied cluster only if v' and v" are both occupied.
But in this case v' and v" belong to that same cluster even if no
decoration is present. Condition D fails because there exists no min-
imal path through any of the added vertices in F which starts and
ends ouside F.

Remark .

ii) The theorems of this section give no strict inequality if
¥ is obtained from ¢ by removing edges of % or partial close-
packings only. If we remove one of the edges introduced when close-
packing a face of %, then we usually cannot find a subgraph ¥ ¢
which serves as the planar modification of 3, and we therefore have
trouble in defining a "lowest" horizontal occupied crossing. On the
other hand, if an edge e of % (and it translates by integral vectors)
is removed to form ¥, then one can artifically turn this into a situa-
tion where one removes a vertex. One introduces a new kind of vertex
for %, situated somewhere on ; , and connected only to the endpoints
of e. The new vertex should be occupied with probability one on ¢ ,
and it is this vertex which is removed to form 3. However, this intro-
duces a new vertex on the perimeter of some faces of %, and therefore
G may no longer be obtained from the modified % by close-packing
faces. Nevertheless we believe a more complicated proof may work when
only edges of 9% are removed from ¢ to form ¥ . /17

Proof of Theorem 10.2. The proof consists of two parts. First a
combinatorial, or topological, part which derives another ugly
condition - Condition E stated in Step (ii) - from Condition D. We
begin with a probabilistic part, and defer the derivation of Condition E
from Condition D to a separate section (to make it easier to skip the
unpleasant and not very interesting part of the argument).

The probabilistic part begins 1ike the oroof of Lemma 7.4. By
virtue of Theorem 5.1 it suffices for (10.21) to prove

Tim t(2M 3 1.p ,qu) =0, 1=1,2,

sy

for some sequence M, = (M21,M22) with

Mli + oo (g >®) , i=1,2,
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In this whole proof we restrict ourselves to horizontal crossings,
i.e., we prove only

(10.31) Tim - w(2M)5 1,p".G,0) = 0

L >

for suitable ﬁi . The same proof can be used to show

Rliwm T(2M2;2,p‘,qp2) =0 ;
the asymmetry between the horizontal and vertical direction in
Condition D discussed in Comment 10. 2(iii) will play no role in the
proof of (10.31).

Llet E be the event that there exists an occupied horizontal
crossing on qu of a certain large rectangle. We want to show that
Pp.{E} is small. As in Lemma 7.4 this is essentially done by showing

é%'Pp(t){E} is large with p(t) = tpO + (1-t)p' . Russo's formula

(4.22) reduces this to proving that the number of pivotal sites in
w for E s large. This is really the content of (10.62), which
is our principal new estimate here. From Lemma 7.4 and Remark 7(ii)
we know that with high probability there are many pivotal sites
for E on the lowest occupied horizontal crossing of the large
rectangle. (10.62) claims that many of these have to belong to
Ww . The proof of this is based on the idea that if few of the pivotal
sites belong to W , then one can make Tocal modifications in the
occupancy configuration so as to obtain many pivotal sites in w . To
obtain (10.62) one has to make the modifications in such a way that
one can more or less go back, i.e., reconstruct the original occupancy
configuration from the modified one. For this one first has to locate
the sites whose occupancy has been modified. Ta achieve this we must
have good control over the changes in the lowest occupied crossing
under our modifications of the occupancy configuration. The various
parts of Condition E give the necessary control.

Before we can even formulate Condition E we need a preparatory
step.

Step (i). Since Pg satisfies (10.13) and (10.14) the conclusion
of Lemma 7.2 holds. For the remainder of this chapter we choose

M, and 8, > 0 such that (7.17), (7.19) and (7.21) hold. For
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large & we construct a Jordan curve JQ on 7 close to the
perimeter of [O,ZMZ]] X [0,12M£2] by the method of Lemma 7.4. Spe-
cifically, we find simple curves ¢1 and ¢3 on % which connect
the top and bottom edges of the strips

[0,A3] X [-/\4,12M22 + A4] and [ZMM-A3, ZMM] X [—A4,12M22 + A4],

respectively. Such curves can be found as parts of

ug
T
%

By

N —]
i S S o

Figure 10.9 The solid rectangle is [0,2M21]><[0,12M22];
the outer dashed rectangle is [O,ZMz]]
X [-A4,12M£2+A4]; the inner dashed rectangle
is [A3,2M21-A3]><[0,12M22].

vertical crossings of these strips. Also we take self-avoiding
horizontal crossings ry and ra on % of the strips
[o, ZMQ]] X [-A4, - 1] and [0,2M2]] X [12M£2 + 1, 12M12 + A4],

respectively. Starting from the left endpoint of rz(r4) let

u](u4) be the last intersection of rz(r4) with ¢]; and uz(u3) the
first intersection of rz(r4) with ¢3(see Fig. 19.9). As in Lemma
7.4 we denote the closed segment of ¢1 from Uy to Uy by B1,
the closed segment of ¢3 from Uy to Ug by BZ’ the closed
segment of rs from Uy to Uy by A and the closed segment of

ra from ug to Uy by C(again see Fig. 10.9). JQ is the Jordan
curve consisting of B],A,B2 and C. We shall be considering paths
r= (vo,e],...,ev,vv) on sz with the properties (7.39)- (7.41)
(with J2 for J in these ). For brevity we shall refer to such

paths simply as crosscuts of int(Jz) in this chapter. For any such
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path we define, as in Def. 2.11 Ji(r)(J;(r)) as the component of
int(Jz)\\ r with A(C) 1in its boundary.
With any crosscut r which in addition satisfies

(10.32) rc [O’ZMQ,]] x ['m’SMQ/z]s

(roughly speaking this means that r 1ies in the Tower half of J)
we shall associate a crosscut r# which also satisfies (7.34) -(7.41)
and which Ties "above" r. This associated r is found by means of
a specially chosen circuit K on qu and surrounding the origin.
To choose K recall that A 1is chosen in Condition D and set

(10.33) A

20(Ag + Mg + Ayt Ay + A+ A+ 1),

9

(6A5 + 1) (3A9 + A, + 4A3 + 70 + 1),

6

Next take for K a circuit on ng surrounding the origin in the

annulus
(10.34) [-20 - A5, 20 + Ayl x [-20 - Ags 20 + A1\ (-20,20) x (-20,20).

Such a circuit can be constructed in the manner of J2 above from
two vertical crossings $1 and S, on sz of

[-20 - A3, -207 x [-20 - A3,2® + A3] and [20,20 + A3] x [-20 - A
20 + A3], together with two horizontal crossings Sy and Sp on
ng of [-20 - Ay, 20 + N3] x [-20 - A4, -20] and [-20 - A4, 20+ A3]
x [20, 20 + A3] , respectively. By our choice of the constant

AS (just after (10.12)) we can take the s; such that for any

two points Yys¥, oOnone s., there is a segment of S5 connecting

y; and y, with diameter §_A5(]y1-y2| + 1). We claim that any
pair of points y,.y, on K is then connected by an arc of K of
diameter at most

39

(10.35) 3A5(ly1-y2| t 25+ 1) .

This is obvious of Y1:Yp lie on one Sy When Y1 lies on Sy
Yo on s, and u is the intersection of S4 and s, on K, then
u lies in [-20 - Ay -20] x [-20 - Ay -20] , 2 to the left of
R x {-20} and Y, below {-20} x R. From this it is not hard to
see that
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l.y-i—ul < l.Y“_.YZI + 2A3 s 1 = 1323

One therefore obtains the estimate (10.35) for the arc which goes
from ¥Yq to u along $1 and then from u to Yo along Sy then
2 lies on S4 and Y, On s, then 2 lies to the Tleft of the

vertical 1ine x(1) = -20 and Y, to the right of x(2) = 20 . 1In
this case

3(lyy-y,l + 2h5) > 120 + 6A; > diameter of the
annulus (10.34)

Since K s contained in the annulus, (10.35) is obvious in this
case too (A5 has to be > 1 by its definition). Thus we showed
(10.35) in all typical cases.

We also want to arrange matters such that

(10.36) K is minimal,

in the sense that if vy and v, are two vertices of sz on K
which are adjacent on E then K contains an edge of @ ) from

vy to Vo - (This is the obvious extension of Def. 10.1 to a

circuit). If K is not minimal, then we can make it minimal by insert-

ing a number of suitable shortcuts of one edge. E.g., if vy and

qu between them, but K
itself does not contain such an edge, then we can replace K by

v, are adjacent and e 1is an edge of

one of the arcs of K between vy and Vo and the edge e. Since
diameter (e) < A, the new circuit will still surround the square

(10.37) (-20 + A, 20 = A) x (=20 + A, 20 + 1),
and 1ie inside the square

(10.38) [-20 - A3 - A, 20+ A3 + A] x [-20 - A3 - A, 20+ A3 + AJ.

(Of course this holds only if we combine e with one of the two arcs
of K between vy and Vo3 it fails for the other arc). Also the
estimate (10.35) changes only a little. Any two points Yys¥p ON
the new circuit are now connected by an arc of the new circuit with
diameter at most
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(10.39) 3A5(1y]—y2| t 205 + 30+ 1),

These observations remain valid even if we replace several arcs of
K by shortcuts. Indeed, denote for the time being the circuit
obtained after the insertion of shortcuts by K'. Then any y ¢ K'
Ties within A of some vertex z e KN K'. In particular, if
y1»¥, € K', then there exist zy,z, e KN K', 121—221 5_|y]-y2\ + 20 .
Also some arc of K between z4 and z, has diameter 5_3A5(|z]—z
+ 2A3 + 1). One can now find an arc of K' from ¥ to Yo which
is within distance A from the arc of K from Z, to Z,. (10.39)
is immediate from this, as well as the fact that K' 1lies outside
(10.37) and inside (10.38). We drop the prime in K' and for the
remainder we assume that K is a fixed circuit inside (10.38), which
surrounds (10.37), satisfies (10.36) and the estimate (10.39) .

For any vertex v=(v(1), v(2)) of qu we set

ol

K(v) =K+ Lv(1) ] g+ Lv(2) ] g

K(v) is the translate of K by ([ v(1)|,[ v(2) ]) and therefore

v ¢ int(K(v)). For any crosscut r = (vo,e1,... ev,vv) on sz

of Jz which satisfies (10.32) (in addition to (7.39) - (7.41)) we
set

(10.40) e(r) =_3£(r) U U K(w),
W

where the union runs over the vertices w = (w(1), w(2)) of ¢ on

pL
r which satisfy

—

(10.41) M

Mo - 0-2r < w(l) <

Nﬁw

21 + 0+ 20,

and K = int(K) UK. Also 3(r) denotes the component of

int(J,) \ €(r) with C in its boundary. Note that e (r) is a
somewhat fattened up (near r) version of “3Q(r). g (r) still Tlies
below the horizontal line x(2) = 6M22 + 20 + Ay + A (by (10.32) and
(10.38)) so that for all large & 3(r) ds well defined and even
contains a whole strip of int(J) near its upper edge C(C Tlies
above x(2) = ]ZMQZ)‘ We claim that for sufficiently large & there

exists a crosscut r" on sz which satisfies (7.39) - (7.41) and



(10.42) 3(r) = J;(r#),

(10.43) ) <30, 0ty e k),
and

(10.44) r# cr U U K(w) ,

w

where the union in (10.44) runs over the same w as in (10.40). Of
course r# will simply be the "Tower part" of the boundary of

3(r). A formal proof of the existence of r# proceeds by induction.
Assume the vertices which enter in the union in (10.40) are
WyseoeoWo o Let

e, =Jd,(r)u K(w,),

ncx

i=1

and 3 the component of int(JQ) \Eik with C in its boundary.

Assume we already proved that & = J+(rk) for some re on G

k L pl
satisfying (7.39) - (7.41) and

— k r3
r) c Jz(rk), recru % K(wi) .

(10.45) Jz(
This statement is true for k = 0 if we take €, =—3;(r), 3, =
JZ(r), rg=r- We now show that the statement is then also true

for k replaced by k+1. We shall find O by a method similar to
the construction of r from r and rs in the beginning of the
proof of Prop. 2.3 (see the Appendix). & ] C € Y K(wk+]). For
large enough & K(wk+]) does not intersect the left and right
pieces B1 and 82 of J by virtue of (10.41). If o 1is an arc
of K(wk+1) which Ties in J+(rk) except for its endpoints, vy and
Vo, which lie on " (see Fig. 10.10) then replace the piece of Pl
between vy and ) by «a . This gives a new crosscut,

;k say, of int(JQ) such that

~

—+ —_——~
re © Jl(rk) and P c:Jl(rk) .

The proof of this statement is the same as for (A.38) - (A.40). If

~

K(wk+1) still contains a point above ;k’ and hence an arc above r,
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K(w

k1)
Figure 10.10 The two dashed pieces of the circuit
K(wk+]) lie in J;(rk).
i.e., in J+(?k), we repeat the procedure until we arrive at a

crosscut vy qs made up from pieces of rk and K(wk+1) such

that K(w k+1) contains no more points of J ( k+1) It is clear from
the construction and the induction hypothes1s (10.45) that

k+1

(10.46) a1 © U K(w k+]) cr U L]J K(wi),

Also, as in (A.38)

—+
"es1 J (rk)

and this implies, just as (A.38) implies (A.39),
(10.47) Jl(r) c Jl(rk) c:Jz(rk+])

(of course (10.45) is used for the first inclusion). Finally, we must

show that Fs1 = J ( k+1) But, by (10.46) r

the connected subset 3§, ., of int(J ) \‘8k+1 c.int(Jl) \ L with

K+1 c Sk+1 . Therefore,

C in its boundary is contained 1n J ( k+1) To prove the inclusion
in the other direction, let y e d (rk+]) Then y can be connected
by a continuous curve, ¢ say, to C, such that ¢ minus its end-

point on C 1lies in J (rk+1) cJ ( k) (by (10.47); compare

(A.40)). Thus y e J (rk) and ¢ Jd (r (). But neither can y 1ie
in K(wk+]). Indeed, the endpo1nt of ¢ on C Tlies in ext(K(wk+1))
(recall that € (r) 1lies below x(2) = 22 + 20 + A3 +A). If

y € K(wk+]), then ¢ would intersect K(wk+1), and since ¢ minus
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its endpoint on C 1lies in J;(rk+1), this would imply that
. . . +
K(wk+]) still contains a point of Jz(rk+1), contrary to our

construction of M4l Thus

y #3,(r) UK(w ) .

. . . + — _
Since y was arbitrary in J (rk+]) ,and 6k+1 C:Jﬂ(rk) U K(wk+1)

by the induction hypothesis, and K(wi) n Ek =@ for i <k we now have
+ .
Jg(rk+]) C:1nt(J2) \ €41 -

Further, since J;(rk+]) is connected and contains C 1in its boundary
we also have

+
I ) © By

and therefore

+

(10.48) JQ (rk+]) = 3k+1

as desired.

Now that we have shown how to obtain L from r, we can
take r# =T the crosscut obtained after the last K(w) has been
added. (10.42) - (10.44) are then just (10.48) with k+1 = m and

(10.45) with k = m (plus the simole observation

ety = dnt(a) \ Tp0F) < ine(a) \T3(n) < ab(n)
for the second part of (10.43)).

Step (ii). In this step we formulate Condition E, by means of
the path ri. Throughout we shall assume MQ], Mzz large enough so
that the construction of Step (i) can be carried out. The specific
properties of r# will only be used later; for the time being we
only use the fact that to each r with properties (7.32) - (7.41)
and (10.32) we have assigned an v ina specific way. Now assume
that w is an occupancy configuration on sz with all central
vertices of faces F e & (F ¢ & occupied (vacant), and such that
there exists an occupied crosscut of int(JQ) which also satisfies
(10.32). Analogously to Lemma 7.4 we shall say that a vertex a on

r has a vacant connection to € above r inside a set I if there
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axists a vacant path s* = (wa,f¥,...,f¥,w$) on Q*z which
satisfies the following conditions (10.49) - (10.51) :

(10.49) there exists an edge f* of w$£ between a and
wa such that f* c J;(r) nr,
(10.50) w¥ ceC ,
+
* =
(10.51) (WEsFhsee oW PN QWED) = s*\{wX}) c o (r) nT.

When T = RZ (so that the restrictions due to T are vacuous) we
simply talk about a vacant connection from a to E above r.

Once there exists some occupied r which satisfies (7.39)-(7.41)
and (10.32) we know from Prop. 2.3 that there then also exists a unique
such r with minimal Ji(r). We denote this path by R = (vo,e],...,
ev,vv). Associated with R is a path R# as in Step (i); Now assume
aft is a vertex of R# which has a vacant connection to C above

R# inside

F .

1 3
gt = LMy Ml <R

21
Finally assume that x e w 1is such that Condition D holds for this x,
and set

Wy = {x + k1£1 + kzgzzki eZ,i = 1,2,} .

Since Ww was assumed periodic, wo C W . Moreover, by the periodicity
assumptions in (10.9) Condition D remains valid when x 1is replaced
by any element of Wy -

We now formulate Condition E. It requires that for suitable con-
stants «. we can find a configuration w which satisfies (10.53) -
(10.57). The specific values of the <, are unimportant. We only

need 0 < k; < and that the «k; depend only on G

3 and A

*
4 pz’qu
but not on &,w,R,a", pO or p'.
Condition E. Let ¢ Z_KO and Tet w be an occupancy configuration

on W$2 which has an occupied crosscut of int(JQ) and is such that

(10.52) all central vertices of sz ouEside w are occupied,
while all central vertices of qu are vacant.

Let R be the occupied crosscut of int(Jz) with JE(R) minimal
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and let R# be associated to R as in Step (i). Then for every

vertex a# on R#

. . o
which has a vacant connection to C above R#
inside I‘2 there exists an occupancy configuration ® = Q(w,af) on

752 with the following properties (10.53) - (10.57).

(10.53) w(v) = w(v) for all vertices v of W%l

with  |v(i) - a#(i)l > Ky for i > 1 or 2.
(Recall that ;(V) is the value of w at the vertex v of
¢ and similarly for w(v); the more explicit notation

#w,a®)(v) for  @(v) should not be necessary)

(10.54) If v 1is a central vertex of qu which does
not belong to 1 , and hence w(v) =1, then
w(v) = 1.

(10.55) If v 1dis a central vertex of G¥,» and hence

w(v) = -1, then w(v) = -1.

(10.56) In the configuration w there exists an occupied
crosscut R of int(J,) satisfying (7.39) - (7.41)
and with JQ(R) minimal among all such crosscuts.
Moreover on R there exists a vertex x from wo with
a vacant (in the configuration & ) connection Y* to
¢ above R, and such that ]f—a#l < Ky

~

(10.57) Any vertex y from b which lies on the R of
(10.56) and which has a vacant connection to & above
R in the configuration & satisfies (a) or (b)

below. .
o
a) y lies on R and has a vacant connection to C
above R 1in the configuration w .

b) |y-afl <y /11

We merely add one explanatory comment. The requirements (10.54)
and (10.55) just guarantee that w also satisfies (10.52). By
(7.2), (7.3), and (10.16) the condition (10.52) has to be satisfied

with Pp -probability one as well as with Pp.-probabi]ity one. If
0

we did not have (10.52) for ;, then the simple estimate (10.64) would
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fail. Unfortunately, (10.54) necessitates much extra work; "strong
minimality" and "shortcuts of two edges" are used in Steps (iv) - (ix)

only for (10.54). The purpose of the other requirements in Condition
E should become evident in the next step.

Step (iii). In this step we derive (10.21) from Condition E. As

we observed above it suffices to prove

Tim T(ZMg;i,p',ng) =0, 1=1,2,

g > o

and we shall only deal with (10.31). The proof of (10.31) mimicks
the proof of (7.35), at Teast initially. We restrict ourselves to

i = 1. Analogously to Lemma 7.4 we shall drop the subscriot & for
the time being, and set

E={3 occupied path r = (VO’e1""’ev’Vv> on

me with the properties (7.39) - (7.41) and (10.32)} .
Note that we have added the requirement (10.32); this was absent in the
definition of E 1in Lemma 7.4. Moreover, J as defined in Step (i)

differs somewhat from the J 1in Lemma 7.4. Nevertheless the argument
used in Lemma 7.4 still shows that

T(2M2;1,P ’Qpl) < Pp.{E} >
so that it suffices to prove

(10.58) 1im P_,{E} =

g >

f
o

In addition to E we also introduce the event in which the

restriction (10.32) is dropped. We denote this by E1:
E1 = { 3 occupied path r = (VO’el""’ev’Vv) on

sz with the properties (7.39) - (7.41)} .

Analogously to Lemma 7.4 we write for any r which satisfies (7.39)-
(7.47)

N(r) = N(r,w) = # of vertices of Goy, in ko and on
r 0 int(J) which have a vacant connection to C above
r
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Again note the slight differences with (7.50); the fact that we only
count vertices in wo is crucial. If E occurs then all the vertices
of R counted in N(R,w) are pivotal for (E1,w), by Ex. 4.2(iii).
Set

p(t) = t py + (1-t)p'
and for x as in the last steo

a =P {x 1is occupied} - P_,{x 1is occupied} .
Po p

Then, since wo consists of the translates of x by integral

vectors we have

a =min {P_ {v 1is occupied} - P_,{v 1is occupied}}
veb, Po P

and by assumotion (10.17) o > 0. By Russo's formula (Prop. 4.2)
we have as in (7.42), and (7.51).

() > o Ep(t) {# of pivotal sites in W

(10.59)

P 0 for

d
dt "p(t)

E1} > o Ep(t) {N(R); E occurs}

We must now find a lower bound for the right hand side of (10.59)
Assume that E occurs, and that R = r for a path r satisfying
(7.39) - (7.41) and (10.32). If r# be the path associated to

r as in Step (i), set

M(T#) = number of vertices a# on r# which have

. Q oL,
a vacant connection to C above r" dnside T.

Qur first estimate is that for each m we can choose 20 = Qo(m) such
that for all 2> 2, andall 0<t<1.

# 1
(10.60) Pp(t){ E  occurs and M(R") > m} z‘Pp.{E} 7 S

- 27 °
where 627 is as in (7.19). To see this we observe that as in
(7.46), (7.51).

) {E occurs and M(R#) > m} .
N )
r -
Pp(t) M(r") >mR=1r, R

Pp(t

# #

i
~
—
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where the sum is over all paths r which satisfy (7.39) - (7.41) and
(10.32) and r# is the path associated to r by Step (i). By
definition of M(R#) and vacant connections. (see (10.49)- (10.51))
M(r#) depends only on the occupancies of vertices outside J (r').

On the other hand the event {R = r, RY = r#} = {R =r} , since

r# and R# are the paths which are associated uniquely to r and

R, respectively. Further, by Prop. 2.3 {R = r} depends only on
occupancies of the vertices in J (r) c_ﬁ'(r#) (by (10.43)). There-

fore, for fixed r# satisfying (7.39)-(7.41).
r# #} -

Pocyy MO zmiR = v, R = o) > m

Now as in Remark 7(ii) to Lemma 7.4 (especially (7.76)) we have
for all sufficiently large &

(10.61) Pp(t){M(r#) > m} 3_%-Pp { 3 at least one vertex a# onr

0
with a vacant connection to E above r# inside T'},

#

where

e ) S
rt=Tp = Ig My gMyl xR

Moreover, exactly as in (7.61), the orobability in the right hand
side of (10.61) is at least

P { 3 vacant vertical crossing on G*,  of
Pg PR
(M, 2M .1 x [-Ay, 124, +4,]
4 1% 4 Q] 4° 22 4
1
* - .
> 0 ((—Z‘MQ] 1)9 ]3M22)s Z,DO,Qpl) > 627 .
(10.60) follows by combining these observations with the facts
E=UR=T, rf= +*1,

where the union runs over all r which satisfy (7.39)-(7.41) and
(10.32) , and

Pp(t){E} z_Pp,{E} , 0<t <1,

which follows from Lemma 4.1 and the fact that E 1is an increasing
event.
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The second important estimate for our proof concerns the event

G(m,n):= {E occurs, M(R#) >m, but N(R) < nm} .
We shall show that for some 15T, independent of n , m and
2(but dependent on Po and p').
<ts

b

(10.62) Pp(t) {6(m,n)} < ty(n + %% )

|
Plw

for all sufficiently large & . Before proving (10.62) we show that
it quickly implies (10.58). Indeed, on the event

{E occurs, M(R#) >m, but G(m,n) fails}

one has N(R) > nm, so that by (10.60) and (10.62)

Ep(t){N(R); E occurs}
#
Z.”m(Pp(t){E occurs, M(R") > m} - Pp(t){G(m,n)})
1 172 1 3
2 (g7 Pprfll - yn - =7, gty
Thus, by (10.59), for large 2
3
4 4
1 > {E Pocty (Eq} dt
Y3
1 R
2 onm "]r (é’ 627 PpI{E} - T1Tl - m ) dt
4
'I % T
= Lo (§ 6y, P E} - o - L2
Consequently, for all n,m
: 1 R 2
TQmiug 5 85, Pp.{E} -Tn - =)} < el
or equivalently
. 2 2 172
limsup P_,{E} < (== + 10 + —=)
0+ o p — 627 onm 1

By first choosing n small, then m Targe we obtain the desired
(10.58). As we saw above this implies (10.31) and (10.21).
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Theorem 10.2 has been reduced to (10.62) which we now prove
iy means of Condition E. Let

H(A,n) = {E occurs, M(R#) = A, but N(R) < nm}

‘hen

10.63) G(m,A) = U H(A,n) .
A>m

.et w be a configuration in H(A,n) which satisfies (10.52). Then
by definition of M(.), in the configuration w there are A vertices
m R# which have a vacant connection to € above R# inside T.
Jenote these by a#,...,aﬁ in an arbitrary order. To each one of
these there is assigned by Condition E a configuration w(w,a") with
the properties (10.53)-(10.57) . Let S be any square. Denote

W wg the set of all configurations which agree with w at all

sites in S. We show first that there exists a constant T3 > 0 (which

depends on p' and Po> but not on 2, S,u , R or a#) such that

~ # 1 3
(10.64) Pp(t){ws(w’aj )} > T3 Pp(t){ws}’ Titsg

~

This is easy to see, since w(w,a? ) 1is obtained from w by
changing at most Ky sites for some Kg depending on the graph
only, by (10.53). Moreover, if v is a site with w(v) = +1,
w(v) = -1, then either v 1is not a central site of G g o Oritis
a central site of sz which belongs to w (by (10.54)). 1In the
former case,for t > 1/4

Pp(t){v is vacant} > t Ppo{v is vacant}

> l—P {v is vacant} > 0,
27 Py

since  py << T (see (10.13)). In the latter case, for t < 3/4

Pp(t){v is vacant} > (1-t) Pp.{v is vacant}

>

11 v, uv) = -1} > 0

by (10.17). On the other hand, if w(v) = -1 and w(v) = +1, then
by (10.55) v 1is not a central vertex of QE% . Therefore, for
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{v 1is occupied} > %—Pp {v is occupied} > 0,

0
this time by Py >> 0 (see (10.13)). Therefore, in all cases, if
v has a different state in  then in w, then

Pp(t) {v is in the state prescribed by  }

> § Po(t) {v is in the state prescribed by w}

for some § = S(po,p') > 0. Consequently (10.64) holds with

K
13 =5 4
Next we note that for fixed & we can choose S so large that

all events which we consider only depend on the configuration in S.
Indeed we are only interested in w(v) for v in J =J U int(J), and
w(v) = w(v) except possibly for v with |v(i) - a'(i)] <K for

some a# e J (see (10.53)). The last property also allows us to

choose &S(&,a#) as a function of Wg and a# only (when S s
large enough). Accordingly we denote it by &S(ws,a#) below. We also
repeat the observation that by (7.2), (7.3) and (10.16) the condition

(10.52) holds with Pp -probability one as well as with Pp.-probabi11ty
0
one. Consequently it also holds with Pp(t)—probabi1ity one for all

0 <t< 1. We therefore conclude from (10.64) that
I s - p

s
1 2 ~ #
< Yy )} P {we(wesal )Y
< TBA sg 31 p(t) "S'7S*j
where ) is the sum over all confiqurations Wg in § for
W
S

which H(x,n) occurs, and (10.52) holds inside S. We now rearrange
the double sum in the last member of (10.65); on the outside we sum over
the possible "values" of &S(ws,af ), and inside we sum over the wg
and J for which &S(ws,aﬁ ) equals a specified configuration. This
yields



1 _
Pp(t) {H(x,n)} < T ) Pp(t){ws} . (number of

¥g
pairs we and a# on R#(w ) with  w(w a#) = W
S S SYS? S

and wg such that H(x,n) occurs ) .

The sum over Gs runs over all possible confiqurations in S, and
we have written R#(ws) for R#(w), again because R# depends on
Wg only for large S. If we sum the last inequality over A > m,
then we obtain, by virtue of (10.63),

Po(t) {G(m,n)} < T;m E_ Pp(t){GS}. (number of pairs
w
S

# . —
S) with ws(ws,a

and a" on R#(w #) w

such that G{m,n) occurs).

Finally we shall prove that for any given Es there are at most

Ks(nm + K6) pairs wg and a’ on R#(ws) with &S(ws,a#) = Es

and such that G(m,n) occurs in wg - This will imply

= Ks(nm + K6)’

Pp(t){G(m,n)} < T,

which is the desired (10.62)(r<5 and Kg depend only on K3 and qu),

Now fix a configuration 65 in S and let Wg be a configura-
#(ws) such that

&S(ws,a#) = ES. Then a# has to be a vertex with a vacant connection

#

tion such that G(m,n) occurs and let a# lie on R

to € above R#(ws) (these were the only a" for which we ever

considered o{w, a#)). By (10.56) ms(ws,a#) = ES must then be
such that it has a lowest crosscut R of J and a vertex x from
mo with a vacant connection to € above ﬁ in configuration Z%
and such that l;(i) - a#(i)l < Ky Now we are only given E% ,

and know neither R,R# nor a#. However R is the lowest crosscut in
configuration BS’ and hence there is at most one possibility for R
for a given Wg - Next we must check how many possibilities there are
for x. By (10.57), if g

of vertices from wo on R with a vacant connection above R to

arose as Gs(ws,a#), then the number

¢ in Es is limited. It either is of the type described in
(10.57)(a) or (10.57)(b). There are at most nm vertices of type
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(10.57)(a) in dint(J) if wg is such that G(m,n) occurs (because
by definition  N(R,ug) < nm in this case). Also, there are at most
K6 vertices of type (10.57)(b) or on R N J. Thus, any E% which
can arise from an wg for which  G(m,n) occurs has at most
nm + ke vertices in wO with a vacant connection above R(Eé)
¢ in configuration Eé. Thus, there are at most mm + K6 choices

to

for x for any Eé which can arise at all. But once we picked

X, we have at most «, choices for a# by (10.56). Finally, if

we know Es = 5S(ms,a ) and a#, then there are at most Kg
possibilities for w, because (by (10.53)) wg differs from
&S(ws,a#) = Es only in a fixed neighborhood of a#. In total,
starting with ES we can make at most (nm + K6)K7K8 choices

Wg - This bound completes the proof of (10.62)

and Theorem 10.2 (modulo the derivation of Condition E from Condition

D in the next section). []

for ;, a# and

Proof of Theorem 10.3. The principal idea was already explained
before the statement of the theorem. Let ¥ be the graph obtained
from % by close-packing only the faces F in 3]:= I\ 3b » where
e is as in (10.23). (30 = @ if ¥ 1is obtained by applying only
(10.22)). Clearly ¥ 1is one of a matching pair of graphs, based

on (WBJ]), and % 1is a subgraph of G, while ¥ 1is the subgraph

of ¥ obtained by removing all vertices in IJO(UO as in (10.22);
again UO =0 if only (10.23) 1is applied to construct ¥). An
occupied cluster on # 1is an occupied cluster on ¥ which does not
contain any vertices of UO’ and hence remains unchanged if all

vertices in UO are made vacant with probability one. Moreover

Cor. 2.1 applied to X shows that for any vertex 2, of ¥

#(occupied cluster of z, on X)

< (#occupied cluster of z, on Mpl),
Therefore
(10.66) Ep (#(occupied cluster of zy on H))

0
< E(#(occunied cluster of z, on Mpz)) ,

where in the right hand side we make vertices in bo vacant with

probability one, and for other vertices of MDQ we use the measure
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is just
Ppo . However, be J qpl
faces in 30 (and the edges incident to these vertices removed). The

right hand side of (10.66) therefore equals

with the central vertices of

(10.67) Ep.(#(occupied cluster of z; on pr),
where

Pp. {v is occupied} = 0 if ve Uy or if v 1is a central

vertex of a face F e 30 s

while

Ppl {v is occupied} = Pp {v is occupied} for all other
0

vertices v of sz

With w as in (10.24), these are just the relations (10.25) and

(10.26), which in turn say that Pp. is of the form (10.15) and

satisfies (10.16) and (10.17). Indeed, for v e Ww we now have

vv{w(V) 1} = Pp.{w(V) =1} =0 < uv{w(v) =1}

Ppo{w(v) = -1} 3

because of py >> 0 and (7.2). Thus Theorem 10.2 applies and
(10.67) is finite. But then also the left hand side of (10.66) is
finite. Theorem 10.3 now follows from Cor. 5.1 applied to the

graph ¥ . []

10.3 Derivation of Condition E from Condition D.

In this section we fill the gap left in the proof of Theorem
10.2. The proof is broken down into six steps, numbered (iv)-(ix)
(because we already had Steps (i)-(iii) of the proof of Theorem 10.2).
Condition E says that one can make a local modification in the occu-
pancy configuration around a site a# on R# with a vacant connec-
tion in €. The modified configuration is to have a site from wO
(defined in step (ii)) with a vacant connection above the lowest hori-
zontal crossing in the new configuration. Basically this is obtained
by translating the point x  together with the paths U and V*
of condition D and "splicing in" the translate of U into the lowest
crossing R and connecting the translate of V* to the vacant con-
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o

nection from a# to C. A good part of the construction takes place
in int(K(a)) (see Step (i) for an a with a’ on K(a). We begin
with a method for making well controlled connections between (endpoints
of) paths.

Step (iv). By a corridor ¥ of width A7 we mean the union of a

finite sequence of rectangles DO""’DX or D],...,DX of the form
(10.68) D,s = [aZi,a21+A7]x [b21,b2i+k21],
(10.69) Dair1 = [Bp54128p541 1K 471 % [Dyg5bp 540 ]

with kZi’k21+1 3_21\7 and arbitrary aj, bj’ and satisfying the con-
nectivity condition that Dj and Dj+] have a corner in common and
intersect in a square of size A7><A7. However, DJ._1 and Dj+] must
have disjoint interiors; see Fig. 10.11. The first edge of the corridor

o

i
[
ump—
o
v
===
!
'

————— = ==
=
o

b e e - o - -

Figure 10.11 A typical corridor. The solid rectangles have odd
indices, the dashed rectangles have even indices.

A
= U Di will be the short edge of DO which does not belong to
i=0
D], i.e., [ao,a0+A7] x{bo} or [ao,aO+A7]><{b0+k0}, whichever one is
disjoint from D1. The last edge of ¥ 1is that short edge of DA

which does not belong to D, ;. A similar definition holds if

X =

Di (which starts with a rectangle of odd index). For the
i

>

]
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duration of this proof only we shall call a path r = (vo,e],...,ev,ev)
on Gpl strongly minimal if it is minimal (see Def. 10.1), and if in
addition for any i < j such that Vs and vj are vertices of 7
which are not adjacent on 7, but lie on the perimeter of one face

F ¢ & whose central vertex u does not belong to W, one has j = i+2
+1 is a central vertex of ng which does not belong to .

In a strongly minimal path two vertices on the perimeter of a single

and Vs

face F e & whose central vertex does not belong to W are always
connected in one of two ways: either by a single edge of the path which
belongs to the perimeter of F, or by two successive edges of the path
which go through a central vertex of sz not in W. Note that two
vertices Vs and Vj may be simultaneously on the perimeter of several
faces and that there may be several central vertices which are adjacent
to both Vi and vj; for this reason we did not require Vigp T U in
the above definition. In analogy with Def. 10.2 we shall call a short-

cut of two edges of the path (vo,e],...,ev,vv) a string e, u, f of

an edge, vertex and edge of sz such that for some i < j, v and
v, are not adjacent on G ., v and u (u and vj) are the end-
points of e(f) and u 1is a central vertex of sz which does not
belong to W, and is different from all the Vi 0<i<v. (Since
a central vertex has only non-central neighbors (Comment 2.3(iv)) v
and vj have to 1ie on the perimeter of some face Fe & of % if
there is a shortcut of two edges between them.)

A minimal path for which there do not exist shortcuts of two edges
is strongly minimal. However, the converse is not quite true. A
strongly minimal path (vo,e],...,ev,vv) can have a shortcut of two

edges e, u, f between two vertices vy and v., but this can happen

only if j = i+2, Vs and Vj lie on the perimeter of a face F] g &
of 7 and Vii is the central vertex of F], but does not belong to
Ww . In this case u has to be the central vertex of another face

F, € F of 7, u must be outside W and Vis Vigo must lie on the
perimeter of F2’ as well as on the perimeter of F1.

In this step we prove that for every corridor X of width A7
there exists a strongly minimal path r = (vo,e],...,ev,vv) on sz

such that
(10.70) r ©X and VO(Vv) are within distance 3A

from the first (last) edge of ¥ .
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This statement remains true if Gp9 is replaced by le . Note that
no statements about the occupancy of r are made. The proof is carried

out only for sz and only by means of a single case illustration.

2v

Assume X = U Di and that a corner on the top edge of DO’
i=0

[ao,a0+A7]><{b0+k0}, is also a corner of D]. Then the first edge of

¥ is the bottom edge of D, [ao,a0+A7]><{b0}. Assume also that D, _,
and DZv have a corner in common which Ties on the bottom edge of DZv'
Then the last edge of ¥ 1is the top edge of D,,,» [a2v,a2v+A7]

x {b2v+k2v} . To find a strongly minimal r satisfying (10.70) Tet

Soj be a vertical crossing on ng of

D21. = [a21.+2A,a21.+A7—2A]>< [b21.+2A,b 1.+k 1.-2A]

2i "2

and Soi+1 @ horizontal crossing on ng of

Doiry = [apiyq*2hsdng g ¥kos g =20 ] x [byy 1 +20,b, 5 4 +A5-21].

A11 these crossings exist by our choice of A3 and A7 = A3+4A. Now,
since Dj and Dj+1 intersect in a A,xA., square, D. and D,

intersect in a (A7—4A)><(A7—4A) = A3><17\3 unare. The latter sa:;re
is crossed horizontally by sj and vertically by Sj+1’ if j 1is odd.
Thus Sj and s\].+1 intersect, necessarily in a vertex of G PR A
similar argument works for even j. We can therefore put together
pieces of s;,...,s, ~to obtain a path § = (EO,?1,...,?0,DG) with

possible double points, which satisfies

- o~ - - - v
(10.71) (UysFpsensf 30 1) © X i L5,
and
(10.72) f] intersects [a0+2A,a0+A7—2A]><{b0+2A}, while fO

intersects [a2v+2A,a2v+A7—2A]><{b2v+k 20}

v
(see Fig. 10.12 for v = 1). By loop removal, as described in Sect. 2.1
we can make S into a self-avoiding path, without changing its initial
or endpoint. Since Toop removal only takes away pieces of a path, we
obtain after loop removal a self-avoiding path, which we shall denote
by s = (uo,f],...,fT,uT), which satisfies the analogue of (10.71), i.e. .
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r
1
-
1
[
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1
1
1
1
1
|
L

~

Figure 10.12  An illustration of ¥, X and s for v=1. The

~

solid rectangles are the Di » the dashed ones the Di'
The boldly drawn path is s .

(10.73) (ul,f],...,uT_],uT_]) cX .
However (10.72) need not be valid any longer. Nevertheless Uy = GO,
ug = UG so that, by (10.72) and (10.12)

(10.74) Ug is within distance A of [a0+2A,aO+A7—2A]x {b0+2A} .
and u_ is within distance A of [a +2A,a +A,-2A]
o} v v 7

X {b2V+k 20} .

2v°
We shall now replace s by a minimal path, by introducing shortcuts of
one edge, whenever necessary. Specifically, assume s 1is not minimal.
Let U, be the first vertex which is adjacent on sz to a uj with

j > i+2. Take the highest j with this property and replace the piece
f1+1’ui+]""’fj-] of s by a single edge of Qpﬁ from us to uj.

By repeated application of this procedure we obtain a minimal path from
Ug to u_s which we still denote by s = (uO,f],...,fT,uT). Since its

vertices form a subset of the vertices of the original s we have (see
(1in 72\
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(10.75) {upseest 3 S K

Of course (10.74) remains valid.
If s s not s}rong1y minimal we also introduce shortcuts of two
edges. This time we take the smallest 1 for which there exists a
j > i+2 such that u, and uj lie on the perimeter of a face F ¢ J,
whose central vertex does not belonag to W, but not such that j = i+2
and Ujyp @ central vertex of sz outside Ww. Again we take the
maximal Jj with this property, and replace the piece fi+]’ui+1""’fj-]
of s by a piece of two edges and a vertex in between, e, u, f say,
with u the central vertex of F and e(f) the edge from U to u
(from u to uj). The insertion of this piece of two edges neither
introduces double points, nor destroys the minimality of s. Indeed if
u were equal to Uy for some k < i, then by the minimality of s
this would require i = k+1 and j = k+1 (since Upe would then be
adjacent to u, and uj). This is clearly impossible, as is u = u
A similar argument excludes wu = Uy with k > j. Thus the new path
has no double points. Also, if u 1is adjacent to some Uy with
k < i then Uy has to 1ie on the perimeter of F (the central vertex
of F 1ds adjacent only to vertices on the perimeter of F). Then Uy
and uj with j > k+2 T1ie on the perimeter of F whose central ver-
tex u is outside Ww. This contradicts the choice of u; as the
first vertex with such a property. Thus u is not adjacent to

X

u
with k < i and a similar argument works for k > i. Consequentls

the new path is minimal, as claimed. After a finite number of insertions
of shortcuts of two edges we arrive at a strongly minimal path

r = (VO’el""’ev’Vv) with Vo = Uge Yy = U He claim that this path

r satisfies (10.70). r satisfies the last part of (10.70) by virtue
of (10.74). But also r € X follows. Indeed any edge or shortcut of

two edges has diameter at most 2A, by virtue of (10.12). Therefore r
contains only points within distance 2A from some vertex

UpseeesUo_qo i.e.,

r © (2A)-neighborhood of X <X (see (10.75)).

Thus r has the properties claimed in (10.70). It is clear that the
whole argument goes through unchanged on Q;Q .

We shall use the above procedure for making a path strongly minimal
a few more times. We draw the readers attention to two aspects of the
procedure. Firstly, we do not insert a shortcut of two edges between
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any pair of vertices Uy and Us 4o if Uit is already a central
vertex of some face F e & of 7, with Us 41 ¢ W . Secondly, the
procedure is carried out in a specific order, first loop removal, then
insertion of shortcuts of one edge and finally insertion of shortcuts
of two edges. In all three of these subprocedures we work from the
initial vertex of the path to the final one.

Step (v). In this step we make a remark about combining strongly
minimal paths. Let r = (vO,e],...,ev,vv) and s = (UO’f]""’fO’uO)
be strongly minimal paths on qu such that

[vv—uol < A¥6A .

By definition of Ag (see the lines following (10.12)) there then
exists a path t on G , from v, to Uy with diameter (t) < Ay
Now consider the path (with possible double points) consisting of r,

t and s (in this order) and make it into a strongly minimal path
from Vo to Uy - The procedure for making the path strongly minimal
consists of loop removal and insertion of shortcuts of one or two edges
as described for § and s 1in the last step. Denote the resulting
strongly minimal path from Vo to Ug by <r,t,s> . Then the follow-
ing holds.

(10.76) <r,t,s> contains all vertices uj of s for which

(distance from uj to r) > A6+2A forall j>1i,j<o.

To prove (10.76) observe that u; can be removed from s during loop
removal only if U belongs to a loop which starts on r Ut and ends
with a uj, j > i, because s itself is self-avoiding. But this means
that uj equals some vertex on r U t. In this case the distance from
uj to r is §_A6, since any point of t is within distance A6 from
the initial point of t, which equals the endpoint vy of r. Next
assume U, is removed when a shortcut of one or two edges 1is inserted.
One endpoint of the shortcut has to be a vertex of the combination of
r,t and s following us . This has to be a uj with j > i. 1If
the shortcut has any point in common with r Ut then the above argu-
ment again gives us (10.76), in view of the fact that the diameter of
the shortcut is at most 2A. Finally any shortcut disjoint from r Ut
would be a shortcut for s itself, and no such shortcuts are inserted

because s was already strongly minimal. Thus (10.76) always holds.
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Assume now that s Tlies within distance 2A from some rectangle
B, and that r Ties outside B (in addition to the assumptions on r
and s already made in the beginning of this step). Then <r,t,s>
also has the following property:

(10.77) <r,t,s> contains only points of r Us plus points

within distance A6+4A from each of r, s and Fr(B).

The proof of (10.77) is essentially contained in the proof of (10.76).
Certainly t 1lies within distance A6 from each of its endpoints, v,
(which 1ies on r) and Ug (which Ties on s). Moreover Uo lies
inside B or within 2A from Fr(B). In the former case t runs from
the outside of B to a point inside B and hence intersects Fr(B).

In both cases t 1lies within A +2A from Fr(B). The only points on
<r,t,s> which do not belong to r Ut Us are points of certain short-
cuts. If the shortcut contains a point of t or runs from a point of

r to a point of s, then the above argument again shows that all points
of the shortcut are within distance Agt4h from r, s and from Fr(B).
Finally, as we saw in the proof of (10.76) no shortcuts from a point of
s to a point of s are inserted, and for the same reason no shortcuts
from a point of r to a point of r are inserted. This takes care of
all possible cases and proves (10.77).

Step (vi). This very long step gives a number of preparatory steps
for the description of the Tocal modifications of occupancy configura-
tions which figure in Condition E. The basic objective is to construct
a path R which is a crosscut of 1nt(J2) and which differs only
slightly from the "lowest occupied crosscut" R of int(JQ) and, most
importantly, contains a translate X of the vertex x in Condition D,
such that % has (almost) a vacant connection to E above R. We

~

choose for X% a translate of x, such that X 1is not too far away

# which has a vacant connection s* to

from R and is near a point a
C above R (actually above R#). To obtain R we replace a piece of
R by a curve on sz which contains X. To construct the vacant

connection from X to C we construct a connection on QSZ from X
#, and then continue along s* to
C. Unfortunately, the details are complicated and the reader is advised
to refer frequently to Figure 10.13-10.17 to try and see what is going

on.

to the initial point of s*, near a
[o]
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Now for the details. Let w be an occupancy configuration in
which the event E occurs (see Step (iii) for E). Let
R = (vo,e],...,ev,vv) be the occupied crosscut of int(Jg) with
minimal Ji(R) among all occupied crosscuts which satisfy (7.39)-(7.41)
and (10.32). Associated with it is a crosscut r? satisfying (7.39)-
(7.41) and (10.42)-(10.44) (with r, rt replaced by R, R#) as in Step
(i). Assume further that a’ ¢ R" has a vacant connection
s* = (wa,f?,...,fz,wi) to E above R' in 1

We shall now use the specific properties of R# to prove that the
following relations hold (K is the special circuit of Step (i) and
K(a) = K+ | a(1) _lg] + | a(2) _jgz as before):

(10.78) (distance from a# to R) >0 ,

(10.79) a# e K(a) for some vertex a on R with

3

<z M

7 M -0-2A < a(l1) +0+2n , and

21 21

(10.80) s* c ext K(a).

Assume that (10.78) fails. Then we can find some point b on R with
Ia#-bl < © and hence for some vertex w of sz on R (w can be
taken as an endpoint of the edge containing b)

wg-wl < [wg-a?| +[a"-b] + |b-w]

< 0+2A

Since K surrounds the square (10.37) this means that wa e int(K(w)).
Further, from wa e, we obtain

1 3
5 M-0-20 < w(l) <7 M to+2h

1
In other words K(w) < €&(R) (see (10.40) and (10.41)). This, however,
is impossible since &R) 1is disjoint from &(R) (by definition of
3(R)), while by (10.42) &(R) = J;(R#). Thus wa , which is a point of
J;ﬂR#) (see (10.51)) cannot lie in €(R). This contradiction implies
that (10.78) holds.

(10.79) 1is now easy. By virtue of (10.44) a” ¢ R* lies on R or
on some K(a) for which (10.79) holds. a# e R is excluded by (10.78).
Also (10.80) follows, since s*\{w¥} CZJZ(R#) (see (10.51)), and as we
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saw above JE(R#) = &F(R) isodisjoint from a1l K(a) which can arise
in (10.79). Moreover w¥ e C (by (10.50)) 1ies above the line
x(2) = 12M, (see Step (i)) and outside K(a) since R satisfies
(10.32).

For the remainder fix a vertex a of qu on R such that
(10.78)-(10.80) hold. For the sake of argument assume that a® Ties
on the "left half of the lower edge of K(a)", i.e.,

(10.81) at(1) <a(1), a%(2) <a(2)-20+n ;

see Fig. 10.13. Similar arguments will apply in the other cases. Let
x € W have the properties Tisted in Condition D and choose k],k2 e X

Figure 10.13

such that X := x+(k1,k2) lies in the closed unit square centered at
#
(10.82) a +(5A7+2A8+3A+A+1 N tAgtAHT0N+A+] ).

Then, by the periodicity X also has the properties listed in Condition
D. We can therefore find B = B(X) and paths U on Qpl, V¥ on Q*z
such that a)-e) of Condition D (with X for x) hold. We note that by
(10.37) and (10.38) K(a) 1ies in the annulus
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G := [ a(1) _[-26—A3-A,]_a(1) _[+2@+A3+A]
x [ a(2) |-20-05-A,| a(2) [+20+A5+A]
\ (L a(1) ]-20+A,| a(1) |+20-p)

x (| a(2) |-20+h,| a(2) |+20-1).

By (10.81), (10.82) and (10.33) B = B(x) lies in the interior of
the inner boundary of G . In fact

(10.83) distance (B,G) > Ag+6A

We now want to "splice U into R" and connect V* to s*. We first
connect those endpoints of U and V* near the perimeter of B to
K(a) <G , by paths which run to the outside of G. These paths should
not interfere with each other, nor should they be too far away from B
(for purposes of the construction to follow). We put these paths inside
three corridars Mz’ Mr and ¥* of width A7. A typical illustration
of these corridors is shown in Fig. 10.714. Formally, we require that
they have the properties (10.84)-(10.92) below.

(10.84) The corridors are disjoint from B (= interior of B(X)).

(10.85) The first edge of MQ(Mr) is on the left (right) edge
of B, i.e., on {X(1)-A}x[X(2)-A,%(2)+A]
({X(1)+A} x [X(1)-a,x(2)+A]). Moreover the first edge

of X (Mr) intersects the edge e (ep) of U (cf.

Condition Dc). Finally the distance between X, (Mr)

and {uio,...,up} ({UO""’uio}) is at least A6+9A,
while the distance between X 6 U h} and V* 1ds at

£
Teast A6+5A .

(10.86) The first edge of X* 1is on the top edge of B, in the
segment [R(])-A+A8,i(1)+A-A8]X {X(2)+A} and intersects
the edge e; of V*. The distance between ¥* and U
is at least A8.

(10.87) Let D, be the last rectangle in the corridor ¥,. It
is of the even-indexed type (10.68) and intersects G
only in the latter's bottom strip
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[La(1) J-20-n5-0,[ a(1) J+20¢Ag+A] x [| a(2) |-20-Ag-,
| a(2) J-20+A]). The intersection of D, and this
bottom strip is a rectangle of size A7><(A3+2A). The
last edge of MQ lies in the exterior of G, at a
distance > 30 from G. D, Ties to the right of the
vertical Tine {| a(1) |-20+3A}x R, i.e., more than 2A
units to the right of the left strip of G. Llastly, all
points of X, within distance 2A from G 1lie in D

2 L -
(10.88) Either (10.87) also holds with Mg replaced by Mr and
D2 by the last rectangle Dr of Mr, or Dr is of the

odd-indexed type (10.69) and intersects G only in the
Tatter's Teft strip, [| a(1) J—ZO-A3—A,L_a(1) |-20+A]

x [ a(2) J-ZO—A3—A,L_a(2) J+26+A3+A]. In this case the
intersection of Dr and the left strip is a rectangle
of size (A3+2A) XA7, the last edge of X  1lies in the
exterior of G at a distance > 3p from G. Also all
points of Mr within distance 2A of G 1ie in Dr’
and D, Ties above the horizontal line Rx{| a(2) |-20
+3A} (i.e., more than 2A wunits above the bottom strip
of G).

(10.89) a# e ¥* N K(a) ¥ NG; ¥* NG Ties below the horizontal
Tine Rx{]| a(2) |-0}.

(10.90) The distance between any pair of the corridors HQ, Mr
and #* 1is at least A8 (A8 is defined before Condition D).

(10.91) A1l three corridors Mg, Hr and X* Tlie within distance
Ay of a’ (hg is defined in (10.33)).
(10.92) k* N K(a) 1lies "between ¥, NG and X 0NG". More

precisely, if b 1is any point of ¥* N K(a), then any
continuous curve from hz to Mr inside G of diameter
< @ fintersects the line segment b+t(1,1), -2A5-4A < t
< 2A5+AA.

These horrendous conditions are actually not difficult to satisfy
as illustrated in Fig. 10.14 for the case where a® s sufficiently
far away from the left edge of G so that (10.87) can be satisfied for
¥, as well as X _ . We content ourselves with this figure and a few

'8 r
minor comments indicating why (10.84)-(10.92) can be satisfied. For
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Figure 10.14 The hatched regions are the corridors K. X and X* .

2

(10.85) and (10.86) we remind the reader that ey, ep and eg inter-
sect the left, right and top edge of B, respectively, by Condition

D. Mgreover, U= (uO,e],...,ep, up) lies below the horizontal line
Rx {x(2) + A—AS}, while V* Ties in the vertical strip

[%(1)-A+A8, X(1) + a-Ag] x R. Lastly (uio,ei +],...,up) lies to the
right of {x(])-A+A8} x R and (uo,e],...,ui ) lies to the left of

0
{x(1)+A-A8} x R. (10.91) can be satisfied by (10.33) and because

(10.93) la#(i)—i(i)l 5_5(A5+A6+A7+A8+A+A+1)

(see (10.82)). Lastly, with regard to (10.92) we remark that the seg-
ment b+t(1,1), |t] 5_2A3+4A, is on a 45° line through b and cuts G
"close to" the lower strip of G . Also RR Na and K. NG Tlie close
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to the lower edge of G. A path from MQ NG to Hr NG of diameter
< 0, has to remain below the horizontal Tine x(2) = | a(2) |-o+A

(by (10.87)). Therefore such a path cannot intersect the segment
{La(1) |¥x[La(2) J+20-A,| a(2) |+2e+Ag+A}  which cuts the top strip
of G. This segment together with the segment b+t(1,1),|t] < 2A5+4A
divide G into two components, whenever b e ¥* NG (by (10.89)).
(10.92) basically says that MQ NG and L NG do not lie in the
same component of G when G 1is cut by these two segments. This is
obviously the case when HQ, Mr and X* are located as in Fig. 10.14.

It should be obvious that the precise values of the various con-
stants Ai and © are without significance.

Once the corridors M&, L and X* have been chosen we choose
strongly minimal paths r; on ng inside Mi’ i= 4% or r, which
start within distance 3A from its first edge and end within distance
30 from its last edge, by the method of Step (iv) (see (10.70)). Since
the last edge of Mi is at least 3A wunits outside G (by (10.87),
(10.88)), the endpoint of r., Tlies in the exterior or on the exterior

3
boundary of G. The first point of r; 1lies within 3A from B and

therefore inside the inner boundary of1 G and at distance > 3A from
this inner boundary (by (10.83)). Hence rs intersects K(a). A fortiori
there exists a first vertex of ris b; say, which can be connected to

a vertex of K(a), Ca(i) say, by a path of two edges on ng. We connect
bi to Cu(i) by such a path of two edges. If possible we take for the
intermediate vertex between bi and Cu(i) a central vertex of sz
which does not belong to Ww. Also we connect the initial point of

ry (rr) to u, (up_]) by a path t, (tr) on QPQ of diameter < Ag.
This can be done by one choice of Ag since the initial point of ry

is within 3A from the first edge of Rg’ which intersects e, by
(10.85). Thus the distance between the initial point of r, and Uy

is at most A4A+A,. A similar statement holds for r . and USE Next
we makf the piece of U from Uy to up_1 into a strongly minimal

path, U say, which still runs from Uy to up_1, by insertion of
shortcuts of two edges if necessary (see the method used for the path
s in Step (iv); recall that U dis minimal by Condition D). Now con-
sider the following path on sz (with possible double points) from
Ca(z) to Cu(r): From Cu(z) go via two edges to the vertex sz of
rys traverse r, backwards, then go along tx to Uy along U from
Uy to up_], along t. to the initial point of s then along re

to the vertex br of s and finally via two edges to Calr) (see
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r i
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K(a)
- o 0
Ca(r Ca(z
Figure 10.15

Fig. 10.15). This whole path is made into a strongly minimal path i in
the following way. First make rs till bi plus the two-edge connection
from bi to Ca(i) into a strongly minimal path, ?i say, by the
method applied to the path s in Step (iv). Since r; itself was
already strongly minimal, and since bi is the first point on rs
which can be connected by two edges to K(a), one easily sees that no
Toops have to be removed, nor shortcuts of one edge have to be inserted
i Moreover, at most one shortcut of two
edges has to be inserted to obtain a strongly minimal ?i. Indeed, if
the connection from bi to Ca(i) goes through the vertex ¥; of
sz, then the only shortcut which may have to be inserted is from some
vertex on the piece of r; between its initial point and bi to s+
Note that such a shortcut lies within 3A from K(a) and hence further

during the formation of ¥
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than 2A away from U (by virtue of (10.83)). Now that Fi and U
have been formed we first combine Fz’ tz and U into the strongly
minimal path <F2,t2,u> as in SteE (v) (see (10.76)). Finally we
obtain the strongly minimal path X as the combination <<Fz,tz,ﬁ>,t
of this last path with t. and Fr.

It will be very important that one has

r >
t>r

~

(10.94) X 1is a vertex on X,

as we now prove. Firstly X cannot be removed when U 1is turned into
the strongly minimal path U. This is so because U is already minimal

by hypothesis (see Condition D), and X = u;  could be removed only by
0
insertion of a shortcut of two edges, and only if such a shortcut runs

from u, to uj with 1 < io < j. By Condition D b) no such short-

1 ~ ~
cuts exist. Secondly, when we form <¥, ,t,,U> from Fz’ t2 and U,

'R
by the method of Step (v), then X = u;  is not removed, on account of
0
(10.76) and (10.85). Indeed, all points Uj 4120000l have a distance
0
of at Tleast A6+9A to re c MQ. Thus, also any shortcuts introduced

in the formation of U and ending at one of uj +],...,up have dis-

0
tance at least A6+5A to ?i (which lies within 2A from ri).
Thlrd1y, when P tr and <r2,t£,U> are combined to <<?l,tR,U>,tr,rr>
= X, then X 1is still maintained. This is so because no intersections
or shortcuts between ?2 U t2 and Fr U tr exist, the distance between
these two sets being at Teast

A8-2A6—4A > 6A ,

by virtue of (10.90). Also the distance between Upseensls 75 O any
0

shortcuts ending at one of these points, and ?r is at least A6+5A,
by (10.85) again. As in the proof of (10.76) one obtains from this that

x will not be removed when forming X. This proves (10.94).
We set

(10.95) iﬁ(i) = closed segment of X between Ca(i) on K(a)
and X, 1 =% or r.

The proof of (10.94) just completed also shows that

(10.96) There exist no shortcuts of two edges for X with one
endpoint each on of Xz(i)\{i} and Xr(if\ii}
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We also leave it to the reader to use (10.83), (10.77) and the
description of X - especially the statements about Fi before the
proof of (10.94) - to verify that

(10.97) any vertex on X which can be connected to K(a) by one
or two edges of sz lies within distance 2A of

) Can ¥

For later purposes it is also useful to know that
o iy
(10.98) X\\{ca(g),ca(r)} int(K(a)).

To prove this we go back to the construction of Fi' This is made from
the piece of rs from its initial point to bi’ a two-edge connection
from bi via the vertex Y3 to Cu(i)’ and possibly a shortcut from

Y5 via a central vertex, y; say, to a vertex, y$ say, on the piece

of r; between its initial point and bi . Since rs from its initial
point to b, lies in int(K(a)), we see that also ?{\ca(i) < int(K(a)),
unless y; or y% belongs to K(a). However y; cannot 1ie on K(a)
by the minimality properties of bi’ for if y; € K(a), then bi would
be connectable to K(a) by a single edge. Similarly y; ¢ K(a),

because yg cannot be connected to K(a) by a single edage. Thus

¥, U Fr\\{cu(z)’ca(r)} < int(K(a))
and also
t, U Uy t. Tie in 1int(K(a)), even at a distance
> 40 from K(a) .

(Again recall (10.83) and the fact that t, (tr) has one endpoint at
u, (50_1).) Finally any shortcuts inserted while making X from Py
tes Us tps k. lie in int(K(a)) by (10.83) and (10.77) with its proof
(recall that there are no shortcuts between ~FO U ty and Fv U tv)'

It is our objective to make (most of) X, including X, part of
the "lowest" occupied horizontal crosscut of JQ in the modified
occupancy configuration. Before we can do this we also have to describe
part of the path which will form the vacant connection from x to E
in the modified configuration. Specifically we construct a path on Q;Q
from va (= the initial point of V*) to w3 (= the initial point of
s*). We first take a path r* on QSR in  X¥* which begins within
distance 3A from the first edge of X* and ends within A7+3A from
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a#. This can be done by virtue of (10.89) and the fact that X* has

width A7. We connect vg to the first point of r* by a path on

32 of diameter < Ag. We also connect the final point of r* to
w6 by a path on Q*l of diameter A6. This can be done since

Ia#—w6] < A (cf. (10.49)) so that the distance from the last point of
r* to wh is at most A +4A . Now take the path (with possible
double points) from v6 to w6 which proceeds via V*, the connection
between vg and the first point of r*, r* and finally the connection
from the last point of r* +to w6. Make it self-avoiding by loop-
removal (it is not important that it become (strongly) minimal). The
resulting path on 952 > Will still run from v% to wX . Call it X*.

0 0
We shall need the fact that
(10.99) X* is disjoint from X.

This follows from the following remarks, Firstly U and V* have no
point in common by virtue of Condition De) and the fact that the only
vertices which can lie on ﬁ\tJ are central vertices of G I and hence
are not on the path V* on Q;Q . Secondly, all points of XSX*)
further away than A6+4A from ¥, U K (¥*) must belong to U(V*).
Fin§11y points within A6+4A from ¥, U X (¥*) cannot belong to
X*(X) by (10.90), (10.85) and (10.86) .

We now start on making (most of) X part of the lowest crossing.
In order to achieve this we want to connect X with R. Note first
that

~

(10.100) X is disjoint from R,
because by construction X Ties within hgt4h from B U ¥, U K., hence
within

A6+4A+2A9

from a’ (see (10.91) and (10.33)), which is less than the distance
from R to a# (by (10.78)). Despite (10.100) R is not too far
away from X. Indeed R contains the vertex a in the interior of
K(a), while for large enough &, the initial (final) point of R on
B](Bz) has first coordinate §_A3 (Z-ZMQI'As)’ and therefore lies in
ext(K(a)) for all sufficiently large %. (See Step (i) for B; and
recall that a satisfies (10.79).) Thus R intersects K(a) at
Teast twice. We next derive some information about the location of

these intersections. Let K, be the arc of K(a) from Co to

# .
Ca(r) through a". We claim that

2)
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(10.101) diameter(K#) §_6A5(2A9+2A3+5A+1) <0 ,
and
(10.102) ¥* N K(a) < K# .

To prove (10.101) and (10.102) Tet b be any point of ¥* N K(a).
Then, by (10.91)

1b—ca(1.)| < |b-b1.]+ lbi'ca(i)l < 20gt2h, = g,r,

since bi € Mi and bi is connected to Cu(i) by two edges. Thus,
by the construction of K - in particular by (10.39) - b and cu(l)
are connected by an arc, ¢ say, of K(a) of diameter at most

(10.103) 3A5(2A9+2A +5A+1).

3

First we must show that this arc does not contain Cu(r)' Assume to

the contrary that moving along ¢ from c to b one passes

a(L)

Ca(r) before reaching b. Then the subarc ¢' of ¢ from ca( to

L)
c does not contain b. However, b, e ¥, and lbi‘ca(i)l < 2h .

T%ﬁg)by (10.87), (10.88) b, 1ies in the last rectangle D; of X. .
Since the location of D2 is at least 2A wunits to the right of the
left strip of G (see (10.87)) and within hg of a' (see (10.91)) -
which 1lies to the left of a (see (10.81)) - it follows that Ca(g)
(which Ties within 2\ from D, CX,) Ties in the Tower strip of G.

Hence, cu( can be connected to some point of Dl by a horizontal

line segmeﬁ% in the lower strip of G and of length < 2A. Similarly,
ca(r) can be connected to a point of Dr = Mr by a straight line seg-
ment in G (horizontal or vertical) of length < 2A . ¢' together
with the two straight Tine segments from Cu(i) to Mi form a con-
tinuous curve in G from X, to X, of diameter < 41 plus the ex-
pression in (10.103). Since this diameter is at most ©, (10.92)
implies that the curve must intersect the segment b+t(1,1), |t| 5_2A3+4A.
The two straight line segments which were added to ¢' T1ie within 2A
of M& UK., and by virtue of (10.90) do not intersect the segment
b+t(1,1), |t| < 2A3+4A, which lies within 2Ag+4A from ¥*. Thus ¢
already intersects the segment in some point b', whose distance from
b is at most 2A3+4A. Again by the construction of K and the esti-
mate (10.39), b' 1is connected to b by an arc, ¥ say, of K(a) of
diameter at most

(10.104) 3A5(4A3+7A+'I).
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Now by our assumption the curve ¢ starting at ca(g) first passes

through b', then through Cu(r) and then ends at b. ¢ cannot be
the piece of ¢ from b' through Cu(r) to b, in fact ¢ cannot

contain Co(r)? for then by (10.90) its diameter would be at least

|Cu(r)-b| > distance (¥ ,¥*)-2A > Ag-2A

8

which exceeds (10.104). Thus, the piece of ¢ from b' to b and v
have to be two arcs of K(a) from b' to b, exactly one of which
contains the point Ca(r) of K(a). This can only be if together
these two arcs make up all of the Jordan curve K(a), and if at least
one of these arcs has a diameter 3_%-d1ameter (K(a)) > 20-A (see
(10.37)). Since this is not the case we have derived a contradiction
from the assumption that ¢ contains the point Ca(r)' Thus the path
¢ from Ca(2) to b does not contain Cu(r)' In the same way we find
an arc 6 of K(a) from b to ca(r) of diameter at most equal to
the expression in (10.103) and not containing Ca(1)" ¢ followed by
® gives us an arc of K(a) from cu(z) to Cu(r) through b and of
diameter at most equal to the right hand side of (10.101). This arc
must be the same for all choices of b in ¥* N K(a). Otherwise, as
above, K(a) would be the union of two different arcs from Cu(ﬂ) to
Ca(r)’ each with diameter at most equal to the right hand side of
(10.101). This, however, contradicts the fact that diameter (K(a))
> 40-20 . But for b = a® the arc from €0 (2) to Co(r) through a’
is just Ky so that (10.101) and (10.102) follow.

We shall use two consequences of (10.101) and (10.102). These are

(10.105) RN K# =0
and
(10.106) X* N K(a) < K# and hence X* NK(a) NR=0 .

(10.105) is immediate from (10.101) since a# € K# has distance at
least © to R (see (10.78)). The second statement in (10.106) will
follow from the first part and (10.105). As for the first part of
(10.106), by (10.83) and the construction of X*, any point ¢ of

X* N K(a) 1lies on r* N K(a) € ¥* N K(a) or Ties on the connection of
diameter < Ay from the endpoint of r* to wh. Since lwa-a#l <A,
any point ¢ of X* NK(a) 1lies within distance Ag*A  from some
point b in X¥* N K(a). Again by the estimate (10.39) b 1is then
connected to ¢ by an arc ¢ of K(a) of diameter at most
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3A5(A6+2A3+4A+1) < A8—2A .

On the other hand b 1is connected to ca(z) and Cu(r) by two arcs
of K(a) of diameter at least

Tim |c (1)—b| > min distance(¥,,¥*)-21 > A
j=g,r © i=g,r

8-2A
(see (10.90)), and as we saw in the proof of (10.101) and (10.102) these
arcs have only the point b 1in common and together make up K# R -
must start out following one of these arcs, and the endpoint of ¢

must come before the endpoint of this arc since

min |c

1.)-b| > diameter(z).
i=4,r

af
Consequently ¢ is contained in one of the above arcs from b to
ca(i), i=2 or r,anda fortiori ¢ 1is contained in K#. This
proves (10.106).

We now know that R intersects K(a)\\K# at least twice (see the
Tines immediately preceding (10.101), and (10.105)). Therefore if one
moves along the arc of K(a) from Ca(l) to Ca(r) which is not K#,
then one passes through at least two points of R. Let
8(2) (Ve(r)) be the first (last)
point of R one meets in going along K(a)\\K# from Cu(l) to Calr)
Denote by Ki’ i =2 orr, the (closed) arc of K(a) between c
and Vs(i) which does not contain K# (see Fig. 10.16). From tge
above description we see that VB(Q) # VB(r)’ and

R = (vo,e],...,ev,vv) and let v

(10.107) K MKy =leyiyt Ky DK =0,

We can now define a new crosscut R of int(Jl) which contains X
"spliced into R" (see Step (i) for JQ). The path R on sz con-
0 to
or VB(r)’ whichever comes first. Let y and § be such that

sists of several pieces. We start with the piece of R from v
Ys(2)

B(y) = min(B(2),8(r)), B(8) = max(B(&),B(r)) .
Thus  {y,8} = {&,r} and the first piece of R is the piece of R

from Vo to VB(Y). VB(Y) is ?n endpoint of Ky. Ke now continue
R along KY to its other endpoint ca(Y). Next we move along X to
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Figure 10.16  Schematic diagram. The dashed and boldly drawn curves
together make up the circuit K(a) . The boldly drawn

pieces of K(a) are the arcs K2 and Kr » while

K# is the arc between Kz and Kr which contains a# .

Ca(8) (recall that X is a path with endpoints Ca(2) and ngr))‘
From Ca(ﬁ) we move along KG to VB(G). The last piece of R is
the piece of R from _YB(G) to Vyr The curve traversed in this way
from Vo to v, is R. It is made up of paths on sz, and as we
shall now show,

R has no double points.

Indeed, since R itself has no double points, and the same holds for
the arcs K, and K. of K(a) End for the path X, the only way R
can have a double point is when X intersects R U 9 UK, 1in a point
distinct from its endpoints cu(l) and Ca(r)’ or if Ki intersects

R 1in a point other than Vu(i)’ i =492 o0or r. All these possibilities
are ruled out though by (10.100), (10.98) and (10.107). Thus R is
indeed a self-avoiding path on G 2 from Vo to v, - We stress that
R contains the vertex x of X (see (10.94)).

We want to show that R 1is a crosscut of Jg» 1.e0,
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(10.108) R\{vo,vv} < int(J,), Vg € Bpov, e By .
In addition we want to know that R 1ies above R, i.e.,
(10.109) RcJ;(R) and J,(R) < J;(R).

We begin with the first inclusion in (10.109). It is clear that the
_}go pieces of R from Vo to VB(Y) and from VB(cS to v, belong to
JQ(R). Thus, for the first inclusion in (10.109) we only have to show
that the connected curve consisting of Kgs X and K Ties in ‘3;(R).
As we just saw, (10.100), (10.98) and (10.107) imply that this curve
only has its endpoints, Vs(ﬁ) and VB(r)’ on R. It therefore

suffices to show that K2 UuXxu Kr {VS(Q)’ VB(r)} does not intersect

Fr(J+(R)), but contains some point of JZ(R). As a first step we show
a# € J;(R).

To see this note that a# £ R# \ R CTJ;(R) \R, by virtue of (10.43),

(10.78). But neither does a’ belong to the pieces B;»B, or C of

Jg because B1(Bz) 1ies to the left (right) of the vertical line {A3} x R

({2M_,-A.} x R) and C Tlies above the horizontal 1ine Rx {12M, }
21 73 # 2%

(see Step (1)), while a" e K(a) with
1 3
7 Mg1-0-20 < a(1) < 5 Mo +0+20

(see (10.79)), and a € R, whence

a(2) §-6M12

(see (10.32) and beginning of this Step). Thus, for sufficiently large
'

. # N
(10.110)  distance (a",By UB, U C) > min (3M 1-6-2A-1,), 6M/,}

- diameter K(a) > 2 diameter K(a) + A.

We have now shown that a# does not belong to
Fr(J}(R)) SR U B, UB, UC, so that indeed a* < ot (R).

Next, (10.110) shows that K(a) = K(a) U int(K(a)) does not
intersect B] U 82 U C. This and (10.105) imply that K# does not
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#

intersect Fr(J;(R)), and since a" ¢ K# we see that

Ca(i) € Ky CJ;(R), i=a,r.

By virtue of (10.107) we then obtain also
K \Evg(i)}e J(R), 1 = L,r.
Finally, we already saw in (10.98) and (10.100) that
X = K(@)\R,
which is disjoint from Fr(J;(R)). Thus also
X <97 (R).

This proves the first inclusion of (10.109). In the course of its
proof we also saw that KQ Uuxu Kr < K(a) does not intersect
By UB, UC. But neither can K, U X U K. intersect the arc A of

J, since AcC JR(R) n Jo s while

> +
Also

Thus K, Uuxu K C21‘nt(JR). Since R is a crosscut of JQ, (7.39) -
(7.41) show that R\{vy.v,} <int(J;), vq e By, v, € By. (10.108) is
now obvious. Finally, the second inclusion in (10.109) follows from
the first one, in the same way as (A.40) follows from (A.38) in the
Appendix.

As a final step before defining the modified configuration & we
construct a connection on Q;z to E above R. This connection, call
it Y*, will consist of X* - whichoruns from va to w6 - followed by
s* - which runs from wa to w; e C (see beginning of this step).
Actually X* followed by s* could still have double points; Y* s
the path obtained by loop-removal from the composition of X* and s*.
To show that Y* is a connect1on from X to C above R note first
that Y* ends at w* € C and that s*\\{w*} < (R#) because by
assumption s* is a vacant connection of a# to C above R# Thus,
by (10.43) s*\\{w¥} c JQ(R) and a fortiori s*\\{w*} does not inter-
sect R. But neither does s* intersect K, Uuxu K < K(a) by vir-
tue of (10.80). Thus, s* does not intersect the crosscut R of g
and ends on E. S1nce some neighborhood of C intersected with
int(J,) belongs to J®) and s*\ {w*} < int(J,) we conclude
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+ =
(10.111) s*\{w;} <3, (R) .

Neither can X* intersect R. To see this, observe that we already
know that X* is disjoint from X (see (10.99)) and that X* N K(a)
c K# (see (10.106)). Also X* does not contain the points Cy(2)
and Sy (r) of K(a) since by construction any point of X* T1ies on
V¥ or is within distance Aﬁ from K*, while Cu(i) has a distance
at least A8—2A from ¥* by (10.90), and V* < int(K(a)) by (10.83).
This means that

X* 0 (K, UK. = X*NKa) (K, U Kr)\{ca(z),ca(r)}
<Ky N (K, U Kr)\\{cu(z),ca(r)} =@ (see (10.107)).

Lastly, to show that X* 1is disjoint from R we can copy the proof of
(10.100) verbatim. X* too lies within distance A6+4A+2A9 from a'.
On the one hand, this together with (10.110) shows that X* does not

intersect B] U 82 UC for large 2. On the other hand, together with
(10.78) this gives

(10.112) distance(X*,R) z_e—(A6+4A+2A9) > 20 .

Thus X* is disjoint from R U By UB, UC and a fortiori from
Fr(Jz(ﬁ)). Since we already saw that the endpoint w6 g s* of X*
belongs to Jz(ﬁ), it follows that all of X* Tlies in Jz(ﬁ). Combined
with (10.111) this gives the desired conclusion

(10.113) Y*\ {w*} © J;(ﬁ).

We note also that the initial point of Y* = initial point of X* = va
which is adjacent on I} to X by Condition Dd) (with x replaced
by X). Thus Y* 1is indeed a connection on Q*z from X to C
above R. Note that we do not claim Y* to be vacant, though.

Figure 10.17 illustrates the end result of our construction of R
and Y*. In Fig. 10.17 we have more or less drawn the various pieces
in the same relative location as in Fig. 10.13-10.16.

Step (vii). We are finally ready to describe the modification &
of the occupancy configuration w. We remind the reader that w
satisfies (10.52). We form & by means of the following steps:
(a) Make all sites on R which are vacant in w occupied in &.
(b) Make vacant all sites of sz which lie in 3;(§f\'ﬁ and which
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Figure 10.17 The outer circuit is J2 . The solidly drawn crosscut

is R . The dashed path is Y* . The small square near
the center is B = B(X), which has X as its center .

can be connected to a vertex on Kl Uuxu Kr via one or two edges of
sz. Excluded from this change are central vertices of Qpl which do
not belong to 1.
(c) Make all vertices on Y* vacant.
(d) Make occupied all non-central vertices of Q;Q which 1ie in
JZ(ﬁ)\\Y* and which are connected to a point of X* via one or two
edges of QSQ .

No other changes than the ones listed in (a)-(d) are made in the
configuration w to obtain .

Before we can start on the verification of Condition E we must show
that the steps (a)-(d) are compatible, i.e., that they do not require a
certain vertex to be made occupied as well as vacant. This is easy,
however. Indeed (a) only involves vertices on R, (b) only vertices in
'Ji(ﬁ)\'ﬁ and (c) and (d) only vertices in J;(ﬁ) ucg (by virtue of
(10.113)). Thus. Steps (a). (b) and the pair (c) and (d) deal with
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disjoint sets of vertices. It is also clear that Steps (c) and (d)
deal with disjoint sets of vertices. Therefore no conflict exists
between any of the required modifications.

We denote by & the occupancy configuration which results from
w by Steps (a)-(d). We check in this step that (10.53)-(10.55) hold
for &. (10.54) is immediate from steps (a)-(d) and the fact that
Y* is a path on Q;z’ hence does not contain any central vertices of
sz- Thus, in none of the steps is an occupied central vertex of G 2
outside W made vacant. Also (10.55) is immediate if we take into
account that R 1is a pathon G 2 and hence does not contain central
vertices of Q;z . Lastly, (10.53) follows from the fact that R is
already occupied and s* already vacant in the configuration w (see
beginning of Step (vi), where R and s* are introduced). Therefore
(a) requires only changes of vertices on 9 uxu K, CK(a). Also
(c) requires only changes of vertices on X*, which by construction
lies within distance Ay from K(a) U ¥*; in turn X¥* 1ies within>
distance Ag from K{a) by (10.91) and (10.79). The changes in (b)
and (d) lie within 2A from the set 9 Uuxu K. or X*. Consequently
®(v) # w(v) is only possible for a v within A*Ag+20  from K(ay,
which contains a#, and which has diameter 5‘8®+4A3+4A (see (10.38)).
This proves (10.53).

Step (viii). In this step we verify (10.56). The essential part
is to show that in the configuration & there exists a lowest occupied
crosscut R of 1nt(J2) on Qpl’ which almost equals the path R, and
in particular contains X. The existence of a lowest occupied crosscut
R of 1nt(J2) - i.e., an occupisd path R on ng which satisfies
(7.39)-(7.41) and such that Ji(R) is minimal among all such paths -
follows from Prop. 2.3, because R is an occupied crosscut on sz
of J, in & (by (10.108) and Step (viia)). Let R = (YO’h1""’hA’yx)'
We remind the reader that R = (vo,e],...,ev,vv) and that the pieces

(VO’e1""’eB(Y)’VB(Y)) ?nd (VB(§)’eB(6)+1"" ev,vv) of_-R are
also the first and last piece of R; between these pieces R consists
of the composition of Kl’ X, and K (or this path in reverse). We
shall now prove the following statements:

(10.114)  (ygshyseeeshgrys¥g(y)) = (Vgaeqanengi ysvgy)s

(10.]15) (y>\_\)+8(6)ah)\_\)+8(6)+]3-'"h}\!yX)

= (Vg(5)°Ca(s)+1° - 28y Yy
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(10.116) Any y; with B(y) < i < A-v+B(§) Tlies within distance
A of a vertex on Kl U i U Kr’

(10.117) X 1is one of the i -

Of course (10.114)-(10.116) say that R shares its beginning and last
piece with R and R and in between deviates only little from R.

To prove (10.114)-(10.117) we first must assemble some facts about
the non-existence of certain shortcuts for R. It is convenient to use
the following notanon. R(y) = (VO’e1""’eB(Y)’VB(Y))’ the beginning
piece ofﬂ'R and R; R(8) = (VB(é)’eB(6)+1""’ev’vv)’ the last piece of
R and R. Let 2z be an arbitrary point of R(y)\\v . Since R
and R are crosscuts of int(dg) which have the piece R(y) 1in common,
there exist arbitrarily small neighborhoods N of =z such that

N Nint(9, )\ R = N N int(J ) \R(y) = N N int(d, \ R
and such that N N int(Jg)\\R consists of two components, N* and N
say, with
(10.118) N S J7(R), N S J(R).

We claim that for any such N also

(10.119) N SO (R), N < (R).
This is easy to see from (10.109). Indeed (10.109) implies
37(R) = int(J)\ Ty (R) < int(d,)\T;(R) = J;(R)

and hence
N < 33 (R).

But N N int(JQY\'ﬁ consists of the two connected sets N~ and N+,
and N N int(Jz)\\ﬁ' must intersect J;(ﬁ) as well as Ji(ﬁ) (since N
is a neighborhood of a point z on the crosscut R of int(JQ); see
Newman (1951), Theorem V.11.7). Thus both inclusions in (10.119) must
hold.

We use (10.119) to prove that if w satisfies (10.52) then

(10.120) there does not exist a shortcut of one or two edges of R
inside 'jg(ﬁ), which has one endpoint among

VO,V-‘ ’...,VB(Y)—] ’VB(6)+] ,...,V\) .
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(See Def. 10.2 and Step (iv), for the definition of shortcuts.) Suppose
first that the edge e of ng is a shortcut of R of one edge which
runs from some v, 0<1<B(y)-1 toavertex u of R, and is such
that e ij;(ﬁ). Then by Def. 10.2 e is not an edge of R itself,
since u is a vertex of R which is not the immediate predecessor or
successor of v, on R. But then e is disjoint from R. e also
cannot belong to JQ because then both v; and u must belong to
Jy NR = {VO’Vv} and the vertices Vo and v, on B1 and 82 respec-
tively (see (7.40), (7.41)) are too far apart to be connected by the
single edge e. Thus, by the planarity of G D e s also disjoint
from J,. Since e Cfﬁ;(ﬁ) this implies @ CZJ;(ﬁ). Therefore, if N
is a neighborhood of v; for which (10.118) and (10.119) hold, then
e NNCN CIJE(R). Consequently e CIJQ(R) entirely. On the other
hand u 1is a vertex on E'CZEZ(R) (by (10.109)) so that
u a'ﬁi(R) n JZ(R) = R. oTh1's means that e connects Vi with u, two
vertices of R, while e 1lies strictly below R, i.e., in J;(R). Re-
placing the arc of R between Vs and u by e then gives an occupied
crosscut of Jl which 1ies in 'JQ(R) and which is not equal to R.
This contradicts the choice of R as the occupied (in the configuration
w) crosscut of int(JZ) with minimal Ji(R); see Prop. 2.3. Thus, no
shortcut of one edge for R exists which lies inside 'ﬁi(ﬁ) and has
one endpoint among VO""’VB(Y)-1 . ~

Next suppose that e, u, f 1is a shortcut of two edges for R
inside J)(R) which starts at some v., 0 < i < Vg(y)-1 ¢ In this
case u must be a central vertex of sz which neither belongs to W
nor is one of the vertices Vj’ 0 <Jj<B(y) of R. This again excludes
the possibility that e belongs to R or to J2 (since Jz Ties on
7, and contains therefore no central vertices; see Step (i)). As above
this implies e CZJE(R). On the other hand the endpoint other than u
of f Ties on ﬁ'CZJZ(R) (see (10.109)). Consequently e, u, f inter-
sects R, necessarily in a vertex, w say, of ng. Thus e followed
by f contains a path, t say, from v; to w, t Tlies in J;(R),
except for its endpoints v; and w on R. t can contain at most one
vertex not on R, to wit the vertex u. But as a central vertex of § 2
not in W ,u is occupied in the configuration w (by (10.52)). Thus
we would have the occupied path t below R connecting the two vertices
Vi and w on R. As above this contradicts the minimality of R. This
proves the cases of (10.120) where the shortcut has one endpoint among

Vi 0 < i < B(y)-1. The same argument can be used for the Vs with
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B(6)+1 <1 < v .

We conclude from (10.120) that any shortcuts for R in 'ji(ﬁ)
have to have their endpoints on KQ uxu Kr (this includes VS(Y) and
vg(é)). K2~ and Kr are pieces of K(a), hence minimal paths (see
(10.36)). X was even taken strongly minimal in Step (vi). There can
still be shortcuts for R between these three pieces. Some of these
will be harmless but we have to rule out shortcuts between points on
"opposite sides of X". Shortcuts from Xl(i)\ {X} to Xr(if\ {x}
are already ruled out by (10.96) (see (10.95) for the definition of ig
and Xr)' lle now prove

(10.121) there do not exist shortcuts of one or two edges of R
inside 3@ with one endpoint on ~X2(i) and the other
on Kr or with one endpoint on Xr(i) and the other
on Kg.
Again we give an indirect proof of (10.121). Assume that e or (e,u,f)
is a shortcut of R connecting a vertex z, on K2 with a vertex z,
on Xr(i). Then by (10.97)

|22-cu(2)1 < 2N or ‘ZZ'Cu(r)l < 20

Since by construction ca(z) lies on K(a) and within 2A from
b, € ¥, it has distance > 24 from Xr(X), by (10.90) and (10.83). (ir
contains only points within 2A from U or within A6+4A from ry CIMr,

as in (10.77).) Thus
IZZ'Cu(r)I <2hr  and IZ]_Cq(r)l 5.|Z1'221+122'Con(r)l < 4

By the estimate (10.39), there must then exist an arc K
z, to Cu(r) with

1 of K(a) from

(10.122) diameter(K]) 5_3A5(7A+2A3+1).

Now, since z, € K2 one arc between Z4 and ?u(r) contain? ca(z)
and the arc K# from cu(z) to Cu(r) (see Fig. 10.18). Since the
diameter of K, is at least (see (10.90))

1cu(2)-cu(r)] Z_Ibz-br|-4A Z_distance(HQ,h;)—4A 3_A8-4A,

which exceeds the right hand side of (10.122). Thus K1 must be the
other arc of K(a) from z4 to Ca(r)‘ However, this second arc of

K(a) from z; to c (. has to contain K. from vg.y to c_ (.
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Figure 10.18 Schematic diagram of K(a) dindicating the relative
location of various points. K, 1is boldly drawn;

K# is dashed. L
and this has diameter at least
# #
(]0.]23) IVB(r)‘Ca(r)‘ z‘IVB(r)_a l lca(r)'a I z_@-Ag'ZA

. #
since ]VB(r)'a | >0 (by (10.78)) and

[Ca(r)—a#l E-]Coc(r)_br“lbr'a#I < 2Mhg

(by (10.91)). But the right hand side of (10.123) also exceeds the
right hand side of (10.122), so that neither arc of K(a) from z; to
Co(r) is posijble for K]. This contradiction provesNthat there is no
shortcut of R from a vertex on K2 to a vertex on Xr(x). The same
argument shows that there is no shortcut from Ko to Xl(x) and there-
fore proves (10.121).

Our final claim about shortcuts is that if « satisfies (10.52),
then

(10.124) there do not exist shortcuts of one or two edges for R
in 'ji(ﬁ) with one endpoint on each of K, and K -

We prove (10.124) for shortcuts of two edges, the case of a shortcut of
one edge being similar, but easier. Assume (e,u,f) is a shortcut of
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two edges for R in '3£(§), which starts at z; on K, and ends at
z, on Kr' Let K, be the arc of K(a) which connects z, to z
and is contained in K, v Ky U K, (see Fig. 10.19). As above

2

(10.125) diameter(Kz) z_diameter(K#) > hg-4A > 3A5(5A+2A3+1).

On the other hand the estimate (10.39), together with the fact |z;-z,]|
< 2A, implies that there exists an arc Ky of K(a) from z, to Z,
with

diameter(K3) §_3A5(5A+2A3+1).

Thus K3 is not Ko but K3 must be the arc through v ) and

B(%
VB(r) (see Fig. 10.19). Now consider the closed curve G consisting

Figure 10.19  Schematic diagram of K(a) indicating the relative
location of various parts. K2 is boldly drawn, K3
is dashed.

of K2 from zy to z, followed by f and e. G is a path with
possible double points on sz. We first show that

(10.126) G 1is a simple Jordan curve.

Since K(a) 1is a simple Jordan curve, the only way G could have a
double point is when u e K, K, UK, UK. But u f‘KR UK. cR
because if (e,u,f) is a shortcut of two edges for R, then u is not
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a vertex of R (see Step (iv)). But also uce Ky s impossible for

then e and f are edges with both endpoints on K(a), and therefore])

e followed by f would be an arc of K(a) from z, to Z, contain-
ing a point of K#. This could only happen if e followed by f con-
stitutes the arc K2 - which would go through the point u of K# -

and consequently diameter (K2) < 20 . Since this is excluded by (10.125),
it follows that (10.126) holds.

Next we observe that a e int(G). This must be so because by def-
inition of K(a) a € int(K(a)) at a distance at least 20-A-1 from
any point of K(a) (see (10.37)). On the other hand G 1is formed from
K(a) by replacing the arc K5 between 2z, and z, by e U f. Since

diameter(K3)+diameter(e)+diameter(f)

< 3hg(BA+205+1)+20 < @ < 20-A-1

this replacement cannot take a from int(K(a)) to ext(G).

We now have the point a of R (see (10.79)) in 1int(G), while
Vg € B1 is outside G, because B] is to the left of the vertical line
x(1) = hg (see Step (i)) and

a(1) > 2 Q]HG—ZA > d1ameter(G)+A3

for large & (see (10.79)). Similarly, v, is outside G. Therefore R
must intersect G 1in at least two distinct vertices of § x such that
R intersects int(G) in arbitrarily small neighborhoods of each of
these vertices. By (10.105) R does not intersect Ky while by choice
of Kg and Kr R intersects K2 U Kr only in VB(Q) and VB(r)
(see (10.107)). If Vs(1) (Vs(r)) belongs to G at all, then it must
equal z4 (22), and in particular, belong to e (f) (see Fig. 10.19 and
recall that u ¢ Kz). It follows from this and from G <K, U Ky UK.
Ue UF that R NG 1is contained in e U f. Starting at vg R must
therefore enter int(G) through a vertex on e U f and exit again
through another vertex of e U f to reach vy, Since e U f contains
only the three vertices zy, U and Z5s R must intersect 1int(G) as

well as ext(G) in arbitrarily small neighborhoods of one of the Z;.

1) A Tittle care is needed here because we allowed multiple edges between
a pair of vertices. However, in the present case u 1is a central
vertex of @ b2’ and the construction of Q in Sect. 2.3 is such

that there ex1sts exactly one edge in Q between a central vertex
and any of its neighbors.



328

For the sake of argument let this happen at zq. Then z4 belongs to
NR = i.e., =

KR R {VB(Q)} , T.e .21 VB(Q) and one of the edges eB(k) or

€g(5)+1 of R has its interior in int(G) and the other in ext(G).

This means that R intersects G transversally at zZy = VB(Q). But

17 YB(r)
and z, € Kr (see Fig. 10.19). As we saw in the proof of (10.109) this

arc belongs to J;(R), or more precisely

+
This, together with the transversality of R and G at VB(Q) forces

the arc Kk from VB(Q) to Cu(z) belongs to G, since z

é < J,(R).
We are now in the same situation as in the proof (10.120). e would
have to be part of a path below R of one or two edges, and occupied
in the configuration w. No such path exists by the minimality of
JE(R) and Prop. 2.3. (10.124) follows from this contradiction.

With (10.96), (10.120), (10.121) and (10.124) in hand, it is now
relatively simple to prove (10.114)-(10.117). Assume first (10.114)
fails and let £~ be the smallest index witho hE # eg . Then 1<¢§
< B(y). Since R satisfies (7.39)-(7.41) hg c int(JQ). Now consider
first the case & > 2. Thfp by the minimality of £, yg_] = Vep € R
as well as y£31 = Ve € R. Since hg.# e and Qpl is planar, it
follows that h  does not intersect R, and for all sufficiently small
neighborhoods N of VE_]

(10.127) ?‘a NNe(RANN (3, UR).

On the other hand R 1is the occupied crosscut of 1nt(Jz) in the con-
figuration & with J;(R) minimal. In particular

(10.128) R<SJ,(R)
since also R is an occupied crosscut of int(JQ) in &, (by Step
(viia); see also (2.27)). Thus, by (10.127) and (10.128),

he N SN N (T (RN Fr(9;(R) = N NI, (R).

In view of (10.118) and (10.119) this means also

hy NN NN J(R)

for suitable N. Since hE # eE implies also that hE does not inter-



(10.129) h, < J;(R).

Exactly the same argument works if & =1 and Yo lies on R, for then
Yo € RNB,y = {vo}, i.e., Yo = Vo On the other hand, if A does not
lie on R, then aqumatica11y £=1 and h1 cannot reach R or R
before yy, i.e., h] = hE is again disjoint from Fr(Ji(ﬁ)) and from
Fr(J;(R)) (use the analogue of (7.40) for R). Since also

cR < (R),

hy

the initial point Yo of h belongs to the part of B] in
Fr(Ji(ﬁ)f\'ﬁ , which is the segment between u; and v, (apply (7.40)
to R and see Fig. 10.9). But thig segment of By from u; to vy
also equals Fr(Jg(R))\\R so that h, belongs to Ji(R) near yj.
(10.129) therefore holds in the case & =1 as well.

To derive a contradication from (10.129) we consider the set

% := {vertices of ng which are vacant in w but
occupied in @} .

~

If ﬁ has no vertex in = , then R 1is also an occupied crosscut of
int(Jy) in the configuration w . In this case (2.27) shows that

E CZﬁZ(R), and therefore ﬁ cannot contain any part of any edge - such
as ﬁg - strictly below R. Thus, if (10.114) fails, and hence (10.129)
holds, then R must contain a vertex in = . Let w be the smallest
index with Y. €E . Now observe that by Steps (viia)-(viid) and
(10.109)

= C JZ(R‘) c az(R).

Also, all vertices on R are occupied in w, hence are outside =, so
that

11

(10.130) CZEZ(R)\\R, whence = ﬂ-ﬁi(R) =0 .

By definition of & and (10.129), Yore e Yeo e'ji(R) (even when
£ = 1) and hence by (10.130) = > & . We claim that

(10.131) Y; ¢R for g<ic<m

Indeed, if (10.131) would fail and j would be the smallest index > &
with yj € R, then j <w and the path (yg_],hg,...,hj,y.) minus
its endpoints Ve 10Y; would 1ie in JE(R) (by (10.129)) and have all
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its vertices yg,...,yj_] occupied in w since j < w. This would
again contradict the minimality of J;(R) in the configuration w.
Thus (10.131) holds. On the other hand, by (10.129), the path
(yg_],hg,...,h“,yﬂ) starts with ﬁg in Ji(R), and by (10.130) cannot
reach = without intersecting R. This contradiction proves the
jmpossibility of (10.129). Thus (10.114) must hold.

(10.115) must hold for the same reasons as (10.114). We merely

have to interchange the roles of B.l and v, with the roles of B

0 2

and vy -
Next we prove (10.116) and (10.117). Let R = (}b,ﬁi,...,ﬁ%,?&)).

We already know from (10.114) and the definition of R that

Yi= ¥y 7 v 021 <Bly)s and hy = hy=eg 1< <8ly).
Now assume for a certain i
(10.132) y; = yj for some j with y; = yj € KQ Uxu Kr .

By (10.114) this holds for i = j = B(y). If hiyy 1s an edge of R,
then we can simply move along hi+1 to y.,; and then £10.132) also
holds with Y5 replaced by Vil (unless Yi41 ¢ KR Uuxu EY)' The
case of interest is the one where hi+1 is not an edge of R. First
consider the case where Yis again belongs to R. Then the edge

hi+1 forms a shortcut of one edge for R. It Ties necessarily below

R, i.e., in 'ji(ﬁ) because of (10.128). By (10.120), (10.121), (10.124)

the endpoints of hi+1’ y; = y& and Yip1 = yk say, must in this case
both belong to K, U Rz(x), both to K, U X (%), or both to X. The
last case cannot occur because X 1is a minimal path, by construction.

In the 9ther two cases X does not occur between ; and yk on R
since Xi(i) is the piece of X between X N Ki and X, i=2% or r,
by the definition (10.95). Note that X = y& or X = }k is not
excluded, though. In any case, if we replace the segment of R between
}3 and yk by hi,; then X still Ties on the modified path. More-
over, ¥iiq =~yk will again be a vertex of R on R, and as long as
Y 8~F2 Uuxu K, we are back to (10.132) with Vi ¥; replaced by
Yie1s Yk

The other possibility a119wed by (10.132) is that Yi41 does not
belong to R. Since Yisq € R ij;(ﬁz (by (10.128)) this implies
Yis] a'Ji(ﬁ)\\ﬁl Also, since y..q € R it must be occupied in the
configuration &, and by Step (viib) this means that Yi+] has to be a
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central vertex of sz which does not belong to W. The neighbor Y;
of ¥y is then not a central vertex of qnl (Comment 2.3(iv)).
Again by Step (viib) it follows that y.,, cannot lie in 32 (R\R.
Since y.,, 1is an endpoint of h.,; - which starts at Yi41 € J7(R)\R

+2

1 _— — .
- we have Yisp € iﬂ(R)’ anf_hence Yipp € R, say Yi+p =;¥k' Thus, in
this case either yj and y, are successive points of R or
(hi+1’y1+1’hi+2) is a shorth& of two edgE§ for R_‘in JQ(R). Again,
if we replace the segmeEt of R between yj agﬁ Yi bz_(hk+1’yi+1’hi+2)’
then we do not remove x. This is obvious if Yy and yj are successive
points on R, while the argument is essentially as above in case
(hi+1’yi+1’hi+2) is a shortcut for R. The only new case to considgr
this time is the one where the shortcut runs between two points of X.
But then (10.96) guarantees that X is not removed during the replace-
ment. Once again, with yk we are back at (10.132) with 7P 95 re-
placed by Yisos Vg - Start1?g with ¥B(Y) » which satisfies (10.132)
we use the above argument until we arrive at Yy-vta(s) =

Yiet v 8(68)
after which

Y rora(s) Maovrp(s)+1° 2 Mo¥a)

* Wieurg(6) Meovra(a)+1> - Meo¥ic)

= (VB(S) ’eB((S)+] 90 0 ,e\),vv)

by (10.115) and the definition of R. It follows from this that R s
formed from R by replacing a number of pieces of R between two ver-
tices of R on KQ Uuxu Kr by pieces of § of one or two edges.
None of these replacements results in the removal of X. This proves
(10.116) and (10.117).

Finally we complete the proof of (10.§§). The existence of the
crosscut R of 1nt(J2) with minimal JL(R), and containing X from
by we already proved (see especially (10.117)). We know from (10.93)
and (10.33) that

|%-a*| <@
Also, we showed at the end of Step (vi) that Y* is a connection on

;l from %X to C above R. But R ij;(ﬁ) (see (10.128)) and this

implies

(10.133) JL(R) < 3} (R)
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as shown by the derivation of (A.41) from (A.38). Thus Y* is also a
connection from X to E above R. Moreover it is vacant in the con-
figuration & by Step (viic). Thus, everything claimed in (10.56)
has been verified.

Step (ix). In this step we complete the deduction of Condition E
by verifying (10.57). Let y ¢ wb be a vertex of R and let
1% = (26,k?,...,kg,z§) be a Xacant congection on QSQ (in the con-
figuration &) from y to C above R (cf. the definition (10.49)-
(10.51) with T = R®). If y is not one of the v; with 0 < i <
< B(y)-1 or B(s)+1 < i <v , then by (10.114)-(10.116) y lies with-
in distance A from Kﬁ Uxu Kr CX(a). Since a’ ¢ K(a), (b) of
(10.57) holds for such y with Kg = diamter(K)+A . Thus we may
restrict ourselves to y = Vi € R with 0 < i < g(y); the case where
y =V with B(8) <1 <v 1is similar.

We begin by showing that

(10.134) Z* 1is a vacant connection (in @) from y to E

above R.
The point of (10.134) is that Z* 1is even above R, not only above ﬁ.
To see (10.134) we observe that (by requirement (10.49)) there exists

o ~
an edge k* of W%z between y and 26 such that k* CZJ;(R).
Thus for any small neighborhood N of y

k*nNCNnayb.

However, now that we have (10.114) we can use the argument which de-
rives (10.119) from (10.118) - with (10.133) or (10.128) replacing
(10.109) - to obtain also

oy + =
NN JQ(R) = NN JR(R)

for suitable small neighborhoods N of y. For such N one has
k*ﬂNCNﬂJBm.

Thus, near y k* Tlies in JZ(ﬁ), and then all of k* Tlies in JZ(i).

This is the analogue of (10.49) for Z* and R instead of s* and r.
(o]

The analogue of (10.50) is z* ¢ C, which is true because Z* 1is a

0
connection to C. To prove (10.134) it therefore suffices to show

(10.135) ¥\ {z}} < J;(E).
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Since k CZJ;(ﬁ) and z¥ s an endpoint of k, hence in ﬁz(ﬁ), and
since Z*\\{zg} < int(J,) (by (10.51) with r replaced by R), (10.135)
can fail only if some point of Z* 1lies on R. The first intersection
of Z* and R has to be one of the vertices z? in this case, say
ZE . zg also has to be a vertex of R. This is not possible for then
zz has to vacant in the configuration w, being on Z*, as well as
occupied, being a vertex of R, which is occupied in @, by Step (viia).
Thus (10.135) and (10.134) hold.

He now introduce

g% := {vertices of Q;Q which are occupied in w but
vacant in ®} .

If Z* has no vertex in E*, then Z* 1is also vacant in the config-
uration w. Moreover JZ(ﬁ) c JZ(R), as we saw in (10.109), so that
in this case, by virtue of (10.134) Z* 14s a vacant connection from
y to E above R in the configuration w. Thus in this case (a) of
(10.57) holds. There remains the case where Z* has a vertex in Z*,
We shall now show that (a) of (10.57) must hold in this case as well.
To prove this, let z* be the first vertex of Z* in E*. By Step

(vii)(a)-(d),
=% N (TGRNR) @ v+ .

Actually, we saw in the proof of (10.53) at the end of Step (vii) that
Step (viic) requires only changes in the occupancies of vertices on
X*. Therefore

(10.136) 2% N (3‘;('@()\?) c X*.

In particular z; is a vertex on X* N Y* and we can define m as
the smallest index 1 <n with z¥e X* N Y*. Since zg and zy
are within distance 2A of y e R, and since (10.112) shows that

distance (X*,R) > 2A , 26 and z? cannot lie on X*. Therefore
2 <m<nm

;(ﬁ) (by (10.135)) and they can be
connected by one or two edges of Q;Q to z; e X*. Being vertices of

Now z*_ , and z* , both lie in J

Z*, zx 4 and z¥ , have to be vacant in the configuration &. In
view of Step (viid) this means that both z;_1 and z;_z have to be
central vertices of Q;l or belong to Y*. If z;_] e Y*, then

2% 1€ y*\ X* < g*
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(see the construction of Y* towards the end of Step (vi)). If z*_,
is the vertex w* of s*, then

¢
(10.137) (Z8okE s oo sk 028y = WESFE L)

is a path with possible double points on Q;z , consisting of the
beginning piece of Z*, until an intersection of Z* and s*, and a
final piece of s* from this intersection of s* with Z* +to
WX € C. This path is vacant in the configuration w, since 2z§,...,z*_;
do not lie in E=* and are vacant in &, while s* 1is a vacant connec-
tion in w from a’ to E above R (see beginning of Step (vi)).

Also, as we saw above

R < 3} (®) c:J;(R) (cf. (10.109)),

(2.k¥s .0 ok% 122 1) © 26\ {22} € 37 (R) < Jj(R)
(cf. (10.135), (10.109)),

and finally, because s* 1is a connection to C above R#
+ +
(W3oF3pqe PN O2)) © s*\ w2} € 0 (RF) S 0y(R)  (cF.(10.43)).

It follows from this that the path in (10.137) after loop-removal, to
make it self-avoiding, forms a vacant connection in w from y to E
above R. Thus, if z;_1 e Y*, then (a) of (10.57) holds. The same
argument works if z* , e Y*. This leaves only the case where neither
z¥ 1 € Y* nor z¥ , e Y*. This case, however, cannot arise, for as

we saw above this would require both zx ; and z* , to be central
vertices of G* . Since zx , and z* , are neighbors on G* = this
is impossible (Comment 2.3 (iv)). We have thus proved (10.57) in all
cases and completed the proof of Condition E.
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11. RESISTANCE OF RANDOM ELECTRICAL NETWORKS.

11.1 Bounds for resistances of networks.

Many people have studied the electrical resistance of a network
made up of random resistors. It was realized quite early that critical
phenomena occur, and that there is a close relation with percolation
theory, in special cases where the individual resistors can have in-
finite resistance (or zero resistance). We refer the reader to
Kirkpatrick (1978) and Stauffer (1979) for a survey of much of this
work. In these introductory paragraphs we shall assume that the reader
knows what the resistance of a network is, but we shall come back to a
description of resistance in Sect. 11.3.

A typical problem in which the relation with percolation is appar-
ent is the following. Consider the graph Zd » With vertices the in-
tegral vectors in Rd , and edges between two vertices Vi and Vo iff
|v1-v2] = 1. Assume each edge of z¢ is a resistance of 1 ohm with
probability p, and is removed with probability q = 1-p. As usual all
edges are assumed independent of each other. Let Hn be the restric-
tion of the resulting random network to the cube of size n, Bn = [O,n]d.
What is the behavior for large n of the resistance in Hh between
the left and right face of Bn? More precisely let

1) A% =)= v = (v(1),.v(d)): v(1) = 0,0 < V(i) <,
2 <i<d}

be the left face of B~ and

(.2) A=A = v = (v(1)seov(d)): v(T) = 0,0 < () <,
2 <i<d}

the right face. Form a new neirork from Hh by identifying as one
vertex aj (?11 vert%ces of Z in AO, and by identifying all ver-
tices of Z in A as another vertex ay- This means that we view
all edges of Hn which run between the hyperplanes x(1) = 0 and

x(1) = 1 as having the common endpoint a, in x(1) = 0. In "reality"



336

one would have to connect all vertices in A0 by wires made from some
super material which has zero electrical resistance. The same has to
be done for the vertices in A]. Rn is the resistance in Hh between
a and 3, after this identification of vertices.

For small p there will with high probability be no path at all in
Hh connecting Ag with A;. 0f course Rn = o if no such path exists.

Therefore

Pp{Rn = w}>] as n-»> o for small p.

On the other extreme, if p =1, Hn becomes the restriction of Zd
to Bn' One easily verifies that in this situation V(x) := x(1)/n is
the potential at x when Ag (A;) is given the potential 0(1) by

means of an external voltage source. Indeed Kirchhoff's and Ohm's laws
give that V(-) 1is the unique function which satisfied

I (V-¥(x)) = 0, x £ B\ AY U A
yeBn:y
adjacent to x

(i.e., V(+) 1is harmonic on Bn\\Ag U Al) and which has boundary value
0(1) on Ag (A;) (see Feynman et al (1963), Sect. 1.25.4,5 and 11.22.3,
Nerode and Shank (1961) or Slepian (1968), Ch. 7.3; also Sect. 11.3
below). Thus, by Ohm's law the current leaving AO equals (n+1)d'] ;P
(There are (n+1)d'] edges of resistance 1 ohm between Ag and the
hyperplane x(1) =1 in Bn; the potential difference across each edge
is 1/n.) Thus, if p=1, R, = n(n+1)1'd. It is therefore reasonable
to conjecture that n-

~N

Rn converges in some sense to a finite and
non-zero (random) limit as n » «, at least when p 1is large enough.
We do not know how to prove such a result, but the results in this
chapter establish that nz_d gives the correct order of magnitude of
Rn when p > %-. For d =2 we obtain much more precise information
on Rn for all p.

0f course removing an edge e is equivalent to giving e an in-
finite resistance. A dual problem arises when each edge of Zd is a
resistor of 1 ohm (has zero resistance) with probability p(q

. 0
= 1-p). The resistance R, between A

and A; of the restriction
to Bn of ld will now be zero as soon as there exists a single path
in Bn containing only edges of zero resistance and connecting Ag
with AL. The probability of {Rn = 0} will therefore tend to one as
n » = for large enough p, but for small p nd'an should be bounded

away from zero.
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In the theorems below we shall combine both situations. In fact
we shall allow for an arbitrary distribution of the resistances of the
individual edges. We restrict ourselves to the graph Zd , and for most
of the results even to Z? . It is clear, however, that a good part of
the method of proof used for 12 will work when 12 is replaced by
another graph G imbedded in IRZ which is one of a matching pair
(G,G*) for which p(G) = pg(G) = 1-p3(G¥).

Before formulating our results we point out that continuum analog-
ues of the resistance problem have been studied as well. For instance
Papanicolaou and Varadhan (1979) and Golden and Papanicolaou (1982)

(see especially Appendix) assume that the conductivity of a certain
material is a random process, indexed by position in Rd (rather than
time). This process is assumed stationary. Under suitable assumptions
2 and

A] for the random medium is the same as that of a certain deterministic

n
"effective" medium. Golden and Papanicolaou (1982) give bounds for the

the asymptotic behavior of the conductivity of Bn between A

conductivity of the effective medium. A related sequence of bounds for
the conductivity in a composite medium can be found in Milton (1981).
However, these bounds seem to apply only for a material of two compon-
ents, both of which have a finite non-zero conductivity.

We turn to the precise formulation of our theorems. It turns out
that in the first mentioned problem a good way to estimate Rn is to
find a lower bound for the number of disjoint paths in Hn from Ag
to Al. In other words, we try to find many disjoint conducting paths
(i.e., paths each of whose edges has finite resistance) in Bn from the
left to the right face. This part of the analysis is pure percolation
theory. For a closer match with the previous chapters we treat this
part as a site percolation problem. Let G be a periodic graph imbed-
ded in RY. By definition of pg = pS(Q) (see (3.65)) the probability
under Pp that there exists any occupied path on G 1in Bn from Ag

to A; tends to zero (as n - «) whenever p < Pg- For many of the

2

graphs in R™ which we considered the same probability tends to one

when p > pg. We now define a new critical probability as the dividing
paint where lots of disjoint occupied paths in Bn from Ag to Al
begin to appear. Specifically, we want of the order of n such paths.
With Pp the one-parameter probability measure defined by (3.22) and

(3.61) and i-crossings as in Def. 3.1 we define
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A

(11.3) Pp = PR(G) = inf{p: 3 C(p) > 0 such that
Pp{ 3 C(p)n disjoint occupied 1-crossings of [O,n]d
for all large n} = 1} .

Clearly ﬁR > Pg- It is also not hard to show that in general (cf.

(1.16)) P i.aR .

This is an easy consequence of the fact that the harmonic mean is less
than or equal to the arithmetic mean. The proof of this relation between
PR and 6R is implicit in the proof of Theorem 11.2 (see the Tlines
preceding (11.81) . We shall not make this proof any more explicit.
Instead we concentrate on the much harder and more crucial relation

pR=pS E]

which holds for many graphs in RZ . Since we are also interested in an
estimate for C(p) in (11.3) in terms of powers of (p-pH(Q)) we want
to appeal to the results of Ch. 8. We therefore restrict ourselves to
proving SR = Pg only for the graphs QO’ Q1, Qa and Q? introduced
in Ex. 2.1(i), 2.1(i1), 2.2(i) and 2.2(ii). (See, however, Remark (i)
below.)

Theorem 11.1. Let G be one of the graphs QO’ Q1, Qa or Q? and let
Pp be the one-parameter probability measure on the occupancy configura-
tions of G of the form (3.22) and specified by (3.61). Then for some

universal constants 0 < Ci’ 6i < o one has

§
(11.4) Pp{ 3 at least C1(p—pH(Q) 1n disjoint occupied

horizontal crossings on G of [0,m]x[0,n]}
§
> 1-C, (m1)exp{-C4(p-p,(G)) “n} ,
whenever p 3ApH(Q).

Remarks .

(i) The proof given below can be used to show that for any G
which is one of a matching pair of periodic graphs in R2 there exist
constants 0 < C, = Ci(p,q) < o for which

(11.5) Pp{ 3 at least C1n occupied horizontal crossings on
G of [0,m]x[0,n], no pair of which has a vertex in

common} > 1-C,m exp-C,n,
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whenever p > 1-p (G*).

(i1) The proof below for Theorem 11.1 is largely taken from
Grimmett and Kesten (1982). The estimate in the latter paper does,
however, differ slightly from (11.4). It replaces C1(p—pH(Q))6}n
inside the braces in (11.4) by (u-€)n, where u is the time constant
of a certain first-passage percolation problem (see Smythe and Wierman
(1978) for such problems) and then shows that on Z%  the number of
edge disjoint occupied crossings of [0,m]x[0,n] is actually of the
order un for n']1og m small. The fact that one can give a lower

§
bound of the form C,(p-p,(G)) 1 for the time constant u of the first
passage percolation under consideration was pointed out to the author by
J. T. Cox (private communication ). It is this observation which leads

to the C1(P‘PH(Q))6]n in the left hand side of (11.4). Grimmett and
Kesten (1982) do not pursue the dependence on p of the various con-
stants, but instead are interested in the exponential bound (11.5) with
C; as large as possible (all the way up to u).d 1/

We return to the resistance problem on Z~ . We shall assume that
each edge has a resistance R(e) with all R(e), e an edge of Zd
independent random variables, all with the same distribution given as
follows:

(11.6) P{R(e) = 0} = p(0),
(11.7) P{R(e) = =} = p(«),
and for any Borel set B < (0,)

(11.8) P{R(e) € B} = IB dF (x)

for some measure F on (0,») with total mass 1-p(0)-p(x).

In the next two theorems ed(p) will denote the percolation prob-
ability for bond-percolation on zd under the measure P according
to which all edges are independently open or passable (blocked) with
probability p(q = 1-p). Thus, for any edge e of Zd

ed(p) = Pp{e belongs to an infinite open cluster}.

Also Ps g will be the critical probability of (3.65) for bond-percola-
tion on 7% . 1In Theorem 11.2 we take d = 2 so that in (11.11) ez(p)
also equals the percolation probability for site-percolation on Q],
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1.e.,92(;)) = Pp{v belongs to an infinite occupied cluster on G} for
v any vertex of G, and Pp given by (3.22) and (3.61) with U the
vertex set of Q1 (compare Ch. 3.1; Q] is introduced in Ex. 2.1(ii)).

Theorem 171.2. Assume the edges of 12 have independent resistances
with distribution given by (11.6)-(11.8). Let Ry

between Ag and Al of the network in Bn' Then

be the resistance

(11.9) P{R O eventually}

n 1 if p(0) >

(11.10) P{Rn « eventually}

1T if p(e) >

n|— Noj—

Moreover there exist constants 0 < Ci’ 61 < ®

such that if
p(0) < » and p(=) <z , then

1 28,
(’z"p(o)) 1 -1 ..
(11.11) P{Cy o, (T-pT=)) {f(o’w —)ZdF(x)} 511r;;nf R,
< limsup R < Cp —5— f x dF(x)} = 1,
n—>co

(z-p(=) 1 (O

(8, fis the same as in (11.4)).

Corollary 11.1. Let the set up be the same as in Theorem 11.2. Then

there exist constants 0 < Ci’ §; < e such that for p(0) = 0,

p(x) <7 One has

1 "3 1 S I
(11.12) P{Ce(5-p(=)) {f(O ) % dF(x)}"" < Tim inf R
-I ] "26-1
< Tim sup R < Co(5- p(=)) f(o ) x dF(x)} = 1.

If, on the other hand, p(0) < %-, p(=) = 0, then

28

(11.13)  PiC,(5-p(0)) 1{[(0 . Lar(x)3! < Vim inf R_
1 1 %3 _
< lim sup R, §_C7(2-p(0)) I(O x dF(x)} = 1.
Remarks.
... 1 1 -1 .
(ii1) If — dF(x) = =« then { — dF(x)} is to be
j’(osm) X J(’O:"") X
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interpreted as zero, and the lower bounds for R, in (11.11)-(11.13)
become vacuous . Similarly the upper bounds become vacuous if
j’ x dF(x) = « . Nevertheless it is possible to use Theorem 11.2 to

(0,)
obtain non-trivial bounds for Rn in such cases by truncation. For
example, assume that [x dF(x) = « and p(0) < L p(e) < il Define

m as the unique finite number for which ’ ‘
F((m,®)) < (5= p(=)) < F(Im,=)).
Now take for each edge e
R'(e) = R(e) if R(e) < m,
R'(e) = = if R(e) >m (including R(e) = =) .

If R(e) = m, then randomize again for R'(e) and take

R'(e) = m with probability F([m,»)) - 5{z- p(=))
and
R'(e) = » with probability ;—(]2—- p(=))-F((m,»))}.

Again the randomizations for R'(e) when R(e) = m are done indepen-

dently for all edges. Then R'(e) > R(e) for all e, and if Rr|1 de-

notes the resistance between A~ and A:‘ in B_ when we use the

n
R'(e) 1instead of the R(e) then (see Lemma 11.4 below)

- O~

Ry 2 R, -
Since
P{R'(e) = =} = p(°°)+-]2~(-;—-P(°°)),

we obtain from (11.11) applied to er1

(11.14) P{1im sup R, < Tim sup er1

26, 8,(1-p(0
< Cg2 ‘-—?—-—F-)-(-—)—)—f x dF(x)} = 1

(z-p=) fo (O]

whenever m > 0. In a similar way one can truncate R(e) near zero to
obtain a nonzero lower bound for 1lim inf R, when p(0) <—;— and
[ dF(x) == .

(iv) Theorem 11.2 as stated gives no information when p(0) = Jz—

or p(«x) = -;— . Actually, from (11.11) and simple monotonicity arguments
one obtains
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(11.15) P{1im R = =} =1 if p(0) <75 = p(x)
and
(11.16)  P{limR =0} =1 if p(0) = % > ple).

For example, to obtain (11.15) one merely has to randomize R(e) when
R(e) = » and to take

1 with probability e
Rll(e) =
o with probability 1-¢ ,

but to take R"(e) = R(e) when R(e) <« (11.15) is then obtained by
applying (11.11) to the R"(e) instead of R(e) and taking the limit
as e+ 0.

Finally, when p(0) = p(») = %—, F = zero measure, then

(11.17) Tim P{Rn = 0} = Tim P{Rn = «} =-% .
n-co N>
We shall not prove (11.17), but merely note that if each R(e) = 0 or
« then also Rn = OO or o { and Rn =0 if and only if there is a
path 1in Bn from An to An all of whose edges have zero resistance.
The probability of this event is precisely the sponge-crossing prob-
ability S]/Z(n+1,n+1) of Seymour and Welsh (1978) and Seymour and :
Welsh (1978, pp.233, 234) already show S]/Z(n+1,n+1) E_S]/z(n,n+1)==§.
(v) When p(0) = p(») = 0 percolation theory does not really
enter. One can then trivially estimate Rn from above by the resistance
of the network consisting of the (n+1) parallel (disjoint) paths
{k}=x[0,n], k = 0,...,n*1. A very much simplified version of the proofs
of Theorems 11.2 and 11.3 then yields

1 -1 . .
(11.18) { —dF(x)} " < 1im inf R_ < Tim sup R_ < xdF(x).
I(O’w) X n n j(09°°)

This bound has apparently been known for a long time (see Milton (1581)
and its references).

(vi) It seems very likely that 1lim nd'an exists in some sense.
Golden and Papanicolaou (1982), Appendix, show that R, converges in
LZ(P) when d = 2, p(0) = p(«) = 0 and F concentrated on an interval
[a,b], 0 < a < b < = Their proof actually deals with the continuum

analogue but appears to apply as well in our set up. Straley (1977)
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uses duality arguments to discuss the case d = 2, p(0) = p(«) = 0,
P{R(e) = a} = P{R(e) = b} = %— for some 0 < a < b < ». These arguments
show that in whatever sense Rn has a 1imit, the value of the Timit
should be (a b)]/z. In particular by the above result of Golden and
Papanicolaou E{Rn—(ab)]/z}2 >0 as n-» oo, /l/
For d > 2 our results are quite incomplete.

Theorem 11.3. Assume the edges of Z‘j have independent resistances

with distribution given by (11.6)-(11.8). Let Rn be the resistance
between Ag and A; of the network in Bn' Then

(11.19) PR = 0 eventually} = 1 if p(0) > %
and
(11.20) P{R, = = eventually} = 1 if T-p(e) < Ps 4 -

Moreover, there exist constants 0 < Ci’ 61 < o such that

(1.21)  P{lim inf n92p_ 36—;(%9‘1)%%7 o Tar0r My =1

if p(0) =0,

and

_17 22 P{1i d-2p 9 dF(x)} = 1

(11.22) {1im sup n n i T o5 f x dF(x)} =
(G-p=)) 1 (0

1

if p(0) < and p(«) < %—.

no|

(6] is the same as in (11.4).)

11.2 Proof of Theorem 11.1.

We shall only prove a weakened version of (11.4). This will suf-
fice for Theorems 11.2 and 11.3. Instead of obtaining C](p-pH(Q))61n
disjoint occupied crossings of [0,m]x[0,n] as desired in (11.4) we
only obtain this many crossings no pair of which has a vertex in common.
Thus the occupied crossings are only vertex-disjoint. For a planar
graph such as QO this means that the crossings are actually disjoint,
but not for a non-planar graph such as Q1. To obtain disjoint crossings
one should carry out the argument below (with a number of complicating
modifications) on qu .

Now for the proof of the weakened version of (11.4). We restrict
ourselves to the case G = 91, the other cases being quite similar. We
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take for A1 the z1g zag curve str1ct1y to the left of {0} x[0,n],
starting at (-1 ,2), going to (- 2,1), then to (-1, ) and extended
periodically, with final point (- 1,n-—%). S1m11ar1y A3 is a zig- zag
curve strictly to the right of {m}x[0,n], from (m+ 1,—0 to (m+1 n--§)
(see Fig. 11.1). Also A2 is a zig-zag curve from (-1 ,§J to
(m+1,%0 lying strictly above [0,m]x {0} and obtained by periodic
repetition of the segments from (-1,%) to (--1) to (0,%0 etc. A
is a similar path strictly below [0,m]x {n} from (—1,n-—%) to
(m+1,n-%0. The composition of A]-A4 is a Jordan curve on 7, where
7t is the mosaic on which Q] is based (7% is ZZ rotated over 45° and

4

A A A A A A A A AN A
Vv v v v v vV VIV

A
<
> 4 <
<
A, <>
>

¢ Ala A A AMA A A AlA D
v VW V VvV V V V vV V VvV v

(-1,

Figure 11.1 The solid rectangle is [0,m] x [0,n]
The dashed curve is

translated by (%30). Q] is imbedded as in Ex. 2.1(ii); see Fig.2.3).
Any path on Q] in J=JUint(J) from a vertex on A1 to a vertex
on A3, and with all its sites in 3\\A] U A3 occupied, contains an
occupied crossing on Q] of [0,m]x[0,n]. Moreover, if two such paths
in J have no vertex in common in 3'\A1 U A3 » then they have no
vertex in common in [0,m]x [0,n]. It therefore suffices to find a lower
bound on the maximal number of paths on Q1 in J from A] to A3
with only occupied vertices in 'J'\A1 U A3, and such that any pair of
these paths has no common vertices in 3“\A] u A3.

To find the desired lower bound fix an occupancy configuration w
and form the graph Qd(w), which is basically the restriction of the
occupied part of G to J, with the vertices on A] identified as one
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vertex T, and similarly for the vertices on A3. More precisely, the
vertex set of Qd(w) consists of the collection of vertices v of §
in 3“\A] u A3 whiih are occupied in w plus two vertices which we
denote by 1 and 3. There is an edge between two vertices v' and

v' of Qd(w) (other than | and A§) iff Ehere is an edge between them
in G. There is no edge between 1 and 3, and there is an edge be-
tween v and f(§) if there is an edge in G between v and some
vertex on A1(A3)' We shall now apply Menger's Theorem - which is a
version of the max flow-min cut theorem, see Bollobas (1979), Theorem
I11.5(i) - to Gy(w). In the terminology of Bollobds, the number of
independent paths from 1 to 3 in QJ(w) equals the maximal number
of paths on Qd(w) from A] to A3 which are pairwise vertex-disjoint
on EW\A] U A3. In turn, this is precisely the maximal number of paths
on Gy in J  from A, to A, all of whose vertices in 3\\A] UA,
are occupied and which are pairwise vertex-disjoint on 5'\A1 UA,.

By Menger's Theorem this number equals the minimum of the cardinalities
of sets of vertices of QJ(w) which separate 1 from §_ (A set Vv

of vertices in QJ(w)‘\{T,§} separates 1 from 3 if after removal of
V there no longer exists a path from ! to 3 on Qd(w))' Let us
denote by L this minimum cardinality of separating sets. Now consider
the collection of all paths r* = (va,ef,...,es,vs) on G* which
satisfy

(11.23) r* CF\A] U As
and

[e] [o]
(11.24) vh lies on A,, v¥ Tlies on A4 .

Denote by M the minimal number of occupied vertices on any such path.
We shall use Prop. 2.2 to show that

L =M.

First pick a path r* which satisfies (11.23) and (11.24) and which
contains only M occupied vertices. If we modify w by making these
M vertices vacant, then r* becomes vacant and then by Prop. 2.2 there
is no longer a path on G in J from A] to A3 with all its ver-
tices in j\\A] U A3 occupied. Equivalently, removal of the M
occupied vertices on r* separates A] fromA A3, S0 Ehat the occupied
vertices on r* form a set which separates 1 from 3 in Qd(w),
whence L < M. Conversely, let V be a set of L vertices which
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separates 1 from 3 on QJ(w). View V also as a set of vertices
of Q1 and let w be the occupancy configuration obtained by making
the vertices in V vacant. Making the vertices of V vacant amounts
to removing them from QJ(w), i.e., QJ(&) _does not contain any vertex
from V. Since V was a separating set 1 and 3 are not connected
by a path on QJ(&). Therefore, in the configuration ®, A] and A
are not connected by a path on 61 in J with all its vertices on
3"\A] UA, occupied. By Prop. 2.2 this means that there exists a path
r* on G* which satisfies (11.23) and (11.24) and which is vacant in
the configuration &. Since @ differs from w only on the vertices
of V, it follows that r* has at most #V = L occupied vertices in
the configuration w. Thus, M<L and M= 1L as claimed.

3

So far we have shown that

(11.25) number of vertex-disjoint occupied horizontal crossings
on G of [0,m]x[0,n] in the configuration
> maximal number of paths on Qd(m) from f to 3,
such that no pair has a vertex in common in 3"\A] U A3
=L =M,

3

Thus, the left hand side of (11.25) can be less than C1(p-pH(Q]))

8 §
- 141 . I .
= C](p 2) n only if also M < C](p 2) n. Now note that A, 11gs

on or above the horizontal 1line Rx {n-1}. Therefore, M < C1(p-%0 1n
(¢}
can happen only if one of the (2m+3) vertices v* of A, is connect-
ed to the horizontal 1ine Rx{n-1} by a path on QT containing fewer
§
than C](p-%- 1n occupied vertices. Consequently
(11.26) Pp{maxima] number of vertex-disjoint occupied horizontal
crossings on Q1 of [0,m]x[0,n] 1is less than
§
1\71
C1(p——2—) n}
< (2m+3) max P _{ 3 path on Gy from v* to the
vk(2)<1 P
half plane Rx[n-1,») which contains fewer than

§

C](p-%J 1 occupied vertices}.
To estimate the right hand side of (11.26) we use a slightly strengthen-
ed verions of (5.48) or Lemma 1 of Kesten (1980b). For a closer agree-
ment with the notation of Lemma 5.4 we interchange the role of G and
G* as well as the role of "occupied" and "vacant" and the role of the
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first and second coordinate. Theorem 11.1 is then immediate from
(11.26) and the Proposition below. (Recall that pH(Q*) = 1-pH(Q) for
G=Gy or G, by Applications 3.4(iv) and (ii).) ]

Proposition 11.1. Let G be one of the graphs QO, Q], Qa or Qf
and let Pp be the one-parameter probability measure on the occupancy
configurations of G of the form (3.22) and specified by (3.61). Then
for some universal constants 0 < Ci’ 51 < o one has for any vertex

v of G with v(1) <0 and p < py=py(G)

(11.27) Pp{ 3 path from v to [n,°)xR on G which contains
§
fewer than CG(pH-p) ]n vacant vertices}

)
< 10 exp-C7(pH-p) n.

Proof: As in Lemma 5.4 we set for any vertex u of G and integer M

wn
1

0° SO(V,M) = {w a vertex of G:|w(j)-v(j)| <M, j= 1,2},

w
]

1 SO U aSO = {w a vertex of G: w ¢ S0 or w adjacent to
a vertex in SO} .

Instead of A(u,m) in (5.47) we now define for positive integers n
and k the event

A(v,n,k) = {3 a path on G from a neighbor of v toa w
with w(1) > n which contains at most k vacant
vertices}.

We repeat the definition of g from Lemma 5.4.

g(v,w,M) = Pp{ 3  occupied path (wo,e1,...,ep,wp) on G
with wOQv, W, ¢ SO(V,M) one of the w, equal
to w}

The principal estimate is the following strengthened version of (5.48)J)
For v(1) <n-M and k >0,

1 One could also use the argument of Lemma 1 in Kesten (1980b), which
avoids the use of the random set R. However, the present argument
ijs a closer parallel to Ch. 5 and needs essentially no new steps.
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(11.28) Pp{A(v,n,k)} < g(v,w,M)Pp{A(w,n,k)}

WES]%V,M)

+ Pp{A(w,n,k-])} .

WES1%V,M)
To prove (11.28) let E be the event

E = U A(w,n,k-1).
WES](V,M)

Clearly the second term in the right hand side of (11.28) is an upper
bound for Pp{E} so that we only have to estimate Pp{A(v,n,kY\ E}.
Assume then that A(v,n,k)\ E occurs and that r = (vo,e],...,ev,vv)
is a path on G with Vo adjacent to v, vv(1) >n and such that r
contains at most k vacant vertices. Since vv(l) >n > v(1)+M, v,
must lie outside SO(V,M) and there exists a smallest index a with
v, ¢ SO(V,M). Since Vo1 € SO(V,M) we still have v, € 85y < 1.
Since E does not occur (va+],ea+2,...,ev,vv) must contain more than
(k-1) vacant vertices (otherwise A(v,,n,k-1) would occur). But then
(vo,e],...,ea_1,va) cannot contain any vacant vertex, because r con-
tains at most k vacant vertices. Consequently with R defined as in
Lemma 5.4 v, € R. As in Lemma 5.4 let b > a be the last index with

a
vy € R. Then the path (vb+1,eb+2,...,ev,vv) has all its vertices
outside R, its initial point, Vb ® is adjacent to vy € R and its
final point vy satisfies Vv(1) > n. Moreover this path is a subpath
of r and therefore contains at most k vacant sites so that
A(vb,n,k) occurs. Thus, as in (5.49)

P {A(vo,n,k)\E} < J P {weR and 3 a path

P —-W€S1 p

(wo,f1,...,fp,wp) on G with wOQw, wp(]) >N, W ¢ R

for 0< i <p and at most k of the Wss 0<1i<p, are
vacant}.

One can now copy the argument following (5.48) practically word for word
to obtain
(11.29) P {A(v,n,k)\NE} < 7 g(v,w,M)P {A(w,n,k)};

P waS] P
one only has to replace "occupied path" in the definition (5.50) of J
by "path with at most k vacant vertices". The right hand side of

(11.29) is just the first sum in the right hand side of (11.28) so that
(11.28) follows.
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In order to exploit (11.28) we must now choose M such that
(5.51) holds. This time we must also keep track of the dependence of
M on p. But, for every v, w, M

g(v,w,M) < P_{some neighbor of v is connected by an occupied
path on G to BSO(v,M)} i_Pp{ 3 on occupied horizontal
crossing of [v(1)-M,v(1)-1]1x [v(2)-M,v(2)+M] or of
[v(1)+1,v(1)+M] x [v(2)-M,v(2)+M] +Pp{ 3 an occupied vertical
crossing of [v(1)-M,v(1)+M]x [v(2)-M,v(2)-1] or of
[v(1)-M,v(1)+M]x [v(2)+T,v(2)+M] ,

since any path from a neighbor of v to aSO(v,M) must cross either the
left or right "half", or the bottom or top "half" of SO(V,M). With the
notation of (5.5) we therefore conclude from Comment 3.3(v) and Lemma

8.3 that

(]1 .30) g(V ,W,M) _<_ ZT((M"T 3M"] ) ;] 3p)+2T((M_1 ’M"] ) ;2 9p)

a
< 4 exp-Cy3(py-p) (M-1) ]

Since 51(v,M) contains at most 2(2M+3)2 vertices of Q] we have

)2

lw

a
(11.31) g(v,w,M) < B(2M3)%exp=Cy4(p-p) (M-1) ' <

W€S1%V,M)
for

(11.32) M = Colpy-p)

for some suitable C8, which depends on C]3 only (C]3 is as in Lemma
8.3).

From here on the proof is identical with that of Prop. 1 of Kesten
(1980b). We choose M such that (11.32) and hence (11.31) hold. We
rewrite (11.28) as
(11.33) Py {A(Van k) < Zy h(vowyay )P {AGvH, a0 sk-y )0,

171
where w, runs over those points in the square [-M-1,M+1]x[-M-1,M+1]
for which v+tw; € S](v,M) and y, takes the values 0 or 1. Finally

1 if Yy = 1,
h(v,w;syq) =
g(v,vhwy M) if y, = 0.

Next we observe that
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PO{A(w,n,-l)} =0 if w(l) <n

since no non-empty path from w to [n,o)xR can have a negative

number of vertical sites. Consequently, by iterating (11.33) we obtain
for any 2> 1

(11.34) P {A(v,n,k)} < ) h(v,wysyq)
P WLy
1°71
wl(l)zp—M,y]gk

+ ) h(vowysy ) 1 h(viwgsw,sy,)
"9 M2:Y2
W-l (1 )<n‘M s.y'lf_k

. Pp{A(v+w1+w2,n,k-y]—y2)}

z(‘]) f]I h{vtw,+...+w w )
1 i-1%5%Y3
i=1

< ... <

J

N~

1

+

L= S

h(viw to oty qaweays) s

w](1)+--;;wt(1)<n-M i=1

for t<, and y]+--+y25k

where Z(j) is the sum over Wpa oWy s e with w](1)+...+wt(1)
<n-M for t<j but w1(1)+...+wj(1) > n-M and y1+...+yj < k.
Of course all sums in (11.34) are also restricted to Wi € [-M-T7,M+1]
x [-M-1,M+1], VH Tt € S](v+w]+...+w14,M) and y. € {0,1}. Next
we take

A = Tog 16+2 Tog(2M+3)

so that, by (11.31)

¢(A) := max ) h(u,w,y)e'ky
u u+waS](u,M)
ye{0,1}
< max ) g(u,u+w,M)+e—>‘2(2M+3)2

u u+we51(u,M)

Hlw

<

+2(2m+3)2e7 = %— .

For this choice of X



351

Z(j) % h(viw, oo HW, LW, LY. )
. 170 oY

i=1
J o -y,
5_ekk ) I {e 1h(v+w]+...+w._1,w.,y.)}
y;e{0,1} i=1 =i
v+w]+...+wieS](v+w]+...+w1_],M)
3 J
<eMem)d < ),
because y]+...+yj <k in Z(J). Similarly the last term in (11.34) is
at most
Ak 7,2
e (§?

Finally, observe that wi(l) < M+1, so that for v(1) <0, v(1)+w1(1)
+...+wj(1) > n-M can occur only for j 3_(n-M)(M+1)']. Consequently,
by virtue of (11.34)

PotA(vn,k)} < Tim e 1 (D) < e (D),
P R0 n-M

whenever v(1) < 0.

If we take

2/a
- N 90g 8~ L 10g(8 1 -1
k = =~lr)iog 3 {8C8 1og(7)(py-p)  "(-Tog(p-p)) "In, p4py »

then we find for v(1) < 0 and suitable C
3/a, : e, PPl

m3 < 100 < 1oy

Pp{A(van,Cqlpy-P)

is is i - =3 =2 -
This is just (11.27) w1th N o 8, o and suitable Cg, C;. []

11.3. Properties of resistances.

Before we start the proof of Theorem 11.2 we describe how the
resistance of a network is related to the resistances of the individual
edges. As we have done all along we assume that there are no loops
(i.e., edges whose endpoints coincide) in the graph. If v is a vertex
and e an edge incident to v then we write w(e,v) for the endpoint
other than v of e. R(e) 1is the resistance of the edge e. To find

the resistance between the sets of vertices AO and A] of a finite
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graph G one wants to find a potential function V(-) on the vertices
of G, which equals 0 on AO and one on A], and corresponding
currents through the edges. The size of the resistance between A0
and A] is then equal to the reciprocal of the total current flowing
out of AO. If v and w are the endpoint of an edge e let I(v,e)
denote the current flowing from v to w along e. Ohm's and
Kirchhoff's laws (see Feynman et al (1963), Sect. I.25.4,5 and 11.22.3,

Slepian (1968)) say that the potential and currents have to satisfy

(11.35) I(v,e) = -I(w(e,v),e),
(11.36) V(w(e,v))-V(v) = R(e)-I(v,e),
(11.37) 7 I(vie) =0 if v¢AQual,
e incident
to v

Finally, there is the boundary condition which we imposed
(11.38) V(v) = 0 if vead and V(v) =1 if ve AL

To discuss the uniqueness and existence of V and I assume
first that R(e) > 0 for all e. R(e) = » is allowed, in which case
we have to interpret (11.36) as

(11.39) I(v,e) = 0.

In this case (11.36) makes no statement about the potential difference
between the endpoints of e. However, if R(e) # 0 we can rewrite
(11.36) as

(11.40) I(v,e) = V(w(e,v))-V(v)

and substitution of (11.40) into (11.37) shows that (11.37) is equiva-
lent to
V(w(e,v))

1

(11.41) V(v) = cve Adual,

R(e)
1
R(e5

M ~1 (D~

where the sums in numerator and denominator of (11.41) run over edges
e incident to v. Therefore, w(e,v) runs over all neighbors of v
and (11.41) says that V(v) 1is a weighted average over the values of
V(-) at the neighbors of v. V(w)/R(e) and 1/R(e) are interpreted
as zero if R(e) = «=. Thus, V(v) is really an average of V(-) over
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those neighbors of v which are connected to v by an edge of finite
resistance. (If no such edges exist, then V(v) is not determined by
(11.35)-(11.37), but this will turn out to be unimportant.) It is well
known from the theory of harmonic functions that the mean value property
(11.41) implies a maximum principle; many of the proofs of this fact in
the continuous case can be transcribed easily for our situation (see
for instance Helms (1969), Theorem 1.12 and also Doyle and Snell (1982),
Sect. 2.2). We shall use the following formulation of the maximum
principle. Let C be a collection of vertices disjoint from A0 u A]
and let afC denote the set of vertices of w ¢ C which are connected
to a vertex in C by an edge of finite resistance. Then

(11.42) min V(w) < V(v) < max V(w)
wed C wed C
f f
for every vertex v in C which is connected to 3¢C by a conducting
path. Here, and in the remainder of this chapter, a conducting path
is a path all of whose edges have finite resistance. If we take for C
the set
Cb = set of all vertices outside A0 u A1 R

then (11.42) implies that there is at most one possible value for V(v)
at any v connected to A0 Ul by a conducting path (apply (11.42) to
the difference V'-V" of a pair of solutions to (11.35)-(11.39); v'-v*"
has to vanish on abe calu A]). The fact that there exists a solu-
tion of (11.38) and (11.41) is well known (see Slepian (1968), Ch.7)

and is also very easy to prove probabilistically, since V(v) can be
interpreted as the probability of hitting A] before AO when start-
ing at v, for a certain Markov chain (see Doyle and Snell (1982),

Sect. 2.7). Once we have V(-), (11.39) and (11.40) give us I(*). The
resistance R between AO and A] is then defined as the reciprocal
of the total current flowing out of AO, i.e.,

_ -1 _ V(w(e,v)) "}
11.43 R={) I(v,e)} = { } s
(11.43) ] 1vse) Ok

The sums in (11.43) run over all edges e with one endpoint v e AO
and the other endpoint w(e,v) ¢ AO. Note that the right hand side of
(11.43) is uniquely determined, despite the fact that V(w) is not
unique for a vertex w which is not connected to AO U A1 by a con-
ducting path. Indeed if w(e,v) is such a vertex, then necessarily
R(e) = » and the corresponding contribution to (11.43) is zero, no
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matter how V(w) 1is chosen.
There are some complications when we allow R(e) = 0 for some

edges. For such edges e (11.40) is no longer meaningful, and (11.36)
merely says

(11.44) V(w(e,v))-V(v) = 0.

In this case one can proceed as follows. Sum (11.37) over v e C for
any set C disjoint from A0 U A]. If one takes into account that for
v,w € C connected by an edge e the sum will contain I(v,e)+I(w,e)

= 0, one obtains
(11.45) } I(v,e) =0, CN (AO U Al) =9,
e

where the sum in (11.45) runs over all e with one endpoint v e C
and the other endpoint w(e,v) ¢ C. In words (11.45) says that the net
current flowing out of any set C disjoint from AO U A1 must equal
zero. Now define two vertices vy and Vo of G as equivalent iff
Vi = Vo Or vy and v, are connected by a path all of whose edges
have zero resistance (i.e., iff there is a short circuit between vy
and v2). Let C],Cz,... be the equivalence classes of vertices with
respect to this equivalence relation. By (11.36), or (11.44), all
vertices v 1in a single class C must have the same potential V(v).
We shall write V(C) for this value. Now form a new graph X by
identifying the vertices in an equivalence class. Thus X has vertex
set {C1’C2""} and the edges of X between Ci and Cj are in one
to one correspondence with the edges of G connecting a vertex of Ci
with a vertex of C.. From the above observations we obtain the follow-
ing analogue for (11.36)-(11.38).

(11.46) V(Cj)—V(Ci) = R(e)-I(v,e), when v ¢ C; is connected

to we Cj by e, i#].
(11.47) } I(v,e) = 0, wherever C; n (A0 U A]) = @ and the
e

sum is over all edges e with one endpoint v 1in Ci

and the other endpoint w(e,v) ¢ C; -

(11.48) v(C.)

; 0 when C; n AO 0

(11.49) V(C;) = 1 when ¢, N Al 49 .
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(11.35) remains unchanged, and (11.46) again is interpreted as (11.39)
when R(e) = =, Of course (11.48) and (11.49) can be simultaneously
valid only if there exists no Ci whicg intersegts both A0 and A].
However, this case can arise only if A” and A" are connected by a
path all of whose edges have zero resistance. (le shall call such a
path a short circuit between AO and A].) In this case the resistance
between AO and A1 is taken to be zero. If there is no Ci which
0 and A], then solving (11.46)-(11.49) just amounts to
solving on X the problem which we solved above for G. We merely
have to replace A0 (A1) by the collection of Ci which intersect
A0 (A]). Note that by definition of the Ci any edge from C; to
Cj’ i# j, has a strictly positive resistance. Thus, as before V(Ci)
is uniquely determined for any Ci which contains a vertex which is
connected to AO U A1 by a conducting path. For any choice of V(Ci)
we then find I(v.,e) for v e C;» @ incident to v, but with
w(e,v) € Cj with j # i. The resistance between A0 and A1 in G
can now be defined as the reciprocal of the current flowing out of the
union of all C. which intersect AO. In analogy to (11.43) this

i
becomes

intersects A

v(c.) -1

(11.50) {7 Hv,e)y ! = 4] ORI

where the sum is over all edges e, having one end point in some Ci
which intersects A0 while its other endpoint lies in some C. with
Cj N AO = @; in the left hand side v is the endpoint of e 1in Ci’
and C., 1in the right hand side is the class which contains w(e,v).
Just as in (11.43) the sums in (11.50) are uniquely determined.

Even though (11.50) does define the resistance between AO and
AT, when R(e) can vanish for some edges e, it would be more intuitive
if one could use the middle expression in (11.43) to define the resis-
tance, also in the present case. This is indeed possible, but some more
observations are required to see this. The currents between a pair of
vertices in the same Ci have not yet been determined, and in fact are
not uniquely determined by the equations (11.35)-(11.38). If there are
several paths of zero resistance between two vertices there is no reason
why the current should be divided into any particular way between these

paths. However, there do exist solutions to (11.35)-(11.38). We merely
have to take



356

(11.51) V(v) = V(Ci) when v ¢ Ci »
where V(Ci) satisfies (11.46)-(11.49). Then (11.38) is automatically
true. Next define

vV(C.)-Vv(C.)
(11.52) I(v,e) = V(w(eézg%-v(v) = ( %(e)( L when e is an

edge with endpoints v ¢ C1 and w(e,v) ¢ Cj with 1 # j.

(11.52) makes sense since R(e) # 0 for an edge e with endpoints in
different C, and Cj' (11.51) and (11.52) gquarantee that (11.36)
holds, no matter how we choose I(v,e) for an edge e with both end-
points in the same Ci and (11.35) is already satisfied for v and
w(e,v) in different C and Cj. We now merely have to choose I(v,e)
for edges e with both endpoints in one Cso in such a way that (11.35)
and (11.37) hold. (11.37) can be written as

(11.53) N I(v,e) = - ) I(v,e),
e such that e such that
wle,v) e C; wie,v) ¢ o

for v e Ci\AO UA1 s

for all Ci which contain at least two vertices. The right hand side
of (11.53) has already been determined in (11.52). To satisfy (11.35)
we choose for each edge e with endpoints v, w 1in Ci one of the
endpoints as the first one, v say. Then we take I(v,e) as an inde-
pendent variable and set I{(w,e) = -I(v,e). Then for each C; which
0y A] the expressions obtained in the left hand
side of (11.53) as v ranges over Ci’ contain each independent

does not intersect A

variable exactly twice, once with coefficient +1 and once with coef-
ficient -1. Thus, the sum of the left hand side of (11.53) over v
in Ci vanishes. The same is tgue f?r the sum of the right hand sides,
by virtue of (11.47) if C; N (A" UA") = @. By induction on the number
of variables one easily sees that (11.53) has at least one solution
which satisfies (11.35), and (11.37). 1If C; intersects AO U A],
then rewrite (11.37) or (11.53) as
(11.54) ) I(v,e) = - ) I(v,e)
e such that e such that
w(e,v)ec,\ Aun! w(e,v)eC,



357
i ) I(v,e), ve ¢\ (A% U AT).
e such that
w(e,v)aCiﬂ(AOUA1)

The above argument used for (11.53) now shows that (11.54) has a solu-
tion satisfying (11.35) if and only if the sum of the right hand sides
of (11.54) over v ¢ C.\(A0 U A1) vanishes, i.e., iff we choose

I(v,e) for v e Ci\\A U A], and w(e,v) € C, n (A0 U A]) such that

(11.55) - ) ) L(v.e)
VECi\\(AOUA]) e such thag 1
w(e,v)eC,N(A"UA")
) ) ) I(w,e)
chin(AOUA1) e such that

v(ew)eC,\ (A0l

= ) 0 1 % that ).
e such tha
veC.\ (ALA7) w(e,v)¢C,

Thus we can always solve (11.35)-(11.38), and any solution has to be
chosen such that (11.55) holds.

Now that we have shown that there is a solution to (11.35)-(11.38)
we can show that the left hand side of (11.50) equals the middle expres-
sion in (11.43) by the following general argument. Let &8 be any set
of vertices which contains A0 and is disjoint from A1. We claim
that for any such &

(11.56) R={]g I(v,e)}! = {EAO I(v,e)} ,

where Zﬂ runs over all edges e with one endpoint v € & and the
other endpoint w(e,v) outside 8. In accordance with this notation,
the last member of (11.56) is just the middle member of (11.43)

fﬁ I(v,e) represents the current flowing out of 8. To prove (11.56)
we apply (11.45) with C = S\\AO. By our choice of #, C 1is disjoint
from A0 UA'. (11.45) can now be rewritten as

(11.57) 21 I(v,e) = - Z1I(w(e,v),e) = 22 I(v,e)

0

where Z] runs over all edges e with one endpoint v in A~ and the
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other endpoint w(e,v) in ﬂ\\AO, while J, runs over all edges e
with one endpoint v in ﬂ\\AO and the other endpoint w(e,v) outside
8. Now add to both sides of (11.57) the sum 23 I(v,e) over all edges
e with one endpoint v in A0 and the other endpoint w(e,v) outside
8. Then

21 I(v,e)+23 I(v,e)
js just the sum in the middle member of (11.43). On the other hand
22 I(v,e)%-X3 I(v,e)

is just Jg I(v,e), so that (11.56) follows.

We return to (11.50). Take 8 =U Ci where the union is over
all Ci whicg interseﬁt AO. We ruled out the case in whgch some 1Ci
intersects A~ and A'; we took the resistance between A” and A
zero in this case. With this case ruled out we see that 8 = U Ci is
indeed disjoint from Al so that (11.56) applies. But for this 8,

Zs is just the sum in the left hand side of (11.50). Thus the middle
member of (11.43) can be used to define R, even if R(e) can vanish
for some e (as long as there is no short circuit between A0 and A1).

It is worth pointing out that for a finite graph G the above
definition of R implies

(11.58) R=0 if and only if there is a short circuit
between AO and A]

and

(11.59) R= if and only if there is no conducting path

from A0 to A1.
(11.58) is immediate from (11.56), since we have taken all currents
finite, as long as there is no path from A0 to A] with all its edges
of zero resistance. For (11.59), assume first that
r= (vo,e],...,ev,vv) is a conducting path from A” to Al, i.e.,
with Vg € A~ v, € AO. By going over to a subpath we may assume
Vi ¢ A0 U A1 for 1 <14 <v-1. Of course r is also self-avoiding.
Then X{V(v1+1)-v(vi)} = V(vv)-v(vo) =1 by (11.38)). Thus for some
J V(vj+])—v(vj) > 0, and since R(ej+1) < o also I(vj,e.+]) > 0.
If we take 8= A, U {vo,...,vj} then the middle sum in (11.56) con-
tains the term I(vj,ej+]) > 0, so that R <« ., Conversely, if

R < o, take ® = AO0"U {v: v is connected to p0 by a conducting path}.

0
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Then 8 must contain a vertex on A]. Indeed all edges e with one

endpoint v in 8 and the other endpoint w(e,v) outside 8 must have
infinite resistance (otherwise we should add w(e,v) to #8). But then
Z@ I(v,e) = 0, which contradicts R < =, unless #® N A1 # @. But ®
intersects A] if and only if there is a conducting path from A0 to
Al. This proves (11.59).

With these preparations it is not hard to prove the following four
lemmas. The first two and the fourth lemma are intuitively obvious
from their electrical interpretation and reading of their proofs should
be postponed. In all four lemmas we take the assignment of resistances
to the edges as fixed, i.e., non-random.

lemma 11.1. Let G be a finite planar graph and R the resistance
between two disjoint subsets A0 and A1 of G. Assume that € is

an edge of G such that 30 is surrounded by a circuit
r= (vo,e],...,ev,vv) (with v # v

i’ i# j, except for Vo = Vv) with

R(ei) =0, 1<i<v,

and such that AO U A] contains no vertex in the interior of r. Then

R is unchanged if R(eo) is replaced by zero.

Proof: As before we may exclude the case in which AO and A1 are

connected by a path of zero resistance. In that case R =0 and this
is even more true when R(e) 1is set equal to zero. Thus in this case
there is nothing to prove. In the other case let V(r) be the poten-
tial at v when all vertices of a0 (A‘) are given the potential zero

0 and A1
on the graph X obtained by identifying vertices in a single equiva-

(one). R can then be calculated as the resistance between A

lence class Ci all of whose vertices are connected by paths of zero
resistance; see the argument preceding (11.50). By assumption all
vertices on r will belong to one such equivalence class, say C;

Moreover, the vertices inside the circuit r either belong to C, or

;
0
to some Cj which can be connected to AO U A1 only via Ci (by the
planarity of G). Let C. ,...,C; be the classes other than C,
1 I 0
which contain vertices inside r. Then all vertices of G in
A
U Cj lie in int(r). The boundary on X of the set of vertices
o=1 Yo

. seeesCo
{c i

; } of ¥ 1is the one point Ci (see Def. 2.8). By the
1

A 0
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maximum principle (11.42) applied to X it follows that

(11.60) V(C, ) = v(c, )

for all Cj which are connected to Ci by a conducting path,
o 0
1 <o <A . Weshall now show that this implies that R 1is unchanged

if all vertices in the interior of r are removed from G. Then
Ci]”"’cix are removed from X, and CiO becomes the class of ver-
tices on r or outside r, but connected to r by a path of zero
resistance. To see that this removal does not effect R note that
(11.46)-(11.49) remain satisfied with the values of V(Ci) and I(v,e)
unchanged as long as i and Jj are restricted to the complement of
{j],...,jx}, and of course e such that its endpoints v and w do
not belong to the interior of r. This is so because an edge from some
V e Ci with 1 ¢ {j],...,jx} and v ¢ int(r) to some w e int(r)

can exist only if v 1is a vertex on r and hence v ¢ Ci . In this

0
case I(v,e) 1is zero anyway, either because R(e) = «» , or by virtue

of (11.60). Thus the term corresponding to e be dropped from (11.47)
without changing the left hand side of (11.47). But, then the right
hand side of (11.50) does not change either when the vertices inside r
are removed, again because Cj ,...,Cj do not contribute to the sum

1 A
in the right hand side of (11.50). Indeed if Cj contains a vertex

a
w connected to some Vv e AO by an edge e and Cj n A0 =@, then v
a

must belong to Ci , and V(Ci ) =0 by (11.48). The term
0 0
V(Cj ) /R(e) again vanishes, either because R(e) = » or because of
ol
(11.60). Thus R 1is indeed unchanged if all vertices in the interior
of r are removed, and this has been proven without any reference to
the value of R(eo). Since € is no longer part of the network after

removal of the vertices in 1int(r), the value of R 1is independent of
R(eg) - L1

Lemma 11.2. Eg} G, AO, A1 and R be as in Lemma 11.1, and let

C] = AO U A1 U {v e G:v is connected to AO

conducting path} .

by a

Then R s unchanged if we replace R(e) by infinity for each edge e
which does not have both endpoints in C

1
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Proof: Since the current is zero in any edge with infinite resistance,

the right hand sides of (11.43) and (11.50) involve only the values of
V(iw) with we C, - terms which do not involve such w give zero
contributions. It therefore suffices to show that V(*) is uniquely
determined on C], and that its values on C1 are unchanged if we take
R(e) = » for each edge e which does not have both endpoints in C].
Let us first assume R(f) > 0 for all edges f. Then the restriction
of V(-) to C1 satisfies (11.41) and (11.38) on C}. Moreover, for
Ve C], an edge e 1incident to v only gives a non-zero contribution
to the sums in the right hand side of (11.41) if its second endpoint
w(e,v) also lies in Cﬁ. Consequently we can view the restriction of
V(-) to C] as the solution for the potential on the graph Q]c1 say,

whose vertex set is C] and whose edge set is the set of edges of G
between two points of C]. Under (11.38) this problem on Q]c has a
1

unique solution for the same reasons as in the original problem on G.
(Note that the maximum principle (11.42) only involves edges of Q]c
)

when CcC C].) Thus V[C does not change if we change the resistance

of edges which do not have both endpoints in C}, provided we do not
change C,. In particular C] does not change if we set R(e) =
for some of these edges. This proves the Temma if all edges have a
strictly positive resistance.

To prove the lemma when some R(e) may vanish we merely have to
apply the preceding argument to the graph ¥ whose vertices are the
equivalence classes Cj introduced after (11.45). (Note that if Cj
has any point in Cj, then C, <C.) ]

For the next lemma we remind the reader that as a planar graph,
Z° has a dual graph, (Z?)d (see Sect. 2.6, especially Ex. 2.6(i)).
(22)d can be thought of as the graph with vertices at 01+;,J-+2),
i,jeZ, and (1 ,31 JZ)’ (1 i, ;,32 2) connected byzan edge if
and only if [1 |+IJ] JZI = 1. Each edge e* of (Z"), inter-
sects exactly one edge e of Z~ and vice versa. If e and e* are
associated in this manner we shall assign to e* the resistance
S(e*) = 1/R(e). In this way, each assignment of resistances on Z
induces a unique assignment of resistances on (Z?)d. Finally, let
R([a],az] [b1,b 1 (S([a],azj [b],b ])) be the resistance between
the left and right edge (top and bottom edge) of [a],az] [bl’b 1 of
the network consisting of the edges of Zﬁ ((Z.) ) in [a],az] [b],b ].

2

2
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Lemma 11.3 which is taken from Straley (1977) gives a duality relation
2

between resistances on Z~ and (Zz)d.
Lemma 11.3. If S(e*) = 1/R(e) for all pairs of edges e of z°  and

e* of (Z?)d which intersect, then for integral a; < a,, b] < bz,———

(11.61) R([a],az]x[b],sz) = {S([a Zsa ] [b 2 b2+2])}

Proof: For the time being assume

(11.62) 0 < R([a],az]x [bysby]) < .

Let V(v) denote the potential at v and I(v,e) the current from v
to w(e,v) along e in the network consisting of the restriction of
Z? to [a],a2]><[b1,b2] when all vertices on A0 = {a]}x [b1,b2]

1 .. {az}x [b],bz] are
given potential one. As explained, V(:) and 1I(-,-) have to satisfy
(11.35)-(11.38) on [a],a2]><[b1,b2]. Even though this may not uniquely
determine V and I, R([a1,a2]x [b1’b2]) is uniquely given by (11.43),
with G = restriction of 7% to [a],a2]><[b],b2]. We first extend
V(-) also to the points [a1+1,a2—1]><{b1—1} and [a]+1,a2—1] X{b2+1},
just below and just above [a],az]x [b1,b2]. We do this by setting

are given potential zero, and all vertices on A

(11.63) V((i,by-1)) = V((1,by))s V((i,by*1)) = V((i,b,)),

a]+1 < i 5_a2+1 .

To maintain (11.35)-(11.37) we also set
(11.64) I(v,e) = I(w,e) = 0 when v = (1,b]—1), W= (i,b1)

or v = (i,b2+1), W = (i,bz), and e the edge between
v and w.

Now et e and e* be a pair of edges of lz

and (Zz)d, respec-
tively, which intersect in their common midpoint m. Let the endpoints
of e be v and w. When e is rotated counterclockwise over an
angle g-, then e goes over into e*. Let v (w) go over into
v* (w*) under this rotation (see Fig. 11.2 for some illustrations).

1 1 1 1
We then set for e* C [al +§,a2 - 7] X [b] - ?’bz +2~]
(11.65) J(v*,e*) = -J(w*,e*) = V(w)-V(v)

(11.66) W(w*)-W(v*) = I(v,e),
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v* w

Figure 11.2

(11.67) W(v*) = 0 for v* = (1'+;—,b —l), 3 <i<a

177 -1

2

We claim that (11.65)-(11.67) define a potential W and current
2 . 1 1 1 1
J on the network (Z )d restricted to [a1 58, ~-2—]>< [b] --2—,b2+~2—].
Moreover
0 on [a +la -l]><{b —l}
122 2 1 2

and w(-)——]R— on [a1+%~,a2-—]2~]><{b2+—;~},

n

(11.68) W(+)

where R = R([a],az]x [b1,b2]). To substantiate this claim we must
first show that (11.66) and (11.67) are consistent and define the func-
tion W(:) wunambiguously. First, we obtain from (11.64) that if e*
is the edge from v* = (1'1 —;_—,b] —%—) to w* = (1'] +Ji’b1 -;—) which
intersects the edge e from v = (‘i],b]—1) to w (1‘1,b]) then
I(v,e) = 0. Hence (11.66) tells us to take W(w*) = W(v*) 1in this
case. This is in agreement with the constancy of W(:) on

[a] +]2—,a2—;—]x {b] ——;—} as required by (11.67). Next we must verify
that if r* = (va,ef,...,e\”;,vs) (with vE = va) is a simple closed

2 . 1 1 1 1
path on (Z )Cl restricted to [a1 58, - 5] x [b] - -2—,b2+§], then

v-1
1_ZO{W(v;?H)—w(v;!‘)}

as defined by (11.66) indeed has the value zero. In other words, if
v (V’TFH) is the image of v, (Wi) after rotating the edge €
from vy to W, counterclockwise over 121 around the common midpoint

of e;.*ﬂ and e, then we must show

i+1°
v-1
(11.69) 120 I(vi»e5,q) = 0.
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Once we prove this we can define W(v*) as

A-1
(11.70) W(v*) = X WvE ) -W(vE)} = ] I(vw.)
i+] 520 1271
for any path (v s,eT, ..,ei,v;) in [a 2,a2 2] [b 2-+%J with

v on [a 2,a2 2]><{b]-%& and v§ = v*¥; all the sums in (11.70)
will have the same value. To prove (11.69) whenever r = (vﬁ,e*,...,es,vs)
is a simple closed curve is easy. Since the interior of r* is the

union of a f1n1te number of unit squares of the form (c—;_—,c+-;—)
x (d -5 ,d+ ) it follows from standard topological arguments (see
Newman (1951) Ch.V.1-V.5, especially Theorem V.21) that it suffices to

verify (11.69) if r* describes the perimeter of such a unit square.

Thus, it suffices to take v =4, v§= vy = (c-5,.d 2), vy = (c+-;, -%),
1 1 1 1
V5 = (c+§,d+-2‘), Vi = (c- 2,d+2) (see F1g 11. 3) and e*ﬂ the edge

from v? to v$+]. However, in this case e* +1 is obtained by rota-

ting the edge €4 from v to W, counterc1ockwise over %3 where

3
VX v;
Wy v W,
V6 v¥
"

Figure 11.3

v = (c,d), and Wys...sW, runs over the four neighbors of v. Thus
(11.69) reduces to
) I(v,e) =0,
e incident
to v on Zz

which is just Kirchhoff's Taw (11.37). Thus (11.69) holds, and W(-)
is well defined. It satisfies the first relation in (11.68) by virtue
of (11.67). The second rotation in (11.68) is verified as follows.
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- (i +1lp +1 i ,b,+]
For v* = (11-+2,b2-+2) and e; the edge from (i,,b,+j) to

(i,+1,b,+j) we obtain from (11.70)

1 1
by-by

(11.71) M(ve) = T I((igbp+)se)
j=0 ;

which is the total current flowing from left to right through the seg-
ment C = {i]}x [b],bz] in Z@IY[a1,a2]><[b1,b2]. This is precisely
1/R  when 11 = ay, by definition of R (see (11.43)). However, (11.45)
shows that if ej denotes the edge from (11,b1+j) to (1]-1,b]+j),
then

bz-b-| bz-b]

T oI((i,sbq*ti)se.)+ ¥ I((iy.b+i),el) =0, a; < i, < a,.
PR e EE s LREUAER i 151 %

Since by (11.35) I((i],b]+j),eé) = —I((i]—l,b+j),ej) this says that
(11.71) has the same value for all a, 5_11 < a,. (Intuitively, this
merely says that the total current flowing into C from the left equals
the total current flowing out to the right from C.) This proves (11.68).

It is also obvious that

WOr(e%,))-W(v*) = T(v,e) = LGNV = s(en)g(ve,e),

when e* intersects e by (11.66), (11.36) and (11.65), provided

R(e) # 0. Thus in this case W and J satisfy the analogue of (11.36).
If R(e) = 0 then S(e*) = «» and in this case the analogue of (11.36)
requires J(v*,e*) = 0 (see (11.39)). This is also satisfied, since
R(e) = 0 implies V(w(e,v))-V(v) = 0 by (11.36) and then J(v*,e*)=0
by (11.65). Thus W and J satisfy Ohm's law. Finally, we must
verify Kirchhoff's law for J, i.e.,

(11.72) ) J(v*,e*) = 0, for
e* incident

to v* on (Z7.2)d
1 1 1
v* € [a]+§,a2-2]><(b] +aby - ).
If vt = (c+ld+g) with a; < c<a,, then by (11.65), (11.72)
simply reduces to the relation

il

3

where Vo= Vg = (c+1,d), vy = (c,d), Vo = (c,d+1), Vg = (c+1,d+1).
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This relation trivially holds since Vo.© v4. If c¢= ays then there
is no edge in our network between (c+;—,d+~—) and (c—%—,d+%—). Thus
the term {V(vz)—V(v])} = V((c,d+1))-V((c,d)) = V((az,d+1))-v((a],d))
has to be dropped from the last sum. However, this term is zero anyway,
by virtue of (11.38). Thus (11.72) remains valid even when ¢ = a;s

and a similar argument applies when ¢ = a. Thus J and W satisfy

the analogues of (11.35)-(11.38) as desired. ((11.35) is trivial from
(11.65).) Thus RJ(-) can be taken as the current in

(Zz)dn [a +%,a2-%]><[b ; » 2] when the potential on

1 .
[a 2,a2 2]>< {b] —7} is set equal to zero and on [a 2,a2 2]
x {b, + -2—} equal to one, and when e* has resistance S(e*) = 1/R(e).
Consequently, by the definition (11.43) and (11.65)

S([a *+ 53, - 51 % [by = b, +51)

U] RI(F+g.by =5, (i + by +1))1]
a,<i<a,

1T (Vb)) -V ,by )Y

a;<i<a,

—t

il

-1

—R—{V(azsb])—v(a'l sb])}
Since V was taken zero (one) on {a]}x [b1,b2](a2x [b],sz) this
proves (11.61) whenever (11.62) holds.

By (11.58) the case R([a],az]x [b],bz]) = 0 occurs if and only
if there exists a path r = (v 02672+ - 28,V ) on z° ﬂ[a],a 1x[b ,b2]

0 1 vy . 2 1
from A° to A such that R(e ) = O for all 1 <i <v. Let &
be the part of [a 2,a2 2] [b 2+-;—] below r. Each edge of

1 1 .
(z )y N lag+ 738y - 2] x [by - 2 b, +5] leaving & has to be an edge ex
which 1ntersects some e, » 1 <1 < v, and therefore has (e*)
Thus, no current can 1eave & in the network (22) n [a

] ; 2’a2 2]
X [b -5 2+-2~]. Thus by (11.56) applied to this network

S([ay + 4.2y - 51 x [by - guby +31) = = Thus (11.61) also holds if R = 0.
FmaHy, if R([a] ,az] [b.I ,b 1) = =, then by (11.59) there is
no conducting path from A0 to A] in [a],az] [b] ab, ]. By Prop.

2.2, or somewhat more directly by Whitney's theorem (see Smythe and
Wierman (1978), proof of Theorem 2.2) it follows that there is then a
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path r* on (Zﬁ)d n [a] 2,a2 2] [b 2 2] all of whose edges

have zero resistance and which connects the bottom edge [a 2,a2 ;
1 . 1

x {b1"§} with the top edge [a 2,a2 2]x {b2-+?-. (Prop 2.2 is

somewhat clumsier than Whitney's theorem here, because it requires

transference of the problem to the covering graph.) The existence of
r* shows that S([a]-+%3a2 —%J><[b1-%3b2-F%J) = 0. This confirms

(11.61) 1in the last case. ]

The reader probably does not need to be reminded that when two
vertices v' and v" are connected only by a path
(v' = v AL ERERE LN N v") then the resistance between v' and v"

is 2] R(ei). (The resistances R(e]),...,R(ev) are in series in this
case; see Feynman et al (1963), Sect. I1.25.5 and 1I.22.3.) Also, if

v' and v" are connected exactly by k paths ryseeoly which are
pairwise disjoint (except for the common endpoints v' and v") then
these paths form parallel resistances. If the edges in r. are {e..},
then the resistance of rs is ; R(eji) and the resistance between
v' and v" s

-1,-1
(] 4 Rlegi)y ™)

(see Feynman et al (1963), Sect. I.25.5 and 11.22.3).

Finally we make repeated use of the following monotonicity
property.

Lemma 11.4. If R, (e) and Rz(e) are two assignments of resistances

to the edges of Q and R], R2 the corresponding values of the resis-
tance between A0 and A], then

(11.73) R1(e) < Ry(e) for all e implies Ry < R,.

Proof: Despite its intuitive content, we have no intuitive proof of
(11.73). A quick proof for (11.73) when

(11.74) 0 < R](e) 5_R2(e) for all e

can be found in Griffeath and Liggett (1983), Theorem 2.1. It is based
on the fact that under (11.74) the expression

V; (w(e,v))

-1
(Ri) - E : R(e



368

given in (11.43) for the reciprocal of R. can also be written as

(11.75) Lmin 3 40 V) h{w . 1,2.
h eeG

no|

Here Vi(') is the potential function corresponding to the resistances
Ri(e), v and w denote the endpoints of e, while the min 1in (11.75)
is over all functions h from the vertex set of G into [0,1] which

satisfy

0 1

h(v) =0 if veA’, h(v) =1 if weA .

(11.75) is usually called Dirichlet's principle. Its proof works as
long as all edges have a strictly positive resistance; edges with
infinite resistance do not cause difficulties. Clearly, (11.73) follows
immediately from (11.75) whenever (11.74) ho]ds]). When R](e) and/or
Rz(e) can be zero we have to use a limiting procedure. Let

RE(e) = R(e)+e, R?(e) = Ri(e)+e

and denote by RE, R? the corresponding resistance between A0 and

Al. Then by (11.73) R} < RS forall &> 0. It therefore suffices

to show that

(11.76) REyRO =R as ev0.

(11.76) 1is very easy if there exists a short circuit between A0
and A]. For in this case we defined R as zero, while

R® < ¢ (number of edges in any path from A0 to A] all of

whose edges have zero resistance)

(apply (11.73) with R](e) = R®(e) and R2(e) = R®(e) for e belong-
ing to some short circuit between A% and A and Rz(e) = o otherwise).
For the remainder of this lemma assume that there is no short

circuit between AO and A]. Observe that by the maximum principle

(11.42) 0<V5(v) <1 forall v in the set C, of Lemma 11.2. (Of
course V€ and If denote the potential and current when Rs(e) is

1) An alternative approach to (11.73) is via Thomson's principle, which
is a dual to Dirichlet's principle (see Doyle and Snell (1982),
Sect. 2.9). This works well as long as all edges have finite
resistance. In this approach one has to prove an analogue of (11.76)
as resistances increase to .,
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the resistance of e, and the boundary condition (11.38) is imposed.)
Note that Cﬁ is the same for all € and that we showed in the proof

of Lemma 11.2 that R® 1is determined by V]C . Now let ¢_ be any
1

n
sequence decreasing to 0. Since V?c is uniformly bounded we can
1

pick a subsequence (which for convenience we still denote by {en})
such that Vﬁc converges to some function V on C] as € runs
1

through the subsequence {en}. If e 1is any edge with Ro(e) = R(e)
> 0 and its endpoints v and w in CH, then

£ n n

I "(v,e) = V '(w)-V T (v)
€
R "(e)

(see (11.40)) also converges to some I(v,e) and

V(w)-V(v) = R(e)I(v,e).

The main difficulty is to show that

(11.77) V(w(e,v)) = V(v) if R(e)=0and vec, .
This does not follow from the above arguments but comes from the follow-
ing separate argument. Let Ci be an equivalence class of vertices,
i.e., a maximal class of vertices which are connected by paths of zero
resistance (see the text following (11.45)). Either C; © C1 or Ci

is disjoint from C], by definition of Ci and C]. We are interested
in the case with C, <C, and #. > 1. Let ve C,\ (A UAT) and
write (11.41) for V& as follows

1 VE (e,
VE(v) = ¢ lg V(e + ) “reyie

] 1
Lot 11 rie)we

b

where ZO is the sum over edges e incident to v with R(e) = 0
(and hence R%(e) = €) and z] is the sum over edges e incident to
v with R(e) > 0. By letting e run through the sequence {en} we
obtain - whenever #C. > 1 and hence ZO nonempty -

(11.78) V(v) = Lo Vinte.v)) ,ve e\ (A ual).

Lo!
Thus on Ci\\(AO U A]) V(v) is the average over its neighbors connect-
ed to v by an edge of zero resistance. Of course, all these neighbors
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have to belong to Ci as well, by definition of C fow assume that
Ci is disjoint from A10 and that V achieves 1ts maximum over C

it Vg € Ci' If vgeA thgn V(vo) =0 (by (11 38)) and hence

V(i) =0 on C;. If Vo ¢ A”, then by (11.78) V(w) = V( 0) at each
point w which is connected to Vo by a path of zero resistance. Thus
also in this case V( ) has the constant value V(VO) on C The

same arcument with min V( ) replacing max V(v) works when C. is
VEC veC 1

disjoint from AO. In the last possible case when Ci intersects AO
and A1 we already proved (11.76), so that this case does not have to
be considered. We have therefore proved (1] 77) and (11.76) follows
quickly now. Indeed, (11.77) shows that V is constant on any C If
we denote this constant value by V(C ), then one immediately sees that
Vv and I must satisfy (11.46)-(11. 49), at least when we restrict
ourselves to Q‘c] as in Lemma 11.2. These equations have the unique

solution VIC . Thus Vlc = VIC and (see (11.50))
1 1

(11.79) R

"
e
~1
P
P
[¢>)]
t

where the sum is over all edges e of Q|c having one endpoint in
1

some Ci which intersects AO while the other endpoint lies in a C,.
which is disjoint from AO. The fact that we may restrict the sum to
edges of Q]C is in the proof of Lemma 11.2. But also, by (11.56)

1

with &= a0y {C;:C; intersects A%}, we have
1> € -1
(11.80) RE = {7 ¥ (W(e;v))-v v) 4
R (e)

where the sum runs over all edges e of Qlc with one endpoint v

in some C; which intersects AO, and the other endpoint w(e,v) in a
Cj which does not intersect AO. Again the restriction to edges of

Q{C rather than G makes no difference. Now let e - 0 through
1 €

the sequence e . V M(v) converges to V(Ci) = V(Ci) =0 if v be-
€ ~

longs to a C, which intersects AO, and V "(w) ~ V(Cj) = V(Cj) if

we C.. Moreover R(e) >0 for each e appearing in the right hand

side of (11.80). Thus, the right hand side of (11.80) converges to the

right hand side of (11.79). This proves (11.76) and the lemma. L]
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11.4 Proofs of Theorems 11.2 and 11.3.

We remind the reader that Bn = [0,n]x[0,n], Ag = {0} x [Q,n],
A’]] = {n}x[0,n] and R, is the resistance of % N B, between Ag
and A; .

Proof of Theorem 11.2. To prove (11.9) recall that, by (11.58), R = 0
as soon as there exists any path on H@ n Bn from Ag to Al all of
whose edges have zero resistance. The probability of this event is at

least equal to

Pp(O){ 3 occupied horizontal crossing on q] of [0,n] x [0,n]}

= 0’((“,“); ]ap(o) ’q1)’

as one can see from the relation between bond-percolation on 12 and
site-percolation on its covering araph Q] (see Comment 2.5(iii) and
Prop. 3.1). By (7.14) and the definition (3.33) this shows

P{R, = 0} > T-o*((n+21,,n-24,)32,p(0)3G;)
= ]'G((n+2A4,n‘2A4) ;zs]'p(o) ;Qf)

for some constant Ay = A4(Q1). Finally p(0) > %—= pH(Q]) is equiva-
lent to 1-p(0) < 5 = p,(G%) = pr(G¥) (see Application 3.4 (ii)). Thus
by Theorem 5.1 (see also the end of proof of Lemma 5.4)

-C,n

a(n+2hy,n-21,,2,1-p(0),G¥) < C,(2n+4n,)e 2

for p(0) > %—. (11.9) follows from these estimates and the Borel-
Cantelli lemma (see Renyi (1970) Lemma VII.5A).

The proof of (11.10) is very similar. By (11.59) Rn = « Wwhenever
there does not exist a conducting path on 22 n Bn from AS to A; .
Again by the relation between bond-percolation on ZZ and site-percola-

tion on Q], as in Comment 2.5(iii1) we get from this
PIR, = =} > 1-0((n-2,n+2)); 1,1-p(=),G;).

For T1-p(x) < %—= pH(Q]) = pT(Q]) we again get from Theorem 5.1

—C2n
P{Rn = o} 3.1—C]e



372

An application of the Borel-Cantelli lemma now proves (11.10).
For the upper bound in (11.11) we shall use Theorem 11.1 and
Lemmas 11.1 and 11.4. Note that the procf below works just as well if

Bn is replaced by [0,n]x[0,n-m] and Ag by {0} x[0,n-m]7, Al by
{n} x[0,n-m] for any fixed integer m. This will be relevant for the

proof of the lower bound in (11.11) later on. Now let M be some large

integer and assume we can find k paths r1,...,rk in [0,n]x[M,n-M]

c Bn from Ag to A; such that R(e).< © for each edge e appearing

in any of these paths, and such that r' and rJ have no edge in
common. By Lemma 11.1 we do not change R, if we replace R(e) by

p-

0 if e is surrounded by a circuit r or
- 7112 which Ties 1in Bn and all of whose
: edges have zero resistance,

R(e) otherwise .

.

After this replacement, RV := resistance of the path rj equals

7 R(ed),

: i

3
where e%,e%,... are the successive edges in rd (see the lines pre-
ceding Lemma 11.4). But the paths r1,...,rk are almost parallel

resistances between Ag and Al. They can fail to bg parallel because

the paths can intersect in vertices. If two edges eg and eﬁ have

an endpoint v in common we can think of this as a link of zero

resistance between an endpoint of eg and ei. Removing the link is
equivalent to giving it infinite resistance. By Lemma 11.4 this removal

can only increase the resistance of the network. Thus R _ has at most
the value of the resistance of the network consisting of k parallel

resistances r],...,rk, i.e.,

Since the harmonic mean of positive quantities is no more than their
arithmetic mean (by Jensen's inequality; cf. Rudin (1966), Theorem 3.3),

and since all eg are distinct and contained in [0,n] x [M,n-M] and

have finite resistance (by our choice of r1,...,r ), we obtain

,k Lok
(11.81) Ry<— IR == T JR(ej)
k® j=1 k® j=1 i
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< ) R(e)IIR(e) < =] .
k= e<0,n]x [M,n-M]

Finally, denote by m(e) = (m](e),mz(e)) the midpoint of the edge e,
and by I(e) = IM(e) the indicator function of the event

{e does not lie inside any circuit on 22 made up of edges
with zero resistance and contained in the square
[m1(e)-M+1,m1(e)+M—1]><[mz(e)-M+1,m2(e)+M-1]} .
Then
(11.82) R(e)I[R(e) < =] < R(e)I[R(e) < =IIy(e)
for e < [M,n-M]x [M,n-M],
(11.83) R(e)I[R(e) < =] < R(e)I[R(e) < =] for all e<B .

By the ergodic theorem (Tempel'man (1972), Theorem 6.1, Cor. 6.2 or

Dunford and Schwartz (1958), Theorem VIII. 6.9; also use Harris (1960),
Lemma 3.1 and the fact that R(e) > 0)

. 1
11.84 1 R(e)I[R ]l
( ) nlz Egz-eC{M,%—M]z (e)I[R(e) < =] M(e)

= ER(eg)I[R(eg) < =Iiy(eg)}
with probability one (eO is an arbitrary fixed edge). Furthermore, if

(11.85) (of \ x dF(x) = E{R(eO)I[R(eO) < 0]} < o

then by Birkhoff's ergodic theorem (Walters (1982), Theorem 1.14)

Tim %— ) R(e)I[R(e) < =]
nsew ' ecf0,M]x [0,n]

= 2(M+'I)E{R(e0)I[R(e0) < »]} <

and consequently

]
11.86 lim — R(e)I[R ®] = 0
(1n.86) iy eC[O,M]Zx 0] (e)I[R(e) < =]

with probability one. Also, under (11.85) the ergodic theorem implies
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(11.87) s ) {R(e)I[R(e) < =]}
2n~ e<[n-M,n]x [0,n]

=—5 ] {R(e)I[R(e) < =]}

2n eCBn

o § {R(e)I[R(e) < =]}
2n° e<[0,n-M) x [0,n]

¥

[ xdF(x)- [ xdF(x) =0 (n~+w)
(0,00) (0,00)

with probability one. Of course, we may assume that (11.85) holds,
since the upper bound in (11.11) is vacuous otherwise. It follows from
(11.82)-(11.87) that

1im sup *lg- ) R(e)I[R(e) < =]
n>  2n° ecf0,n]x [M,n-M]

_<__E{R(eO)I[R(eO < m)]IM(EO)} .

Together with (11.81) this implies for each fixed M

. . n 2
(11.88) lim sup R < 2 lim sup(ETﬁjmj) E{R(eO)I[R(eO) < oo]IM(eO)},
where

k(n,M) = maximal number of edge-disjoint conducting

paths in [0,n] x [M,n-M] from Ag to Al .

(We call r],...,rk edge-disjoint if r' and rJ have no common edges

for i # j.) A simple translation of (11.4) from site-percolation on
Q1 to bond percolation on Z? as in Comment 2.5(iii) gives for large

n
1.

5] 1 62
5 - p(®)) 'n} > 1-2C,n exp-C4(5 - p(=)) " n .

P{k(n,M) > %—C](

(Recall that pH(Q]) = %- by Application 3.4(ii) and that P{R(e) < =}
= 1-p(w).) Thus, by the Borel-Cantelli Temma

n 2 1 -4,

Tim Sup(m) i“CT (5-p(=))

with probability one, for each M. In view of (11.88) this gives

Tim sup Ry < S3-p(@)) ! lim EfR(e)T[R(ey) < =1Iy(ey)}

Moo
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with probability one. We complete the proof of the upper bound in
(11.11) by showing that

. . ]
(11.89) m E{R(eq)I[R(ey) < =IIy(eq)} = 75y 92(1-p(0))(0f xdF(x).

,)

To prove (11.89) we observe that

(11.90) IM(eO)-tl[eO is not surrounded by a circuit on s

made up of edges with zero resistance], M+ =,

Now consider the following bond-percolation problem on (Zz)d. Call
and edge f* of (Zz)d open if the edge f of 12 which intersects
f* has non-zero resistance, and blocked otherwise. Then, if the open
cluster of ea on (ZZZ)d 215 non-empty and finite, it must be contain-
ed inside a circuit on Z made up of zero resistances. This follows
from Whitney's Theorem (Whitney 1933), Theorem 4) as explained in
Harris (1960), Lemma 7.1 and Appendix 2. Compare also Example 1
in Hammersley (1959). We proved an analogue for site-percolation in
Cor. 2.2. and the above result can be obtained from Cor. 2.2. by the
usual translation from bond-percolation on (ZZ)d (which is
isomorphic to 12) to site-percolation on the covering graph Q] of
ZZ (see Comment 2.5 (iii) and Prop. 3.1). The open cluster of e6
is non-empty iff e6 is open, or equivalently iff R(eo) > 0.
Moreover, the probability that any edge is open is 1-p(0). It follows
from these observations, that the expectation of the 1imit of IM(eO)
in (11.90) is just

P{open cluster of e6 on (Z?)

9,(1-p(0))

- T 1-p(0)

(11.89) is immediate from this since R(eo) is independent of IM(eO).
This completes the proof of the upper bound in (11.11).

g 1s infinite[e6 is open}

The Tower bound in (11.11) can be proved by a direct argument
which does not rely on 2@ being self-dual (see Remark 11.4(i) below
for an indication of such a proof). Here we shall merely appeal to the
fact that by Lemma 11.3

1 1 1 1 1
R S(Lon-71x[-5.n+5]).

2

However, (12)d is isomorphic to Z so that S([%,n-%JX[—%—,n+%—])
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has the same distribution as R([0,n+1]x[0,n-1]) when the distribu-
tion of an individual edge is given by

(11.91) P{R(e) = 0} = p(=),
P{R(e) = =} = p(0),

P{R(e) € B} = [ dF(x), B < (0,»).
-%E:B

(Compare (11.6)-(11.8) and recall that S(e*) = 1/R(e) in Lemma 11.3.)
The Tower bound in (11.11) now follows by applying the upper bound in
(11.11) to R([0,n+1]x[0,n-1]) when the distribution of R(e) is as
given by (11.91) instead of (11.6)-(11.8). (Note that the upper bound
applies just as well to R([0,n+1]x[0,n-1]) as to Rn = R([0,n]x [0,n])
as pointed out in the beginning of the pwoof of (11.11).) ]

Corollary 11.1 is immediate from (11.11) and (8.4).

Proof of Theorem 11.3. We do not give a detailed proof of (11.22). Its
proof is a simplified version of the proof of the upper bound in (11.11).
This time we do not use Lemma 11.1 and do not replace R(e) by R(e).

We simply find enough edge disjoint conducting paths from Ag to Al

by applying Theorem 11.1 to the restrictions of Bn to planes speci-
fied by fixing x(3),...,x(d), i.e., to graphs which are the restrictions
of Z% to [0,n]x[0,n]x{i(3)}x...x{i(d)}, with 0 < i(3) <n,..
0 < i(d) < n.

(11.19) is quite trivial. As in (11.9) Rn = 0 as soon as there

. . 0 1
is a path in Bn from An to An

.9

all of whose edges have zero resis-
tance. But the probability that such a connection exists in [0,n]

x [0,n]x{i(3)}x...x{i(d)} equals the sponge-crossing probability
Sp(o)(n,n) of Se{mour and Welsh (1978). By their results (see pp.233,

234) for p(0) > 5

1)
Sp(o)(n’n) 2 S]/z(nsn) > S]/Z(n,nﬂ) = %—

Since crossings in [0,n]x [0,n]x{i(3)}x...x{i(d)} for different
i(3),...,i(d) are independent, it follows that

1) Here we merely need that S]/z(n,n) is bounded away from zero. By

going over to site-percolation we can also obtain this from Theorem
5.1. However, the proof of Seymour and Welsh (1978) is much simpler

in the special case of bond-percolation on 12.
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P{R, = 0} 3_1—2'( if p(0) >

NI

(11.19) thus follows from the Borel-Cantelli lemma.

Also (11.20) is easy. By Theorem 5.1, (5.16) and the end of the
proof of Lemma 5.4 (see (5.55)) one has for 1-p(«) < pg 4

P{ 3 conducting path in Bn from Ag to Al}

< ) 0 P{number of edges reachable by a conducting path
veA
n

from v 1is at least n}

—C2n

I A

(n+1)d']C]e

Again, it follows from the Borel-Cantelli Temma that with probability
one for all large n there does not exist a conducting path in Bn
from A2 to Al In view of (11.59) this implies (11.20).

We finally turn to (11.21). Its proof rests on Lemma 11.2. First
we replace the resistance of each edge e which does not have each end-
point in 01 by «. Here C1 is as in Lemma 11.2 with G = restriction
of Zd to Bn' This replacement does not change Rn' Denote the mid-
point of e by m(e) = (m1(e),...,md(e)) and set

JM(e) = 0 if there exists a conducting path in the full
network Z@ from one of the endpoints of e to one of the
two hyperplanes x(1) = m](e)iM,

and JM(e) = 1 otherwise. Then for M < m1(e) < n-M, JM(e) =1 dmplies
that both endpoints of e are outisde c1 » Since they are not connected
to Ag u A; by a conducting path in deTBn . Therefore the modified
resistance for such edges is at least R(e)-FJM(e)-w. Thus by Lemma
11. Rn is at least as large as the resistance between AS and A;
when R(e)+JM(e)-m is used instead of R(e) for the resistance of
each edge e with M < m](e) < n-M. We next reduce to zero the resis-
tances of all "vertical" edges between two neighbors (i(1),...,i(d))
and (i(1),i(2),...,1'(s),...,i(d)) with 2 <s <d, |i'(s)-i(s)| = 1.
By Lemma 11.4 once more this does not increase Rn. Set
R(e)+JM(e)-°° if e 1is a "horizontal" edge and

M < m](e) < n-M
R(e) =< R(e) if e is a "horizontal" edge with

0 5_m1(e) < Mor n-M 5,m1(e) <n
0 if e 1is a "vertical" edge.
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A "vertical" edge was defined above, and a horizontal edge is an edge
from (i(1),...,i(d)) to (i(1)+1,i(2),...,i(d)) for some O < i(1)
<n, 0<i(2),...,1(d) ;_n. Denote by ﬁn the resistance between Ag
and Al in Bn’ when R(g) is the resistance of the generic edge e.
Then, by the above Rn z_Rn. However, Rn is easy to calculate. As
discussed in Sect. 11.3 all vertices in a "vertical plate"
{1(1)}><[O,n]d"] will have the same potential since they are connected
by zero resistances. We may therefore identify these vertices to one
vertex. If we do this for each (1) € [0,n], then we obtain a graph
hﬁ whose vertices we denote by 0,...,n, with 1 corresponding to the
plate {i}X[O,n]d'] in zdn B,- There are (n+1)d'] edges between
i and (i§1) with resistances ﬁ(eij), where j runs through the
(n+1)d_] possible values for (i(2),...,i(d)) and eij denotes the
edge from (i,j) to (i+1,j) (see Fig. 11.4). These resistances are

(n:1) ;

Figure 11.4. The graph Mn obtained by identifying vertices on
"vertical plates".

in parallel, and equivalent to a single resistance of size
17 (Ree; N7
3 J

between i and (111). The resistances between i and (111) for
i=20,1,...,n-1 are in series so that

c n-1 N ..y N i o
n = izo {§ (Rlegsh) 2 z_iZM {§ (R(e;; N7

n-M ~
> (n-w1)2 (] T R, N
i=M J
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The last inequality again results from the fact that the arithmetic
mean is at least as large as the harmonic mean. Consequently, by the
ergodic theorem (Tempel'man (1972), Theorem 6.1, Cor. 6.2 or Dunford
and Schwartz (1958), Theorem VIII.6.9).

- n-M
Tim inf n9°2R_ > Tim inf 1% > timnd (7 T(Re.,)) !
n f imj W

(E{(R(eg))™"H)!

1]

(P{Iy(ey) = o})']{f-% dF(x)}!

for any fixed M, and any fixed edge e. Finally, as M »> o,
P{JM(eO) = 0} converges to

P{the cluster of all edges connected to € by a conducting
path is unboundele(eO) < o}

04(1-p(=))

This proves (11.21). ]

Remark.

(i) To prove the Tower bound in (11.11) without using Straley's
duality lemma (Lemma 11.3) one can proceed along the lines of the above
proof of (11.21). First we replace R(e) by ﬁ(e). However, we do not
form M% by identifying the vertices in each segment {i}x[0,n] now.
Instead, consider disjoint vertical crossings rJ*, 1<J <k, of
[;—,n-%-]x [-;—,n+%] on (Zz)d such that all edges in each r’i* inter-
sect an edge of Z .with strictly positive resistance. If rd*
cqntains the edges e%*, and eg is the edge of lz which intersects
eg*, then we form a vertex of Hﬁ by identifying the endpoints of the

eg , i=1,2,... which are immediately to the left of rJ*. Aqother

vertex of hﬁ is formed by identifying the_endpoints of the e%,
i=1,2,... immediately to the right of rd”, By choice of rd*,
R(eg) > 0. After constructing Hﬁ by making these identifications for
each j, 1 < j <k we can essentially copy the rest of the proof of
(11.21). A1l we need is a Tower bound for the number k of disjoint

*
vertical crossings rJ"  of the above type. A Tower bound of order

$
%—C1(%-p(0)) 1n can be obtained from Theorem 11.1 in the same way as

in the estimate for k(n,M) in the proof of the upper bound in (11.11).
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12. UNSOLVED PROBLEMS.

We shall 1ist here some problems which seem of interest to us,
in the order of the chapters to which they refer. It apoears that
the most significant problem is problem 8. We know little about how
the problems compare in difficulty, but some of the problems are only
of technical interest.

To Chapter 3.

Problem 1. Prove that for bond-percolation on the triangular lattice
with three parameters, as discussed in Application 3.4 (iii) the
critical surface is

(12.1) p(1) + p(2) + p(3) - p(1) p(2) p(3) = 1. 11/

Sykes and Essam (1964) conjectured that (12.1) gives the critical
surface for this bond-percolation problem, and we mentioned several
strong indications for the truth of this in Application 3.4 (iii).
We also mentioned without proof that we can prove that for this
problem

(12.2) 8(p) = 0 , whenever p >> 0 and
p(1) + p(2) + p(3) - p(1) p(2) p(3) < 1.
The proof of this fact is based on the following theorem.
Theorem 12.1. Let (G,G*) be a matching pair of periodic graphs in
in Rz and let Pp be a A-parameter periodic probability measure on

the occupancy configurations of ( based on the partition U1,...UX
of the vertices of G (cf. Sect. 3.2). Assume that

Pp{v is occupied} > 0 for all v.

Assume also that at least one of the following two symmetry conditions

holds:
(i)the first or second coordinate axis is an axis of symmetry for G
(cf. Def. 3.4),

as well as for the partition U1""’UA
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(ii) G and Pp are symmetric with respect to the origin, i.e., if
v(e) is a vertex (edge) of G, then so is -v (-e) and

Pp{v is occupied} = Pp{-v is occupied}.

(0f course -v = (-v(1),-v(2)) if v = (v(1),v(2)) and similarly for -e).

If
6(p) > 0,

then for every rectangle B

(12.3) Pp{ 3 an occupied circuit on G surrounding B} = 1.

We do not prove this theorem. We merely give the easy deduction
of (12.2) for the three-parameter bond-percolation problem on the trian-
gular lattice from this theorem. Let Py = (p0(1),p0(2),p0(3)) >> 0
satisfy (12.1). Assume that e(po) > 0. We derive a contradiction
from this as follows. The three parameter bond-problem on the triangular
lattice has the symmetry property (ii) above.

Thus, if Py >> 0 and e(po) > 0 then (12.3) holds for p = Py
on G, the covering graph of the triangular lattice. However, the
proof of Condition A for Application 3.4(iii), or more precisely, the
proof of (3.79), shows that then also

(12.4) Pp { 3 vacant circuit on G* surrounding B} =1,
0

for each rectangle B. As we saw in the proof of Theorem 3.1(i) this
implies e(po) = 0 (see the lines following (7.34)). It follows from
this contradiction that e(po) = Q for all Pg >> 0 which satisfy

(12.1), and a fortiori for all Po >> 0 with
Po(1)+py(2)+p,(3)-pg(1)pg(2)py(3) < 1.

Thus (12.2) holds.
To settle Problem 1 we would have to prove 6(p) > 0 for any
0 << p << 1 which satisfies

p(1)+p(2)+p(3)-p(1)p(2)p(3) > 1.

The present proof of Theorem 3.1 relies on Theorem 6.1, which we have
been unable to prove so far without the symmetry condition (i) of
Theorem 12.1. This leads as directly to the next question, which is
more general than Problem 1.
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Problem 2. Prove a version of Theorem 3.1 which does not require the
symmetry property (i) of Theorem 12.1. ///

Perhaps even more disturbing than the symmetry restrictions in Theorems
3.1 and 3.2 is the fact that these results apply only to special graphs
imbedded in the plane. No results seem to be known in dimension greater
than two. This gives rise to the following questions.

Problem 3. Prove that

pT=pH
for a percolation problem on a periodic graph G imbedded in R
with d > 2. 177

d

This problem is not even settled for G = z?.
Problem 4. Is it true that there can be at most one infinite occupied

cluster on a periodic graph @? /1]

Newman and Schulman (1981) proved that if there can be more than one
infinite occupied cluster under Pp, then

(12.5) Pp{ 3 infinitely many infinite occupied clusters} = 1.

It seems 1ikely that if G is imbedded in R2 , then (12.5) cannot
occur. In fact we know this to be the case whenever Theorem 3.1 or 3.2
apply. However, if G 1is imbedded in Rd with d > 2 then very
1ittle is known about the impossibility of (12.5). For the site- or
bond-percolation on Zq , d > 2, we can prove that

(12.6) Pp{ 3 a unique infinite occupied cluster} = 1

whenever p > p:. Here p: is the decreasing limit of pﬁ, k » o,

and p; = pH(Qk) is the critical probability for site-, respectively
bond-percolation on the graph Qk = Z?><{0,],,,,,k}, qkis the restric-
tion of Z° to (k+#1) copies of Z° on top of each other; GV is
isomorphic to 12 . From Ex. 10.2(iii) we know that p: < pH(zz), and
in particular for the bond-problem p: < %u We conjecture (but have no
proof) that

[o2]

PH pH(l3) ,

both for site- and bond-percolation.
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To Chapter 5.

The uniqueness of infinite clusters (see Problem 4) is related to con-
tinuity of the percolation probability 6(p). The relationship between
the two problems was mainly one of similarity in methods of attack in

the case of graphs imbedded in the plane. For both problems one tries

to show that if 6(p) > 0, then crossing probabilities of certain large
rectangles are close to one and consequently arbitrarily large circuits
exist. (cf. Russo (1981), Prop. 1 and the proof of Theorem 3.1 in

Ch.7). However, recently M. Keane and J. van der Bera (private communi-
cation) have made the relationship between the problems far more explicit.
They prove that in a one-parameter problem, if p > p, and (12.6)

holds, then 6(-) 1is continuous at p. Perhaps the converse also holds.
In any case, the continuity properties of ©6(-) are of interest. Partial
results about these are given in the Remark following Theorem 5.4, but
in general the following question remains.

Problem 5. Is ©(p) a continuous function of p 1in every one-para-
meter percolation problem? In particular, is always

e(pH) = 0? 11/

One may also want to investigate further smoothness properties of
6(p,v), as a function of p, especially in one-parameter problems. For
G one of a pair of matching graphs we already pointed out in Remark
5.2(iii) that under some symmetry condition 6(p,v) 1is infinitely
differentiable for p > Py-

Problem 6. Is 6{(p,v) an analytic function of p for p > pH? ///

For a directed site-percolation problem on the plane and p close to
one Problem 6 was answered affirmatively by Vasil'ev (1970) (see
Griffeath (1981), especially Sect. 9, for the relation between Vasil'ev's
result and directed percolation).

To Chapter 6.
We already pointed out that Problem 1 would be solved if we could prove
the Russo-Seymour-Welsh Theorem without symmetry assumptions. The same
holds for Problems 2, and in dimension two also for Problems 4 and 5.
Thus, one possible attack on these problems is to try and settle the
following more specific problem.

Problem 7. Can one prove Theorem 6.1 without symmetry assumption? ///
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To Chapter 8.

Problem 8. Prove any of the power laws (8.1)-(8.3) and get good esti-
mates (or the precise values) of B and Y, - /]

It is believed that (8.1) holds for a 0 < B8 < 1. We do not even know
for any graph whether

d
(12.7) aﬁ-e(p) + o as p¥py -

Grimmett (private communication) suggested that Russo's formula (Prop.
4.2) might be helpful, since e(p,vo) is the Pp—probability of the
increasing event {#W(vo) = »}. It does seem very difficult though to
estimate the number of pivotal sites for this event.

To Chapter 9.
Problem 9. Does the function p - A(p,G) introduced in Ch. 9 (cf.
(9.12)) have a singularity at pH(Q) for suitable G? If yes, is there
a power law of the form

1\)i

A(p,G)~ Cylp-pyl™ as pipy,

or ptp,, respectively? /11
The first part of the above problem is of historical interest, because
Sykes and Essam (1964) wanted to base their arguments on A(p,G) having
a unique singularity at p = P> at least for certain nice G. Theorem
9.3 shows that for "nice" G A(p,G) can only have a singularity at

P = Py but we could not establish that there really is a singularity
at py, (see also Remark 9.3 (iv)).

To Chapter 10.
Problem 10. Prove that pH(ﬂ) > pH(Q) in cases where ¥ 1is a sub-
graph of G formed by removing edges of G (see Remark 10.2(i)).

Problem 11. Find a quantitative estimate for pH(H)—pH(Q) in the cases
where this quantity is known to be strictly positive by Theorem 10.3.

To Chapter 11.
As in Chapter 11, let Rn be the resistance of the restriction of Zd

to [O,n]d between the faces Ag = {0}><[O,n]d'] and
Al = {n}><[0,n]d—], when the resistances of the individual edges are
independent random variables.
Problem 12. Does
1im nd'an

n—>co
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exist in probability or with probability one? (See also Remark 11.1(vi).)

Problem 13. If the distribution of the individual resistances R(e)
are given by (11.6)-(11.8), is
Tim sup nd2R <
n
N>
whenever 1-p(«) = P{R(e) < =} > critical probability for bond-percola-
tion on Zd? /17

0f course Theorem 11.2 answers Problem 13 affirmatively for d = 2.

We only discussed in Ch. 11 the resistance between two opposite
faces of a cube. It is also interesting to look at the resistance, r
say, between the origin and the boundary of the cube [-n,n]d. If all
edges of Zq have resistance 1 ohm, then 'n is bounded as n -+ «
for d > 3.

Problem 14. If d > 3, P{R(e) = 1} = p, P{R(e) = »} = q = 1-p and
p > percolation probability for bond-percolation on Zd , does it follow
that

Pp{]im sup r < »|the origin is connected to infinity by a

conducting path} = 17
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APPENDIX. SOME RESULTS FOR PLANAR GRAPHS .

In this appendix we prove several graph theoretical, or point-set
topological results, in particular Propositions 2.1-2.3 and Corollary
2.2 which were already stated in Ch.2. The proofs require somewhat messy
arguments, even though most of these results are quite intuitive. We
base most of our proofs on the Jordan curve theorem (Newman,(1951),
Theorem V. 10.2). Some more direct and more combinatorial proofs can
very likely be given; see the approach of Whitney (1932, 1933).
Especially Whitney (1933), Theorem 4, is closely related to Cor. 2.2.,
Prop. 2.2 and Prop. A.1, and has been used repeatedly in percolation
theory.

Throughout this appendix % 1is a mosaic, & a subset of the
collection of faces of % and (G,G*) a matching pair based on (7,3).

These terms were defined in Sect. 2.2. qu,q;z and ng will be the
planar modifications as defined in Sect. 2.3. We fix an occupancy
configuration w on 7 and extend it as in (2.15), (2.16). W(v) and
wpg(v) are the occupied cluster of v on G and W$2 (or sz),
respectively, in the configuration w. 3W, the boundary of W, is
defined in Def. 2.8; v G w means that v and w are adjacent vertices

on G .

Proposition 2.1. Let awpl(v) be the boundary of wpg(v) on
W$2 . If wpz(v) is non-empty and bounded and (2.3)-(2.5) hold with
G replaced by =7, then there exists a vacant circuit Jpz on W$£
surrounding wpz(v), and such that all vertices of W$2 on Jp2 belong
to awpg(v).

We owe the idea of the proof to follow to R. Durrett. We shall
write wpz and oW instead of wpz(v) and awpl(v). On

pL
various occasions we shall use the symbol for a path to denote the set

of points which belong to some edge in the path. Thus in (A.2). the left
hand side is the set of points which belong to m and to W U 3W ¢ In

(A.5) int(d) \ 7™ s the set of points in int(J) which do not lie
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on % . This abuse of notation is not likely to Tead to confusion.
We shall actually prove the slightly stronger statement that the

vertices of Tye ON Jpz belong to Bext wpl , the "exterior

boundary of wpz", where

(A.1) = {u e oW

aext wpg: pz: J path © from u to « on

W$£ such that u is the only point of = in

wpg U awpl} .

The crucial property of aext wp2 is given in the following Temma.
Lemma A.1. Assume that (2.3)-(2.5) hold with G replaced by 7. If

wpz is non-empty and bounded, then aext Npl 70 . Let

ue aext wpl s WE wpz and 1w a path from u to ~ on W%l such
that
u W$2 w
and])
(A.2) m N {WU awpz} = {u} .

Let e be an edge of 7, from w to u and T the simple
path consisting of e followed by w . Then there exists a Jordan
curve J in R° such that

(A.3) u e int(Jd) ,

(A.4) J intersects each edge of th incident to u exactly
once, but all edges of W$2 not incident to u belong to
ext(d),

(A.5) int(J)\r has exactly two components, K' and K" say. Any
edge between u and a vertex ue aext wp2 intersects exactly
one of the components K' and K". There exists a vertex

u' e 3ext wp2 and an edge e' of W$2 between u and u

which intersects only K'. There also exists a vertex

u" € aext wp2 and an edge e" of W$2 between u and u

which intersects only K" (u' = u" is possible!).

(Fig. A.1 gives a schematic illustration of the situation.)
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Figure A.1. wpz is the hatched region. The vertices of aextw

are on the dashed curve. J is the small circle
surrounding u.

Proof: 1If wpg is non-empty and bounded, then any path from « to
wpg must intersect awpz a first time. This intersection belongs
to aext wpz. Thus aext wpz # @ in this situation.

Now take u e aext wp% . By definition there exists a simple
path m from u to « on satisfying (A.2) and a we W

which is adjacent to u. The Zt%f-avoiding path m cannot interggct

e in its interior (because W$£ is planar), nor in the point

w (by (A.2)), and goes through the point u only once (at its
beginning). Thus T has no double points. Now let D be a small
open disc around u such that D does not intersect any edge of

W$2 not incident to u. (Use (2.4) to find such a disc). If all edges
incident to u are piecewise linear, then the perimeter of D will
satisfy (A.3) and (A.4) provided D is sufficiently small. The
general situation can be reduced to this simple case by means of a
homeomorphism of RZ onto itself which takes pieces of the edges of

W$£ incident to u onto straight line segments radiating from the
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origin (see Newman (1951), exercise VI. 18.3 for the existence of
such a homeomorphism). We may therefore assume that we have a Jordan
curve J satisfying (A.3) and (A.4).

Note that e, as well as the unique edge of 7 1incident to
u (the first edge of w) each intersect J exactly once (by (A.4)) so
that 1 intersects J exactly twice, and int(J)\m has indeed
two components - which we call K' and K" (see Newman (1951),
Theorem V. 11.7). Let eg = e, and let e.e,,....e 4, e =e, be
the edges of W$£ incident to u, listed in the order in which they
intersect J as we traverse J 1in one direction from €y N J; there
are only finitely many of these by (2.4). Write us for the endpoint
of e, different from u, and X5 for the intersection of e, and

1
Figure A.2.

J. Thus Ug = W- The first edge of m is one of the e, say

e; - For i # 0, io,v, e, runs from u to X5 inside one com-
0
ponent K' or K", and then from x; touy it is in ext(J) by

(A.4) (note u; € ext(Jd), also by (A.4)). Thus, each of these edges
intersect exactly one of K' and K". Since each of the two arcs of
J from Xg to XiO form part of the boundary of one the components
K' and K" (Newman (1951), Theorem V.11.8), it follows that ess
1<d«< io, intersect the same component, K' say, while e;s

iO < i< v intersect the other, which will be K". This proves the

first statement in (A.5) (since u, = u e W and hence not in 3W_,
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and also u, € m does not belong to aW_ ).
10 pL

We write Ai for the arc of J from Xs to Xs410
0 <i<v-1. Then A{\{xi, Xi+1} does not intersect any edge and

therefore lies entirely in one face of W‘Q . Since all faces of
W$2 are triangles (Comment 2.3(vi)), this implies that e and
e lie in the boundary.of a tr1angle, and u; W$2 Ujpps Yg =
We wpg, while u1.0 g ™ 1is not in wp2 . Hence the index

iy = max {j:0<3 < iy uJ. € wpz}
is well defined. As observed above, Us 41 is a neighbor of

ui] € wpg , but by definition of 1, u1.1
ui]+1 £ awpl . Also, u1.0 e m does not belong to awpz by (A.2). Thus

i]+1 < iy and we can define i, by

+1 ¢ wpz . Therefore,

i, = max {3:11 <J<ip, uj £ awpl} .

We can connect us to « by a path consisting of edges from u. to
2
uj+1 » 1, <3 < g followed by the piece of = from us to « ., The

0

vertices u12+1""’u10 do not belong to wpz U awpz by choice of

11, 12, so that u, ¢ 3 W with 0 < i, < i

i, ext "pi 2 0 Finally we define

it =min{0 < J < i, Us € doyy wpz} .
By the above i' 1is well defined, and u':=ui. is connected to
u by an the edge ey which intersects K', but does not intersect
K". Similarly we can define

— . . .
i max{1O <j< v.uj € aext wpg}

and u" = ui"'ei“ only intersects K". This proves the existence of
the desired u', e', u" and e" for A.5. [j

Proof of Proposition 2.1: For a non-empty and bounded W Iy pick

any U € aext Np2 and apply Lemma 1 with Uy for u. Let Uy be

. . " . .
one of the vertices u', u" ¢ aext wpl adjacent to Ug whose exist

ence is guaranteed by Lemma A.1. Say we picked u' for u. Let e,
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be an edge between Ug = u and uy = u' which intersects only K'
as in Lemma A.1. Assume we have already constructed Ug>€psUyse-eseys

U with u; € aext sz and ej an edge of W$2 between uj_] and
“jaej-1 # ej, 1<j<1i. We then apply Lemma A.1 to Uy Associated
with u; are two components K' and K". Assume e, intersects K'.
Then by (A.5) we can find an edge CI from u to some  U;.q € 9
wpz , such that €i 4 intersects only K" and not K', and hence
with € # e;. We continue in this way until the first time we obtain
a double point, i.e., to the smallest index v for which there exists

a p<v with up =u, . V< because W 2 is bounded, and therefore
Baxt wpz c awpz finite (see (2.3), (2.4)). o will be unique by

the minimality of v. Since W%l is planar, J_, = (u_,e ,. ..,ev,vv)

pL p’p’
p_ﬂ,...,e\) - 1S a

Jordan curve. We now show that it has the required properties. The

Xt

- or more precisely the curve made up from ep, e

vertices on Jpx belong to aext sz c awpz by choice of the

Uy and since each vertex of awpz has to be vacant, Jpz is vacant.
To show that wpg c int(JpR) observe first that all vertices of

Jp2 belong to awpz and therefore not to wpg. Thus sz n Jpl =0
and the connected set NDR lies entirely in one component of

R? \'Jpz . Now write u for Usil and let m be a path on ”%z
from u to o satisfying (A.2), and e an edge of W$2 from u to
some W € wpz. We apply Lemma A.1 once more with this choice of u,

m, w and e. With 7 and J as in Lemma A.1 we may assume (by
virtue of the construction of in) that the two edges ep ~and ep+]
incident to u intersect different components of int(J)\ m. We shall
prove now that this implies

(A.6) T crosses J from ext(J

oL ) to int(J

bt pz) at u .

This will suffice, since the part w\{u} of T clearly lies in

ext(J pz), so that (A.6) will imply that e\{u} belongs to 1nt(Jp2)
In particular w will belong to 1nt(J ). Hence wpg < int(J pz) and
Jpz surrounds wpl .

To prove (A.6) note that the Jordan curve J surrounding u,
constructed in Lemma A.1 intersects J 2 in two points only, say
' on ep and x" on e o+ (by (A.4)). The two open arcs of J
between x' and x" must 11e in different components of R? \\J
and the other in ext(JD ). Indeed each of these

X

one in 1nt(Jp2)

arcs lies entirely in one component of R2 \‘Jno’ and they cannot both
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lie in the same component, because u e Jpz lies on the boundary
of int(Jpl) as well as the boundary of ext(Jpz). Thus, there
exists continuous curves from J to points in its interior near u
which lie 1in int(Jpl), and there also are such curves in ext(Jpx).
Now we have by (A.4) (or more directly by its proof) that m intersects
J exactly once, in y' say, and e also intersects J exactly once,

in y" say (see Fig. A.3).

Figure A.3

X and x" cannot 1ie on the same arc of J between y' and y"
because x' and x" are the endpoints of the pieces of e N int(J)
and € 41 N int(J) , respectively, while by construction e, N int(Jd) and
o+ N int(J) belong to different components of int(J)\ % . These

two different components, K' and K", each have one of the arcs of

e

J from y' to y" in their boundary, so that x' has to lie in the
arc bounding K' and x" in the other arc, bounding K". But this
means that y' and y" separate x' and x" on J. Therefore, y'
and y" do not lie on the same arc of J between x' and x". Since

we saw above that one of these open arcs was in int(JpZ) and the
other in ext(Jpx) it follows that one of the points y' is in
int(Jpz) and the other in ext(Jpz). (A.6) now follows. ]
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Corollary 2.2. If W(v) is non-empty and bounded and (2.3)-(2.5)
hold, then there exists a vacant circuit J* on G* surrounding
W(v).

Proof: By Cor. 2.1 Wc wpﬁ and by Prop. 2.1 there exists a vacant

circuit Jpz on W$2 surrounding wpz, and therefore also W. Note

that J 2 cannot contain any central vertex of § since these are
all occupied (cf. (2.15)). Thus, Jpz is actually a circuit on
QSQ . Assume it is made up from the edges ef,...,ec of Q;Q .
and that the endpoints of e¥ are v¥, and v¥ . Then

r* = (v6,e?,...,e3,v3) is a path on q;k with one double point, to
wit va = vs . We now apply the procedure of the proof of Lemma 2.1a,
with G* instead of G, to remove the central vertices from v*. Let

0 <ig<is..s < ip < v be the indices for which v¥ 1is not a

J
central vertex of qag. Then, as in Lemma 2.la 10 <1,1i >wv-1, and

= 02
. s . s . . .
1j+1 1j <2. If 1j+1 1j+1 so that V¥ and vk are adjacent
J J+l

* i * %*
on G*, and e¥yp 1s an edge of G*, then we do not change e If
i.,q = 1.%2, then v¥ is the central vertex on G* of some face
J+1 J 1541

F which is close-packed in G*. We then replace the piece

e$j+1 s v?‘+1, e$_+2 of r* by the single edge of G* through F,

*

: : * : vk * ok
with endpoints v1.j and VE 4o We write v*¥ for v and ej+] for
the edge from 53 to V§+] . Ve make these replacements successively.

Assume for the sake of argument that 10 = 0 (this can always be
achieved by numbering the vertices of r* such that it starts with
a non-central vertex). Assume also that we already made all replace-

ments between v? = V6 and v? . We then have the sequence

- ~ ~ .0 k .

* * * yk % * = y¥%

vg o eO,...,ek,vk, eik+],...,v vh» and can form the curve Jk
a Sx * * * PR

made up from ea,...,ek, eik+], eik+2,...,ev (even though this is

nejther a curve on Qgg nor on G*). Assume that Jk is a Jordan
curve which contains W in its interjor. We shall now show that
then Jk+1’ is also a Jordan curve which contains W 1in its interior.
This will prove the corollary, since JO = Jp2 has these properties

and Jp or Jp+] Wwill be a curve on G with the properties required

of J*. If é§+1 = e? +1° then there is nothing to prove. Assume
k

therefore 1k+1 = 1k+2 and that 5§+1 is the edge in the closed face
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F of m from Vﬁ = V?k to V§+] = v?k+2, while v?k+] is the central
vertex of F. By Comment 2.3(i) the three edges e* , e%* and

Tkl Tke2
é:+1 then form the topological boundary of a closed "triangle", T say.

Jk+] is again a Jordan curve, because it contains only vertices of
Jk, and eg with i+2 < j < v cannot intersect the interior of the
edge é§+] of G. The latter statement results from Comment 2.3(i)

and the fact that e§ does not contain the central vertex v?k+1 of
F, because Jk is self-avoiding. From the facts that W consists of
vertices and edges of G and W< 1nt(Jk) and frgm Comment 2.3(i) it
follows that W cannot intersect Fr(T). Since T contains no ver-
tices of G, W& T is also impossible so that W N T = @. But this
implies W Ciint(Jk+]) because int(Jk)\int(Jk+]) cT, and

W int(d,). []

In the proof of Prop. 2.2 we shall use the next lemma, which
follows from Alexander's separation lemma (Newman (1951), Ch.V.9).
Actually one can deduce Prop. 2.2 from Prop. 2.1 without this Temma,
but it is needed a few times later on anyway. Lemma A.2 is essentially
the same as Lemma 3 in Kesten (1980a).

Lemma A.2. Let J1 be a Jordan curve in RZ which consists of four

closed arcs A1,A2,A3,A4 with disjoint interiors , which occur in
this order when J] is traversed in one direction. (Some of these arcs

may reduce to a single point.) Further, let J2 be a Jordan curve in
d

R- with
(A.7) A1 Ciint(Jz) but A3 c ext(Jz).
Then J2 contains an arc B with one endpoint each on ﬁz and 34

and such that the interior of B is contained in int(J1).

Figure A.4 J] is the solidly drawn curve. J2 is dashed.
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Proof: We write 3} for J, U int(J]). Also for x,y € J, and
[x,y] one of the closed arcs of J2 from x to y, we shall write
(x,yl for [x,yI\{x} and (x,y) for [x,yI\{x,y}. (x,y) is the
interior of [x,y]. For r = 2,4 we define

(A.8) Gr = {x ¢ Jo n J]: there exists a point y ¢ J2 n A,
such that the interior (x,y) of one of the arcs of
Jo from x to y is contained 1in int(J])}.

The first task is to show that Gr is closed. First we observe that
J2 is closed so that

(A.9) Gr < closure of J2 = J2 .

Now if z ¢ G} n 1nt(J]), then z e J, N int(J]) and it is easy to see
that z ¢ Gr in this case. We therefore restrict ourselves to showing
that any z € G} n J] lies in Gr itself. This is true by definition
if zed, n A, since

(A.10) J2 N Ar < Gr
(take y = x 1in (A.8) for x ¢ J2 n Aps in this case one of the arcs
from x to y has an empty interior). In addition, by virtue of (A.7),

(A.11) J, N (A, U A3) =0 .

2 1

Thus we only have to consider z ¢ C} n A4 if r=2 and z ¢ E} n A2
if r =4, For the sake of definiteness take r =2, z ¢ 62 n A4.

Let X, € GZ’ Xy ¥ Z- There is nothing to prove if X, = 2 for some
n, so that we may assume X # z. Without loss of generality we may
also assume that Xp € JZ approaches z from one side, i.e., that we

can choose the arcs [z,xn] of J2 such that
(A.12) [z,xn]+ [z,z] = {2} , X $ z.

Furthermore, there exist Yo € J2 n A2 and choices of the arcs
[xn,yn] on J, from x  to y  such that

n
(A.13) (xn,yn) C31nt(J]) .
Since A2 and A4 are separated on J] by A
A, NA, < Ay UAs and

1 and A3 we must have

J2 n A2 U A4 C-J2 n (A1 U A3) =0 (by (A.11)).
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Therefore Y, € J2 n A2 is bounded away from 2z € J2 n A4. In addition,
from (A.12) and (A.13) the arc [xn,yn] does not contain the point
z e Ay ©Jq- It follows that from some ng on the arcs [z,xn] and

Figure A.5. The location of some points on J2. y_ cannot lie
in the solidly drawn segment. n

[xn,yn] only have the point X, in common, and X, € (xn,yn). But

then, by virtue of (A.12) 0
(z,x. 1= U (x,x 1< U (x.,y)<int(J,) .
Ny nsn n o n>n n>n 1
=0 =0
Consequently also
(z,y, ) = (z,x, TU(x_ .y ) <int(Jy)
n0 nO nO n0 1

so that z ¢ GZ‘ This proves that G2 is closed and the same proof
works for G4.

Next we take for A;, r = 2,4, a closed subarc of Ar which con-
tains the common endpoint of Ar and A], but not the common endpoint
of Ar and A3, and which is such that

(A.14) Jy NAL C-A; .

Such A; exist since JZ n A3 =P (by (A.7)). Note that by (A.7)

also J, N Ay =@ so that A, and A, must have nonempty interiors.
We can and shall therefore also take the interiors of Aé and AA non-
empty. Now define

F

2 =G UAy s

t
4 G4 U A4 U A] .

Since A1, A2 and A4 and Gr are closed, F2 and F4 are closed.
First we assume

F
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(A.15) 6, NGy # 0 .

We can then find an xy e 6, NG, <J, 0 3& and points y_ e Jd, DA
and arcs [xo,yr] of J, from Xy to Iy such that (XO’yr) <int Jq,
r = 2,4. Note that automatically Yy € Ar since by (A.7)

J, N Ar CiAr ,» r = 2,4.

2

If X € A2’
and we are done. Similary if Xg € A4. Xy € J2 n (A] U As) is impos-
sible, by virtue of (A.11). Since Jy = A U A, UA3 UA, this takes
care of Xg € J1, and leaves us with Xy € J2 n int(J]). In this case,
the arc EXO’yr] hits J1 first in J2 n A. (at yr), and neither of
the arcs [xo,yz] and [xo,y4] can be a subarc of the other. Thus
[XO’y2] and [xo,y4] only have the point X9 in common and we can
take B = [xo,yz} u [xo,y4]. This is the arc of J2 from y, to Yq
through Xg» with

then the arc [xo,y4] satisfies all requirements for B

B = (xgo¥p) U (xgoyg) U {xg} € int(d)).

Thus, in this case the lemma is again true, and we have found B when-
ever (A.15) holds.
Now assume that

(A.16) GZ n G4 =0 .
We shall complete the proof by showing that (A.16) leads to a contra-

diction. Denote by a the common endpoint of A] and A2 (see Fig.
A.4). If (A.16) holds, then

(A.17) G, N (AU A =0,
since G2 CZJ2 implies

G, NA; SJp NAy =9 (by (A.7)),

2

G, NA' < Gy ny

, N A, , Ag SGy NGy =9 (by (A.10)).

Similary Gy n Aé = § so that
(A.18) Fo NFy = Ay 0 (A UAY) = {a} .

Next we choose a point b e int(J1) N int(Jz) sufficiently close to a,
so that we may connect b to A,\{a} and to A, U Ah\\{a} by
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continuous paths ¢2 and bgs respectively, which are contained in
int(J]) n 1nt(J2) except for the final point of 9y which Ties on Aé
and the final point of g which lies on A1 U AA . This can be done
because a e A; © 1nt(J2) n J;» and by exercise VI.18.3 in Newman (1951)
we may assume that Aé and A] U A& are segments radiating

from a e J, n 1nt(J2); note that Aj and A& have nonempty interiors
by construction. Finally, let ¢ ¢ A3. He can then connect b to ¢
by the following curve o' Go from b to Aé along o and then
continue along A2 u A3\ {a} to c. This path is disjoint from F4
because Az U Ag\ {a} and AA U A] are disjoint, while 9o minus its
final point lies in 1nt(J1) n int(Jz) which is disjoint from

F4 CZJ] u JZ’ and finally

(A, UA3\{a}) NG, < (Ay N3y NGy) U (A3 NJ,) Gy NGy =0

(compare proof of (A.17).

In the same way we can connect b with ¢ by a path which moves along
¢g and A] U A4 U A3\\{a}, and which does not intersect F2. Since

Fy n Fq is connected (see (A.18)), Alexander's lemma (Newman (1951),
Theorem V.9.2) implies that b 1is connected to ¢ by a continuous
curve y disjoint from F2 u F4. This, however, is impossible as we
now show. 1y begins at b e int(J1) n int(Jz) and ends at c ¢ A3

c ext(Jz) NJ,. Let d be the first point of y in Jy. Then, since

1
¢ is disjoint from F2 U F4, we must have

(A.19) d e Ay U (A\AY) U (A, \A)).

The right hand side of (A.19) lies in ext(Jz) by (A.7) and the fact
that Ar\ A; is (by (A.14)) disjoint from J2 and contains the common
endpoint of A, and A, in ext(Jz). Therefore, in going from

b e int(J1) n 1nt(J2) to d along Y we must hit Jo in a point
eed, N 3} (because d is the first point of ¢ on Jy). But any
such point e must Tie in F2 U F4 since we can go from e along some
arc of J, to ext(J]) (J2 < Jy is impossible by (A.7)). If this

arc hits A2 before A4 then e € GZ’ and if it hits A4 before A2
then e € G4. Thus ¢ must intersect F2 U F4 and we have deduced a

contradiction from (A.16). L]
Proposition 2.2. Let J be a Jordan curve on 7 (and hence also on
G and on G*) which consists of four closed arcs A]’AZ’A3’A4 with

disjoint interiors, and such that A1 and A3 each contain at Tleast
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one vertex of 7. Assume that one meets these arcs in the order A],

A2,A3,A4 as one traverses J 1in one direction. Then there exists a

path r on G inside J=JU int(d]) from a vertex on A1 to a
vertex on A,, and with all vertices of r in 3\A1 UA; occupied,

if and only if there does not exist a vacant path r* on G* inside
5'\A1 UA; from a vertex of A, to a vertex of A, .

Proof: First assume that there exists a vacant path r* on G* 1inside
— ) 0

J'\A] U A3 from y, € A2 to Yg € A4. S 5
A1 and A3 on J any path r inside J from a vertex on A1 to a

Since A, and A4 separate
vertex on A3 must intersect r* (e.g. by Newman (1951) Theorem
V.11.8). If r dison G and r* on G*, then they must intersect in
a vertex of 7 (and of G and G*) by Comment 2.2(vii). This vertex
would lie in j\A1 U A; and be vacant, as a vertex of r*. Thus any
path on G 1in J connecting a vertex on A] with a vertex of A3
would have to contain a vacant vertex in 3“\A] u A3. Consequently, no
path r as required in the lemma exists. This proves one direction of
the proposition.

Now for the converse. Without loss of generality we may assume
that the plane has been mapped homeomorphically onto itself such that

J 1is now the unit circle, that A] (A3) intersects the line segment

Uy

us

Figure A.6. J 1is the circle in the center. A2 and A4 are the

boldly drawn arcs. The two hatched regions are two
faces of Wﬁ.
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from the origin to (-2,+2) (to (2,-2)), while A2 (A4) 1ies between
A] and A3 (A3 and A]) as we go around J clockwise. We next
modify the graphs outside J, as well as the occupancy configuration
outside int(J). We shall then apply Cor.2.2 to the modified graph and
configuration. The mosaic 7 1is modified to a mosaic Wﬁ as follows.
The vertices of Wﬁ are the vertices of 7Z in J plus all points of
the form (211,212), 11,12 e Z. As for edges, there is an edge of

Wﬁ between (211,212) and the four points (21] * 2,21‘2 + 2). The
edges of 7 in J are also edges of Wﬁ. Finally, we write

u'l = ("2:2)3 U2 = (252)5 U3 = (23"2)3 U4 = ("23‘2)

and we give WH an edge between U and any vertex on Ar’ r=1 or
3 (see Fig. A.6). Wﬁ has no further edges. HWe insert the edges from
A, to u in such a way that they lie in int(S])\,ﬁ, except for
their endpoints, where S] is the square

S = Hxpex)ixg ] < 2,[x,] < 2} .

Moreover, we choose these edges such that an edge from A] to Uy and
an edge from A3 to ug do not intersect, while the edges from Ar
to u. intersect in u, only (see Fig. A.6). Thus Wﬁ contains a
copy of the mosaic 7 of Ex. 2.2(i) (multiplied by a factor two). 1In
J Wﬁ coincides with the original 7, while there are no edges in
S]\\int(J) which have interior intersections. The faces of Wﬁ are
the open squares into which the plane is dividsd by the Tines X = 211,
Xo = 212, 11,12 g Z - with the exc]usionoof S1 - as well as the faces
of 7 1inside J, plus certain faces in S]\\J. The last kind of faces
are either "triangular" bounded by two edges from Uy to Ar and an
edge of 7 in Ar’ or a face bounded by the two edges on the perimeter
of S] incident to U s = 2,4, one edge from Uy to A1 and one
from Ug to A3 plus an arc of J containing As (these are the
hatched faces in Fig. A.6). It is clear that Wﬁ is a mosaic.

We next take for 3] the collection of faces of 7 in J which
belong to &. In other words, a face F of Wﬁ belongs to 3] iff
F < int(J) (in which case F 1is also a face of 7) and F e & Note
that since J 1is a Jordan curve made up from edges of 7, which are
also edges of Wﬁ, each face of 7 and of Wﬁ lies either entirely in
int(J) or in ext(J). We take (Q],Q?) as the matching pair based on

(Wﬁ’sﬁ)' Clearly Q1 and QT coincide with G and G*, respectively,
in 3.
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Finally we define the modified occupancy configuration on Wﬁ.
Let w be the original occupancy configuration on 7. Let H be the
half Tine from Uy parallel to the first coordinate axis:

H = {(x1,x2):x] 3_2,x2 = -2}. Then we take

(A.20) m1(v)

w(y) if Ve:j\A]LJA3,

w1(v) +1 if ve A1 U Aj UH,

w](v) -1 if v¢J and v ¢ H.

We choose a vertex v in A] and take

Wy = w](v,w]) = occupied component of v on G, in the

configuration wy -

Now assume that there does not exist any path r on G in J from

a vertex on A1 to a vertex on A3 with all vertices on r and in
J\A1 U A3 occupied. In this case w1 cannot contain any point on
A3. For if there would be an occupied path ry on 91 from v to a
vertex of A3, then either s is contained in J or it leaves J
before it reaches A3. The first case cannot arise, for if r stays
in J, then r is also a path on G and the vertices on g in
3“\A] U A; would also have to be occupied in w (w(v) = w](v) for
all such vertices; see (A.20)). Thus, the piece of ry from its Tast
vertex on A] to its first vertex on A3 would be a path r of the
kind which we just assumed not to exist. Also the second case is
impossible, because the only way to leave J on 91 without hitting
A3 is via Uy and Uy is vacant in wy by (A.20). Thus no occupied
path ry can go through Uy - It follows that indeed N] n A3 = 0.
Since all vertices of A3 UH are occupied in wys and can therefore
be connected by occupied paths on Q] in Wy it follows that they
belong to one component, and

(A.21) Wy n (A3 UH) = 0.

Since all vertices outside J and not on H are vacant we obtain also
W, < J.

We are now ready to apply Cor. 2.2. This Corollary, applied to
the cluster w1 on Q1 shows that there exists a vacant circuit J*
on Qf surrounding w1. Now all vertices on A1 are occupied in Wy

(see (A.20)) and hence belong to w] (since v e A]). Thus
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(A.22) A, €W, <int(J*).

1 1
Also, J* being vacant cannot intersect A3 U H, since it would then
have to intersect this set in a vertex (see Comment 2.2(vii)) and all
vertices on A3 UH are occupied in Wy - But since H goes out to
© and A3 U H together with the edges from A3 to ug form a
connected set, this means that

(A.23) A3 UH < ext(J*).

We can now apply Lemma A.2 with J, =J, Jp = J* - (A.22) and (A.23)
correspond to (A.7). J* therefore must contain an arc B such that
B < int(J) Ciﬁ'\A1 U A; and one endpoint on each of Zz and 34 .
The arc B therefore lies in j\A1 U A3 and in this region Q?
coincides with G* and Wy with w. Thus all vertices of G* on B
are vacant. Also, all points of B belong to edges of G* in
'J'\A1 U A3, because J* 1is a circuit on G*. Theoendpgints of B
belong to J* < G*, as well as to J <G (since Ay U A4 < J), hence
are necessarily vertices of G* (see Comment 2.2(vii)). It follows
that B 1is made up of the complete edges of a vacant path r* on G*
inside 5”\A] U A;, and runs from a vertex on 32 to a vertex 34,
The existence of such an r* was just what we wanted to prove. L]
We remind the reader of the set up for Proposition 2.3. J is a
Jordan curve consisting of four nonempty closed arcs 81,A,82,C with
A and C separating By and B, on J..L;:x(1) = a., i =1,2,a; < ay,
are two axes of symmetry for sz, and for i = 1,2

(A.24) Bi is a curve made up from edges of W%Q, or Bi

lies on Li and J Tlies in the halfplane

(-1 (x(1)-a,) < 0.

The proposition deals with paths r = (vO,e],...,eV,vv) on Qp2

(A.25) Vys€pseees@ 15V, < int(J),

(A.26) e has exactly one point in common with J. This lies
in B1 and is either Vg Or in case B] = L] it may
be the midpoint of ey,

and
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(A.27) e, has exactly one point in common with J. This lies
in 82 and is either Vs or in case 82 = L2’ it may
be the midpoint of e,-

J (r) and J+(r) are the components of int(J)\r with A and C
in their boundary, respectively. ry <r, means J'(r Ciig(rz) see
Def. 2.11 and 2.12). For a path r and a subset S of R rcs
means that all edges and vertices of r 1lie in S. We only consider
sets S for which

(A.28) B, NB

) B NS=10.

Proposition 2.3. Assume that (2.3)-(2.5) hold with G replaced by 7

and that L.:x(1) =a,, 1=1,2, are axes of symmetry for qu’ with

ay < a,. Let J be a Jordan curve consisting of four closed nonempty
arcs By A, B, and C as above satisfying (A.24). Let S be any
subset of RZ such that (A.28) holds. Denote by R = R(S,w) the
collection of all occupied paths r on Qpl which satisfy (A.25)
-(A.27) and r<S. If R+ @, then it has a unique element R = R(S,w)
which precedes all others. Any occupied path r on qu !ﬂl&ﬂl
satisfies (A.25)-(A.27) and r ©S also satisfies

(A.29) r0JTcI(R) and RNT<T (r).

Finally, let ro be a fixed path on qu satisfying (A.25)-(A.27)
and o S (no reference to its occupancy is made here). Then,
whether R = ro or not depends only on the occupancies of the vertices
of qu in the set

(A.30) (‘J‘(ro) Uv, Uv,) ns,

where Vi =@ if Bi is made up from edges of W%z, while

Vi = {v:v a vertex of pr such that its reflection Vv 1in

L; belongs to 3—(r0) and such that e N J <J (r,) NS

0’
for some edge e of sz between v and v}, i = 1,2,

in case Bi lies in Li’ but is not made up from edges of W%z .

Proof: Assume & # @ and r,.,r, e R We shall first construct a path
r on qpl satisfying (A.25)-(A.27) as well as
(A.31) each edge of sz which appears in r also appears

in ryoorin vy,
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(A.32) r<ry and r=<r,.
Since the vertices on r are endpoints of the edges appearing in r,
each vertex on r also lies on ry or r,. In particular since
rys’o cS (A.31) will imply r ©S. Moreover all vertices on r will
be occupied since this holds for rysry € R. Thus r will be an ele-
ment of R which precedes g and ro- By carrying out this process
repeatedly we obtain paths r € ® which occur earlier and earlier in
the partial order. After a finite number of steps we shall arive at
the minimal crossing R.

Now for the details. Let ry = (vo,e],...,ev,vv) and
ro = (wo,f1,...,fT,wT). Both of these paths are self-avoiding, so that
the curve C] made up from S ERRRFLN is a simple arc with endpoints
Vo and vy, C] intersects J 1in exactly two points, my € B] and
m, € BZ' m equals Vg or the midpoint of ers and m, equals v,
or the midpoint of e,- The open arc of C] between my and m,
lies in int(J). Similar comments apply to the curve 02 made up from
the edges of rzzf],...,fT.

If C2 contains no point in J‘(r]) then we take r = ry. We
shall see below (after (A.44)) that this implies (A.32). ((A.25)-(A.27)
and (A.31) are obvious in this case). Let us therefore assume that
C2 contains a point x e J_(r]). Then x belongs to some edge of
rps say Xe fu. We note that all edges of r and r, are edges of
the planar graph sz‘ Two such edges, if they do not coincide, can
intersect only in a vertex of sz, which is a common endpoint of these
edges. Thus an edge f of ro which contains a point of J—(rl)
cannot leave J'(r]) by crossing ri- If it crosses Fr(J'(r]))\r1
then it crosses J and f must be f] or fT, and f dintersects J
only once, in the midpoint of f. In this case one half of f Tlies
in ext(J) U J while the interior of the other half - which contains
a point of J_(r]) - must lie entirely in J'(r1) (cf. Comment 2.4(ii)).
Thus for any edge f of ro we must have

(A.33) either f N int(d) €3 (r)) or £ 0 int(J) <3 (r)).

In particular

(A.38) ?q N int(9) <37 (ry).

Also, if we move along the arc C2 from x to Wgs then the first
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intersection with C1, if any, must be a vertex of qu which is a
common endpoint of an edge of ro and an edge of ry- In particular
it must equal Vg for some 0 < B <v . If such an intersection
exists we take b equal to this intersection; if no such intersection
exists we take b = Wg o the initial point of r,. Similarly, if moving
along C, from x to w_ there is an intersection with ¢ then we
take c¢ equal to the first such intersection; otherwise we take
C=W., the final point of ro. In all cases b and c¢ are vertices
of r,, and if ¢ ison ry, then c = vy for some 0 <y <v . We
write p for the piece of ro between b and c¢. I.e., if b=w
c=w_with 6<e then p = (wd,e6+1,...,e€,w€), and § and ¢
are interchanged when & > . The same argument used above for showing
(A.33) shows that p - which contains the point x ¢ J’(r1) - cannot
leave J'(r1) through 'y and that if p crosses J, then p con-
tains a half edge in ext(J) U J, the other half being in J'(r1).

Thus

(A.35) o Nint(d) = (p\{b,c}) N int(J) <37 (ry).

69

In the sequel we restrict ourselves to the case where b = W
and c = w_with 1 <8 <e <l This means that (A.35) simplifies
to
(A.36) b= 0 \ib,c} 37(ry).

We leave it to the reader to make the simple changes which are neces-
sary when b = W, and/or c = W We define a new path F] by
replacing the piece of ™ between b and c¢ by p. Note that we
may have b = Vg = Ws> c = vY =W, with v < B. We then have to
reverse p and in this case ?] becomes

F] = (VO’e1""’ey’Vy = we,fe,ws_],...,fsﬂ,w6 = VB’eB+1""’ev’Vvl
(In the simpler case B <y p is inserted in its natural order.)

We show that F1 is a path satisfying (A.25)-(A.27). F] consists of
one or two pieces of 8 and p. Each of these pieces is a piece of

a self-avoiding path, hence self-avoiding. Also, S does not intersect
rs and if F] contains two pieces of g then they are disjoint
(because b and c are distinct, being two points of the simple arc

Cz, one strictly before and one strictly after x on CZ). Therefore

¥; s self-avoiding. Let F] = (Vo,é],...,ég,vg). Then by construc-
tion each of the edges éi’ 2 <i < g-1, is one of the edges



406

€s.nese 15Tose. f 4, and similarly
{V],...,VE_]} R TP MR T FRRR ) &

Thus F] satisfies (A.25), because ry and r, do. Also (A.26) and
(A.27) hold, because é1 = ey, ég = e, when 1 <8 <e < t-1. (But
even when b = Wy (A.26) is easy for then 51 = f1; similarly for

(A.27).)
For brevity denote by E(r) the collection of edges of G .
appearing in r. Then it is clear from the construction that

(A.37) E(F]) c E(r]) U E(rz).

(A.37) says that (A.31) holds for ¥, instead of r. Since r Ciﬁ“(r1)
by definition, it is also immediate from the construction and (A.35)
that

(A.38) 71 ﬂic'J'(r]).

He show that (A.38) implies

(A.39) r njcj*(r1) cﬁ‘*(m
and
(A.40) J'(F]) CIJ_(r]).

To see this, observe first that the arc, J] say, of J between the
points of intersection of g and J, and containing A, is the only
part of '3'(r]) on J. By (A.38) the points of intersection of F]

and J must lie on J]. Consequently the arc of J between these
intersection points containing C also contains that arc of J be-
tween the intersection points of J and r containing C. The latter
arc is 3ust J\\J Any interior point z of J \J1 lies therefore
in Fr(J (r ])) n Fr(J (r])). Such interior points exist since the
endpoints of \]\J1 are the intersections of r with J; these lie
on B1 NS and 82 NS, respectively, and cannot coincide by virtue of
(A.28). Pick a point zq in the interior of J\\J Any point

zy € int(J) sufficiently close to 2, belongs to J ( ) ng* (¥ ])
Choose such a z4 and let y be an arbitrary point of J (r ). There
then exists a continuous curve ¢ from y to z] in a* (r ) By
(A.38) ¥ cannot hit r], and since ¢ lies in J* (r ]) it cannot hit
J either. Thus vy does not hit Fr(J (¥ )) and ends at zy € J+(?]).
Thus all of ¢ 1lies in ot (r ) and in part1cu1ar y € J* (v 1). Since
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A

Figure A.7. Schematic diagram giving relative locations J s
the perimeter of the rectangle. J] is the boldly
drawn part of J. r is drawn solidly and F] is
dashed. r. coincides with r in the part drawn as

r
_ . Thé figure illustrates a case with b=w0 .

y was an arbitrary point of J+(r1) we proved
(A.41) 3 (ry) <0 (w)).

The second inclusion in (A.39) follows immediately from this, while
the first inclusion in (A.39) is immediate from the definition of Jt.
(A.40) follows from (A.39) since J7(r) = int(J)\J (r).

(A.40) implies that if an edge f of r, satisfies f 0 int(J)
CIJ"(;]), then also f N int(J) CIJ'(r1). By virtue of (A.33) the
other edges f of r, satisfy f f1int(J) C23+(r1) .fu is not one of
these, by (A.34). However, f, s part of o , and hence of ?1 o)
that f, N int(J) C23+(?]). Therefore, if we write N(r) for the
number of edges f or r, with f 0 int(J) < J (r), then f, is
counted in N(r]) but not in N(F]). Moreover, by the preceding
observation, any f counted in N(F]) must also be counted in N(rl).
Thus
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(A.42) N(FT) < N(r1).

We now replace S by F1 and repeat the procedure, if necessary.
If C, still contains a point in J—(F1) then we form ¥, such that

E(F,) S E(Fy) UE(r)) SE(r) UE(r,), (cf. (A.37)),

J'(Fz) < J'(Fx) CiJ'(r]) (cf. (A.40)),
and
N(Fz) < N(?]) < N(r]) (cf. (A.42)).

Since ro has finitely many edges N(r1) < o, and N decreases with
each step. Thus, after a finite number of steps, say X steps, we

o~

arrive at a path ¥, satisfying (A.25)-(A.27) and

(A.43)  E(F) SE(F, ;) UE(ry)... SE(r)) UE(r,),

(A.44) J(F) €IT(F ) <. =0T (),

A) A-1

and such that C2 contains no more points in J'(FA), or equivalently
-t
(A.45) ro 0T €T (7).

The case where C2 contains no points in J—(r]) mentioned in the
beginning of the proof is subsumed under this, if we take ?k = for
this case. We now take r = ?x . (A.43) gives us (A.31) while (A.44)
and (A.45) give us (A.32). Indeed (A.45) implies J'(FA) = J 7 (r)
CZJ_(rz) just as (A.38) implies (A.41) (merely interchange + and
-). This completes the construction of r.

Now that we have constructed r from res 1 the remainder of
the proof is easy. Denote the elements of R in some order by
Fysloseeesl . If =0 we don't have to prove the existence of R,
and when R has only one element, rys then R = ry In general R
js finite by virtue of (2.3), (2.4). For o >2 1let r be the path
constructed above from r and ro- For o =2 take R =r. For
o > 3 go through the above construction with ™ and ro replaced
by r and rss respectively. The resulting path, r say, is again in
R and satisfies

E(r) €E(r) U E(r3) c E(r1) U E(rz) U E(r3) (cf. (A.31))

and

r<rzand r<r, hence r < ri> 1<i<3 (cf. (A.32)).
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After a finite number of such constructions we obtain a path R e R
which satisfies

f®) < U E(r,),
=1

(A.46) R<r.,,1<i<o.
This R precedes all elements of R. (A.46) implies
RNIEJ(R) €d7(ry)s 1<i<o,

and hence r, NJ cJ(R) (just as (A.38) implied (A.39)). Thus
(A.29) holds. The uniqueness of R 1is immediate for if R' ¢ R also
precedes all elements of ®, then R<R' and R'< R. Then (A.29)
holds for R as well as R' so that

RNJT<SI(RY), RNT TR,

whence
RNJ<JI(R') NIT(R') =R N7J.

Interchanging R and R' yields R NJ = R' NJ, which together with
(A.26) and (A.27) leads to R = R'.
Finally, if ro is a path on G
o €S, then R=r
by any other element of &. Thus R = o is equivalent to

oL satisfyina (A.25)-(A.27) and
0 if and only if g € £ but o is not preceded

(A.47) ro is occupied, but any path r on sz satisfying
(A.25)-(A.27) with r ©S with r <rgs r # o
cannot be occupied.

Clearly, (A.47) only depends on the occupancies of sites on ro oron
paths r<ry, with r ©S. But all such sites belong to '3'(r0) ns
or are an initial or final point in ext(J) of a path r < "o with

r ©S. Since r has to satisfy (A.26) and (A.27) one easily sees
that all these sites belong to the set (A.30)(cf. Comment 2.4(i)).[ ]

We next prove a purely graph-theoretical proposition, which is
needed only in Ch. 9. It was first proved by Sykes and Essam (1964).
We find it somewhat simpler to prove the version below which refers to
sz and q;l rather than G and G*. We remind the reader of the
definition of G I} (w; occupied) for an occupancy configuration w on

W$2 satisfying (2.15) and (2.16). G_, (w; occupied) is the graph with

pL
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vertex set the set of occupied vertices of an and edge set the set
of edges of sz both of whose endpoints are'occupied. QER (wsvacant)
is defined similarly; see the proof of Theorem 9.2.

Proposition A.1. Let w be a fixed occupancy configuration on ”%2’
satisfying (2.15) and (2.16). Two vacant vertices of Q*z vy Efft
Vo lie in the same component of ng (w; vacant) if and only if v
and v, lie in the same face of qu (w; occupied).

1

Proof: vq and v, Tlie in the same component of Q;R (w; vacant) iff
there exists a vacant path on Q;Q from vy to Vs If such a path
exists, then it cannot intersect any edge of ng (w; occupied) (by
virtue of Comment 2.3(v)) so that the path lies entirely in ine face
of sz (w; occupied). Thus in one direction the proposition is trivial.
For the converse, assume VisVy € Q;z are vacant and lie in the
same face of G ¢ (w;occupied). By definition of such a face as a
component of Re\G 2 (w;o%fupied) this means that there exists a
continuous curve ¢ in R \sz (w;occupied) from v to v,. In
order to complete the proof we show how one can modify ¢ so that it
becomes a path on Q;l (w; vacant). To make this modification we
recall that all faces of W$2 are "triangles" (Comment 2.3(vi)).
Assume that ¢ intersects such a face, say the open triangle F with
distinct vertices Wy W, sW o and edges ey between W, and W3, €
between Wa and Wi and ey between Wy and W, - Moving from vy
to v, along y let X1 (x2) be the first (last) intersection with
F. The x; are necessarily on the perimeter of F, since both end-
points of ¢ are vertices of Q;Z, hence not in any of the open
triangular faces of W$2. If X; € €, then at least one endpoint of
e must be vacant, for otherwise e belongs to G 2 (w; occupied),
while y 1is disjoint from this graph. This implies that X, can be
connected to Xo by a simple arc along the perimeter of F, which
sti1l does not intersect Qpl (w; occupied). For example, let
X| € €15 X, € &, If the common endpoint ) of e and e, is
vacant, then move from X to Wy along e and from wq to X5
along €. If Wq is occupied, then Wy and W, must be vacant,
and one can go from X4 to Wy along eys from W, to Wy along
ey, and from Wy to Xy along €. These connections from Xy to
Xo do not intersect G , (ws occupied), because if an edge e does
not belong to G 2 (w; occupied), then no interior point of e can

belong to sz (w; occupied). ¢ intersects only finitely many faces,
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say F]”"’Fv' We can successively replace the piece of ¢ between
the first and last intersection of Fi with a simple arc along the
perimeter of Fi' Making such a replacement cannot introduce a new
face whose interior is entered by ¢ . On the contrary, each such
replacement diminishes the number of such faces. Consequently, after
a finite number of steps we obtain a continuous curve, ¢ say, from

vi to v, disjoint from sz (ws occupied), and which is contained in
the union of the edges of W$£ . ¢ may not be a path on Q*l. For
instance it can contain only part of an edge e, rather than the whole
edge e, and ¢ is not necessarily simple. Note, however, that ¢
begins at the vertex vy of QEQ’ and ends at Vo which we may take
different from v, (there is nothing to prove if Vi = vz). Let w
be the first vertex of W$z different from vy through which ¢
passes. Set

1

to

max{t € [0,1]: o(t) v]},

1]
n

t] min{t e [0,1]: ¢(t) w]}.

We can then discard the piece of ¢ from t =0 to t = to; the
restriction of ¢ to [t0,1] is still a path from Vi to v, Also
for ty < t < t, ¢(t) cannot equal any vertex of W%z and therefore

is contained in the union of the interiors of the edges of W$z' Since
the continuous path ¢ cannot go from the interior of one edge to the
interior of another edge without passing through a vertex, this means
that o¢(t) for ty < t <ty is contained in the interior of a single
edge e from vy to Wi- Also by connectedness ¢ passes through
all points of e;. We can therefore replace the piece of ¢ from
t=0 to t= t1 by the simple arc e After this replacement ¢
still is a continuous path in RZ‘\QPQ (w3 occupied). We repeat this
process with w, in place of vy After a finite number of replace-
ments we obtain a path p on sz\\qu (w; occupied), with possible
double points, from vy to Vo Since p does not intersect G 3 (ws
occupied) it contains only vacant vertices, and in particular no central
vertices of sz (see (2.15)). Thus p 1is a path with possible double
points on Q;z (w; vacant). Loop-removal (see Sect. 2.1) from o
finally yields the required self-avoiding path on Q;Q (w; vacant)

from v, to v,. ]

Finally we prove a simple lemma which is used repeatedly, and
which guarantees the existence of "periodic paths" resembling straight
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lines on periodic graphs.

Lemma A.3. Let G be a periodic graph imbedded in Rd. Then for
each 1 < i <d there exists a vertex Vg = (vo(l),...,vo(d)) of G
and a path rg = (vo,e1,v],...,e0,v0) on G such that

(A.48) 0<v(j)<1,1<j<d,

(A.49) Vg, = Vgtag; for some integer o > 1

and

(A.50) for all n > 1 the path on G obtained by successively

traversing r0+ka£i, k=0,1,...,n 1is a self-avoiding
path on G connecting Vo with v0+(n+1)a£1 .

Proof: Llet Wy be any vertex of G and r a path on G connecting
Wy with w0+gi. Then the path on G obtained by successively tra-
versing r+kg;, k = 0,...,n connects W, with w0+(n+1)£i, but it
may have double points. To get rid of the double points we choose Wi

W, on r as follows. First let o be the maximal integer for which
there exist vertices Wis W, onor with

(A.51) Wy = Witags .

Since the endpoint of r, w0+gi, differs from the initial point of r
by E; we see that o > 1. We now select a pair Wis W, satisfying
(A.51) and lying"as close together as possible", in the sense that
there does not exist any pair of vertices (w3,w4) # (w1,w2) on the
segment of r from Wy to W, with W, = w3+u£1. Denote the segment
of r from W, to w, by s. Let 2],...,2d be the unique integers

d
for which wo+-z Rjgj 11fs in the unit cube [0,1)d. We claim that
1
= + £ =5 + E. . Si i
we can take vy = Wy ; QJEJ and rg = s g KJEJ Since r is

self-avoiding so is s and by virtue of periodicity we only have to
show that for any k >1 s and s + kagi cannot intersect, and that
the only common point of s and s + Ei is W, = Wy + agi, the endpoini
of s and initial point of s + gi. To see that this is indeed the
case consider a vertex Wy of G which lies on s as well as on

s + k“gi' Then w3:=w4—ku€i also 1ies on s. By our definition of

a, this is possible only if k = 1. Moreover, if k =1, by our choice
of (w],wz) this is possible only if Wy = Wy and Wy = Wy, 8S

claimed. ]
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scaling law 5

self-avoiding 11,21
self-matching 19,54

series (resistances in) 367,378
short circuit 354,355
shortcut of one edge 263
shortcut of two edges 297
simple quadratic lattice 12,38
site 10

site-percolation 4,40,255
star-triangle transformation 59
strongly minimal 297
Sykes-Essam relation 238,243

Thomson's principle 368

triangular lattice 14,19,24,
39,53,56,58,255,270,280,381

triangulated graphs 52

up-triangle 59,60

vacant 40

vacant connection 76,182,191,
284

vacant crossing 47

vacant path 25

vertex 10

vertical crossing 47

Whitney's theorem 29,366,367,
375,386
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INDEX OF SYMBOLS

General notation.
:= B

=0 >

Fr(A)

|

oA

ext

#A

5 -x[a(d),b(d)]

{a} = [b(1),b(2)]

anb
avb
Lal
la]
vQw
/11

Probability notation.
IfE]
P{E}

means that A 1is defined by B

interior of A. When A is a subset of
R this has the usual meaning. When A
is an edge of _a graph or an arc in R
we also use A to denote A minuts its
endpoints.

Topological boundary of A

closure of A. If A 1is a Jordan curve
in the plane we also use A to denote
A U int(A).

boundary on a graph of a set A
graph (see p.29).

exterior boundary on a graph of a set A
in the graph (see p.387).

number of vertices in A
sions
in A).

the set of points in A but outside B.
i-th coordinate vector

in the

(on rare occa-
#A denotes the number of edges

zero vector
vector of all ones

p1(1) > py(i), 1 <1 < d, for two d-
vectors Py and Py

Cartesian product of the i
[a(i),b(i)], i.e., {x € R ) < x(i)
<b(i), V<i<dl.

2

the vertical line segment {x ¢ R":
x(1) = a, b(1) < x(2) < b(2)}.
[b(1),b(2)]x {a} denotes a horizontal
line segment.

min(a,b)

yterva]s

for real numbers a, b

max(a,b) for real numbers a, b
largest integer < a

smallest integer > a

v and w are adjacent vertices on G

denotes the end of a Comment, Remark, or
Problem.

indicator function of the event E
probability of E
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P{E|F} conditional probability of E, given F
(for an event F)

P{E|3} conditional probability of E, given &
(for a o-field ).

E{X} expectation of the random variable X

with respect to P (subscripts on E
correspond to the same subscripts on P).

E{X;F} E{XI[F]} = integral of X over F with
respect to the probability measure

E{X|F} conditional exnectation of X given F
(for an event F)

E{X|3} conditional expectation of X given &

(for a o-field 3J).

Special symbols.

We 1ist here the numbers of the pages where some symbols which are used
in the same meaning throughout the book are defined.

V1QV2 10 C}ESL 2
r]«< ry 35 Qpl '
<r,t,s> 301 G(w; occupied) 244
a(n,e) 84 G*(w; vacant) 244
Ag,Al 7,335 (G,.G*) 18
G 305 I(v,e) 352
B(N) 227 IF(r) 34
B(v,M) 101 K 279
b3
B, 7335 Ky ¥ ¥ 305
B (VsM,3,%) 101 L, 133
E{} 44 L(a) 148
P 2,52
E, 70 Py .
E(3psdp) 143 R 7
= 8
Eis Ey Ez(z],xs) 149 PR §352
e 40 pr 3,52
e(r) 281 P, 1,44
3(r) 281 P, 44
G 12 ot 279,282
G 13 R(e) 339
Gg 38 s(v,M) 101,201
C 258 S0°51 92,347

G
gd 258 R, 7,336
G* 18 R 35



T(m;i) 82

cesl 44
w(e,v) 351

W(e) 41

W(v) 1,27,41
W*(v) 48

wp% 27

Yp{r)sy (r) 143
Y(r) 133

Y(a) = Y(a,r) 148
zh(r),zl(r) 148
Z(2),2%(2) 211

3 29

aext 387

Bf 353

AMp) 243

AS 101,201

z(a) 148

6(p) = 8(p,v) 2,46
k = k(d) 83

A 83,127,262

Ay 170
hy, 172
he-hg 262
Ay 279
u 83,170

o(n;i.p) = o(n;i,p,G)
o*(n3i,p) = o*(n3i,p,G)
(n3i,p) 82
™(n3i,p) 83
TO((n,n),1,p) 3

w 24,40,41

Q 44

48

48
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