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MARKOV CHAINS

7. Convergence to equilibrium. Long-run pro-
portions

Convergence to equilibrium for irreducible, positive recurrent, aperiodic
chains ∗and proof by coupling∗. Long-run proportion of time spent in a
given state.

Convergence to equilibrium means that, as the time progresses, the Markov
chain ‘forgets’ about its initial distribution λ. In particular, if λ = δ(i), the
Dirac delta concentrated at i, the chain ‘forgets’ about initial state i. Clearly,
this is related to properties of the n-step matrix P n as n → ∞. Consider
first the case of a finite chain.

Theorem 7.1. Suppose that a finite m × m transition matrix P n con-
verges, in each entry, to a limiting matrix Pi = (πij):

lim
n→∞

p
(n)
ij = πij , ∀ i, j ∈ I. (7.1)

Then (a) every row π(i) of Pi is an equilibrium distribution

π(i)P = π(i) or πij =
∑

l

πilplj .

(b) If P is irreducible then all rows π(i) coincide: π(1) = . . . = π(m) = π. In
this case,

lim
n→∞

P(Xn = j) = πj ∀j ∈ I and the initial distribution λ.
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Proof. (a) ∀ state j we have
(
π(i)P

)
j

=
∑
l∈I

πilplj

=
∑
l

lim
n→∞

p
(n)
il plj = lim

n→∞

∑
l

p
(n)
il plj = lim

n→∞
p

(n+1)
ij = πij =

(
π(i)
)

j
.

(7.2)

(b) If P is irreducible then all rows π(i) of Pi coincide as there is a unique
equilibrium distribution. Also,

lim
n→∞

P(Xn = j) = lim
n→∞

∑

i

λip
(n)
ij =

∑

i

λi lim
n→∞

p
(n)
ij = πj. (7.3)
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For a countable chain, our argument in Eqn (7.2) requires a justification
of exchanging the order of the limit and summation. I’ll omit this argument:
the reader can find it in the recommended literature.

We see from Theorem 7.1 that the equilibrium distribution of a chain can
be identified from the limit of matrices P n as n → ∞. More precisely, if we
know that P n converges to a matrix Pi whose rows are equal to each other
then these rows give the equilibrium distribution π. We see therefore that

convergence P n → Π where Π has a structure




π −−−
π −−−
. . . −−−



 is a crucial

factor.

So when does P n → Π? A simple counterexample: P =

(
0 1
1 0

)
. Here

P n =

(
1 0
0 1

)
, n even,

P n =

(
0 1
1 0

)
, n odd.

(7.4)

In this case the equilibrium distribution is unique: π = (1/2, 1/2) but there
is no convergence P n → Π, as P n is periodic (of period 2).

More generally, consider an m × m matrix P =





0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
1 0 0 . . . 0




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corresponding to Fig. 7.1.
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Figure  7.1

Then P 2 will correspond to
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Figure  7.2

Similarly, for higher powers, with the mth power P m = I:
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Figure  7.3

The picture will then be repeated mod m. Again, the equilibrium distri-
bution is unique: π = (1/m . . . , 1/m), but the convergence P n → Π fails.

Definition 7.1. Transistion matrix P is called aperiodic if ∀ i ∈ I

p
(n)
ii > 0 for all n large enough. (7.5)

If in addition, P is irreducible then, ∀ i, j ∈ I

p
(n)
ij > 0 for all n large enough. (7.6)

Theorem 7.2. Assume P is irreducible, aperiodic and positive recur-
rent. Then, as n → ∞,

P n → Π.

The entries of the limiting matrix Π are constant along columns. In other
words the rows of Π are repetitions of the same vector π which is the (unique)
equilibrium distribution for P . Hence, the irreducible aperiodic and positive
recurrent Markov chain forgets its initial distribution: ∀ λ and j ∈ I,

lim
n→∞

P(Xn = j) = πj .

Proof: a sketch. (Non-examinable but useful in many situations.)

Consider two Markov chains (X
(i)
n ), which is

(
δ(i), P

)
, and (Xπ

n), which is

4



(π, P ). Then

p
(n)
ij = Pi(X

(i)
n = j), πj = P(Xπ

n = j).

To evaluate the difference between these probabilities, we will identify their
‘common part’, by coupling the two Markov chains, i.e. running them
together.

One way is to run both chains independently. It means that we consider
the Markov chain (Yn) on I × I, with states (k, l) where k, l ∈ I, with the
transition probabilities

pY
(k,l)(u,v) = pkuplv, k, l, u, v ∈ I, (7.7)

and with the initial distribution

P(Y0 = (k, l)) = 1(k = i)πl, k, l ∈ I.

However, a better way for us is to run the chain (Wn) where the transition
probabilities are

pW
(k,l)(u,v) =

{
pkuplv, if k 6= l,

pku1(u = v), if k = l,
k, l, u, v ∈ I, (7.8)

with the same initial distribution

P(W0 = (k, l)) = 1(k = i)πl, k, l ∈ I. (7.9)

Indeed, Eqn (7.8) determines a transition probability matrix on I × I: all
entries pW

(k,l)(u,v) ≥ 0 and the sum along a row equals one. In fact,

∑

u,v∈I

pW
(k,l)(u,v) =






∑
u

pku

∑
v

plv, if k 6= l
∑
u

pku, if k = l
= 1.

Further, the partial summation gives the original transitional probabilities P
∑

v∈I

pW
(k,l)(u,v) = pku,

∑

u∈I

pW
(k,l)(u,v) = plv.

Pictorially, the two components of the chain (Wn) behave individually like

(X
(i)
n ) and (Xπ

n ); together they evolve independently (i.e. as in (Yn)) until
the (random) time T when they coincide

T = inf
[
n ≥ 1 : X(i)

n = Xπ
n

]
,
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after which they stay together. Therefore,

p
(n)
ij − πj = P

W
(
X(i)

n = j
)
− P

W (Xπ
n = j) .

Writing

P
W
(
X(i)

n = j
)

= P
W
(
X(i)

n = j, T ≤ n
)

+ P
W
(
X(i)

n = j, T > n
)

(7.10)

and

P
W (Xπ

n = j) = P
W (Xπ

n = j, T ≤ n) + P
W (Xπ

n = j, T > n) , (7.11)

we see that the first summands cancel each other:

P
W
(
X(i)

n = j, T ≤ n
)

= P
W (Xπ

n = j, T ≤ n) ,

as the events
{

X
(i)
n = j, T ≤ n

}
and {Xπ

n = j, T ≤ n} coincide. Hence

p
(n)
ij − πj = P

W
(
X(i)

n = j, T > n
)
− P

W (Xπ
n = j, T > n)

and ∣∣∣p(n)
ij − πj

∣∣∣ ≤ P
W (T > n) = P

Y (T > n). (7.12)

The last bound is called the coupling inequality.

Thus, it suffices to check that P
W (T > n) → 0, i.e. P(T < ∞) = 1. This

is established by using the fact that the original matrix P is irreducible and
aperiodic. (I omit the details.) 2

In the case of a finite irreducible aperiodic chain it is possible to establish
that the rate of convergence of p

(n)
ij to πj is geometric. In fact, in this case ∃

m ≥ 1 and ρ ∈ (0, 1) such that

p
(m)
ij ≥ ρ ∀ states i, j. (7.13)

Theorem 7.3. If P is finite irreducible and aperiodic then ∀ states i, j
∣∣∣p(n)

ij − πj

∣∣∣ ≤ (1 − ρ)n/m − 1, (7.14)
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where m and ρ are as in (7.13).

Proof. (Non-examinable but useful in many situations.) Repeat the
scheme of the proof of Theorem 7.2: we have to assess P

Y (T > n). But in
the finite case, we can write

P
W
(k,l)(T ≤ m) ≥

∑

u∈I

p
(m)
ku p

(m)
lu ≥ ρ

∑

u∈I

p
(m)
lu = ρ,

i.e.
P

W
(k,l)(T > m) ≤ (1 − ρ) ∀ k, l ∈ I.

Then, by the strong Markov property

P
W (T > n) ≤ P

W
(
T >

[ n

m

]
m
)
≤ P

W (T > m)[n/m]

and the assertion of Theorem 7.3 follows. 2

Examples. 7.1. Consider an m × m stochastic matrix whose rows are
cyclic shifts of a given stochastic vector (p1, . . . , pm) where p1, . . . , pm > 0
and p1 + . . . + pm = 1:

P =





p1 p2 . . . pm−1 pm

p2 p3 . . . pm p1
...

...
. . .

...
...

pm p1 . . . pm−1





Since all states communicate directly, this matrix is irreducible and aperiodic;

moreover, the value m0 = min
[
n : p

(n)
ij > 0 ∀ i, j ∈ I

]
= 1. The equilibrium

distribution is unique: π = (1/m, . . . , 1/m). By Theorems 7.1 and 7.2,
P n → Π geometrically fast:

∣∣∣p(n)
ij − πj

∣∣∣ ≤ (1 − ρ)n

where ρ = min
[
p1, . . . , pm

]
∈ (0, 1).

7

7.2. (Card shuffling) The problem of shuffling a pack of cards is important
not only in gambling but in a number of other application. See Example
Sheet 2.

Remark 7.1. For a transient or null recurrent irreducible aperiodic
chain, matrix P n converges to a zero matrix:

lim
n→∞

P n = O.

We will not give here the formal proof of this assertion. (For a transient case

the proof is based on the fact that the series
∑
n≥1

p
(n)
ii < ∞.)

Definition 7.2. Consider the number of visits to state i before time n:

Vi(n) =

n−1∑

k=0

1 (Xk = i) . (7.17)

The limit (if it exists)

lim
n→∞

Vi(n)

n
(7.18)

is called the long-run proportion of the time spent in state i.

Theorem 7.4. ∀ state i ∈ I:

Pi

(
lim

n→∞

Vi(n)

n
= ri

)
= 1, (7.19)

where

ri =

{
πi, if i is positive recurrent,

0, if i is null recurrent or transient.
(7.20)

Proof. First, suppose that state i is transient. Then, as we know, the
total number Vi of visits to i is finite with probability 1. See Eqns (5.8),
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(5.18). Hence, Vi/n → 0 as n → ∞ with probability 1. As 0 ≤ Vi(n) ≤ Vi,
we deduce that Vi(n)/n → 0 as n → ∞ with probability 1.

Now let i be recurrent. Then the times T
(1)
i , T

(2)
i , ... between successive

returns to state i are finite with Pi-probability 1. By Theorem 6.5, they
are IID random variables, with mean value mi equal to 1/πi in the positive
recurrent case and to ∞ in the null recurrent case. Obviously,

T
(1)
i + · · ·+ T

(Vi(n))
i ≥ n,

but
T

(1)
i + · · · + T

(Vi(n)−1)
i ≤ n − 1,

see Fig. 7.4. So, we can write:

1

Vi(n)

(
T

(1)
i + · · ·+ T

(Vi(n)−1)
i

)
≤

n

Vi(n)
≤

1

Vi(n)

(
T

(1)
i + · · ·+ T

(Vi(n))
i

)
.

(7.21)

By Theorem 6.6, on an event of Pi-probability 1, the limit lim
n→∞

1

n

n∑

l=1

T
(l)
i =

mi holds:

Pi

(
1

n

n∑

l=1

T
(l)
i → mi, as n → ∞

)

= 1. (7.22)

9
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Figure  7.4

Next, as i is recurrent, sequence (Vi(n)) increases indefinitely, again on an
event of Pi-probability 1:

Pi

(
Vi(n) ր ∞, as n → ∞

)
= 1. (7.23)

Then we can put in (7.22) a summation up to Vi(n), instead of n and, corre-
spondingly, divide by the factor Vi(n):

lim
n→∞

1

Vi(n)

Vi(n)∑

l=1

T
(l)
i = mi.

This relation holds on the intersection of the two aforementioned events of
probability 1, which obviously has again Pi-probability 1. On the same event,

lim
n→∞

1

Vi(n)

Vi(n)−1∑

l=1

T
(l)
i = mi.

In other words, Eqns (7.22) and (7.23) together yield that

Pi



 1

Vi(n)

Vi(n)−1∑

l=1

T
(l)
i → mi and

1

Vi(n)

Vi(n)∑

l=1

T
(l)
i → mi, as n → ∞



 = 1.

(7.24)
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But then, owing to (7.21), still on the same intersection of two events of
Pi-probability 1, the ratio n/Vi(n) tends to mi, i.e. the inverse ratio Vi(n)/n
tends to ri = 1/mi. This gives (7.19), (7.20) and completes the proof of
Theorem 7.4.

Remark 7.3. A careful analysis of the proof of Theorem 7.4 shows
that if P is irreducible and positive recurrent, then we can claim that in
(7.19) the probability distribution Pi can be replaced by Pj, or, in fact, by
the distribution P generated by an arbitrary initial distribution λ. This is
possible because sums T

(1)
i + · · · + T

(n)
i still behave asymptotically as if the

RVs T
(l)
i were IID. (In reality, the distribution of the first RV, T

(1)
i = Ti = H1,

will be different and depend on the choice of the initial state.)

Theorem 7.5. Let P be a finite irreducible transition matrix. Then
for any initial distribution λ and a bounded function f on I:

P

(
lim

n→∞

V (f, n)

n
= π(f)

)
= 1, (7.25)

where
π(f) =

∑

i∈I

πif(i). (7.26)

Proof. The proof of Theorem 7.5 is a re-finement of that of Theorem
7.4. More precisely, (7.25) is equivalent to

P

(
lim

n→∞

∣∣∣∣
V (f, n)

n
− π(f)

∣∣∣∣ = 0

)
= 1.

In other words, we have to check that on an event of P-probability 1,
∣∣∣∣
V (f, n)

n
− π(f)

∣∣∣∣→ 0, as n → ∞. (7.27)

Writing V (f, n) =
∑
i∈I

Vi(n)f(i) and π(f) =
∑
i∈I

πif(i), we can transform

11

and bound the left-hand side in (7.27) as follows

∣∣∣∣
V (f, n)

n
− π(f)

∣∣∣∣ =

∣∣∣∣∣
∑

i∈I

(
Vi(n)

n
− πi

)
f(i)

∣∣∣∣∣ ≤
∑

i∈I

∣∣∣∣
Vi(n)

n
− πi

∣∣∣∣
∣∣f(i)

∣∣.

We know that, ∀ i ∈ I, on an event of Pi-probability 1, Vi(n)/n → πi.
Remark 7.1 allows us to claim convergence Vi(n)/n → πi on an event of Pj-
probability 1 (that is, regardless of the choice of the initial state), or, even
stronger, on an event of P-probability 1, where P is the distribution of the
(λ, P ) Markov chain with any initial distribution λ. Then (7.25) follows,
which completes the proof of Theorem 7.5.

Example 7.3. (Markov Chains, Part IIA, 2002, A401M) Write an essay
on the long-time behaviour of discrete time Markov chains on a finite state
space. Your essay should include discussion of the convergence of probabili-
ties as well as almost-sure behaviour. You should also explain what happens
when the chain is not irreducible.

Solution. The state space splits into open classes O1, ..., Oj and closed
classes Cj+1, ..., Cj+l. If l = 1 (a unique closed class), it is irreducible. Start-
ing from an open class, say Oi, we end up in closed class Ck with probability
hk

i . These probabilities satisfy

hk
i =

j+l∑

r=1

p̂irh
k
r .

Here, p̂ir is the probability that we exit class Oi to class Or or Cr, and for
r = j + 1, ..., j + l: hk

r = δr,k.

The chain has a unique equlibrium distribution π(r) concentrated on Cr,
r = j+1, ..., j+l (hence, a unique equilibrium distribution when l = 1). Any
equilibrium distribution is a mixture of the equilibrium distributions π(r).

Starting in Cr, we have, for any function f on Cr:

1

n

n∑

t=0

f(Xt) →
∑

i∈Cr

π
(r)
i f(i) almost surely.

12



Moreover, in the aperiodic case (where gcd {n : p
(n)
aa > 0} = 1 for some

a ∈ Cr), ∀ i0 ∈ Cr:
P(Xn = i|X0 = i0) → πr

i ,

and the convergence is with a geometric speed.
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8. Detailed balance and reversibility

Time reversal, detailed balance, reversibility; random walk on a graph.

Let (X0, X1, . . .) be a Markov chain and fix N ≥ 1. What can we say
about the time reversal of (Xn), i.e. the family (XN−n, n = 0, 1, . . . , N) =
(XN , XN−1, . . . , X0)?

Theorem 8.1. Let (Xn) be a (π, P ) Markov chain where π = (πi) is an
equilibrium distribution for P with πi > 0 ∀ i ∈ I. Then: (a) ∀ N ≥ 1, the

time reversal (XN , XN−1, . . . , X0) is a (π, P̂ ) Markov chain where P̂ = (p̂ij)
has

p̂ij =
πj

πi
pji. (8.1)

(b) If P is irreducible then so is P̂ .

Proof. (a) First, observe that P̂ is a stochastic matrix, that is, p̂ij ≥ 0
and ∑

j

p̂ij =
1

πi

∑

j

πjpji =
1

πi

πi = 1.

Next, π is P̂ -invariant

∑

i

πip̂ij =
∑

i

πjpji = πj

∑

i

pji = πj .

Now pull the factor π• through the product

P (XN = iN , . . . , X0 = i0) = P (X0 = i0, . . . , XN = iN)
= πi0pi0i1 . . . piN−1iN

= p̂i1i0πi1 . . . piN−1iN

= p̂i1i0 p̂i2i1πi2 . . .
= p̂i1i0 . . . p̂iN iN−1

πiN

= πiN p̂iN iN−1
. . . p̂i1i0 .
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We see that (XN−n) is a (π, P̂ ) Markov chain.

(b) If P is irreducible then any pair of states i, j is connected, that is ∃ a
path i = i0, i1, ..., in = j with

0 < pi0i1 . . . pin−1in = (1/πi0)πi0pi0i1 . . . pin−1in

= (1/πi0)p̂i1i0πi1 . . . pin−1in = . . .
= (1/πi0)p̂i1i0 . . . p̂inin−1

πin .

So, p̂i1i0 . . . p̂inin−1
> 0, and j, i are connected in P̂ . 2

The case where chain (XN−n) has the same distribution as (Xn) is of a
particular interest

Theorem 8.2. Let (Xn) be a Markov chain. The following properties
are equivalent:

(i) ∀ n ≥ 1 and states i0, ..., in:

P(X0 = i0, . . . , Xn = in) = P(X0 = in, . . .Xn = i0). (8.2)

(ii) (Xn) is in equilibrium, i.e. (Xn) ∼ (π, P ) where π is an equilibrium
distribution for P , and

πipij = πjpji ∀ states i, j ∈ I. (8.3)

Proof. (i) ⇒ (ii). Take n = 1,

P(X0 = i, X1 = j) = P(X0 = j, X1 = i),

and sum over j

∑

j

P(X0 = i, X1 = j) = P(X0 = i) = λi,

∑

j

P(X0 = j, X1 = i) = P(X1 = i) = (λP )i .
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So, λi = (λP )i ∀ i, i.e. λP = λ. Hence, the chain is in equilibrium λ = π.
Next, ∀ i, j

P(X0 = i, X1 = j) = πipij = P(X0 = j, X1 = i) = πjpji.

(ii) ⇒ (i). Write

P(X0 = i0, . . . , Xn = in) = πi0pi0i1 . . . pin−1in

and use Eqns (8.3) to pull π• through the product

πi0pi0i1 . . . pin−1in = pi0i1πi1 . . . pin−1in = . . .
= pi0i1 . . . pinin−1

πin = πinpinin−1
. . . pi0i1

= P(X0 = in, . . . , Xn = i0).

2

Definition 8.1 A Markov chain (Xn) satisfying (8.2) is called reversible.
Eqns (8.3) are called detailed balance equations (DBEs). So, the assertion
of Theorem 8.2 reads; a Markov chain is reversible if and only if it is in
equilibrium, and the DBEs are satisfied.

The DBEs are a powerful tool for identification of an ED.

Theorem 8.3. If λ and P satisfy the DBEs

λipij = λjpji, i, j ∈ I,

then λ is an ED for P , that is λP = λ.

Proof. Sum over j:

λi

∑

j

pij = λi,

∑

j

λjpji = (λP )i.

The two expressions are equal ∀ i, hence the result. 2
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So, for a given matrix P , if the DBEs can be solved (that is, a probability
distribution that satisfies them can be found), the solution will give an ED.
Furthermore, the corresponding Markov chain will be reversible.

An interesting and important class of Markov chains is formed by random

walks on graphs. We have seen examples of such chains: a birth-death process
(a RW on Z

1 or its subset), a RW on a plane square lattice Z
2 and, more

generally, a RW on a d-dimensional cubic lattice Z
d. A feature of these

examples is that a wandering particle can jump to any of its neighbouring
sites; in a symmetric case, the probability of each jump is the same. This
idea can be extended to a general graph, with directed or non-directed links
(edges). Here, we focus on non-directed graphs; a graph is understood as
a collection G of vertices some of which are joined by non-directed edges,
or links, possibly several. Non-directed means here that the edges can be
traversed in both directions; sometimes it’s convenient to think that each
edge is formed by a pair of opposite arrows.

...
..

.

.
.

.

..

.
.

Figure  8.1

A graph is called connected if any two distinct vertices are connected with
a path formed by edges. The valency vi of a vertex i is defined as the number
of edges at i. The connectedness vij is the number of edges joining vertices i
and j.

The RW on the graph has the following transition matrix P = (pij)

pij =

{
vij

/
vi, if i and j are connected,

0, otherwise.
(8.4)

The matrix P is irreducible if and only if the graph is connected. The vector
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v = (vi) satisfies the DBEs. That is, ∀ vertices i, j

vipij = vij = vjpji, (8.5)

and hence is P -invariant. We obtain the following straightforward result.

Theorem 8.4. The RW on a graph, with transition matrix P of the
form (8.4), could be of all three types: transient (viz., a symmetric nearest-
neighbour RW on Z

d with d ≥ 3), null recurrent (a symmetric nearest-
neighbour RW on Z

2 or Z
1) or positive recurrent. It is positive recurrent if

and only if the total valence
∑
i

vi < ∞, in which case πj = vj

/∑
i

vi is an

equilibrium distribution. Furthermore, the chain with equilibrium distribu-
tion π is reversible.

A simple but popular example of a graph is an ℓ-site segment of a one-
dimensional lattice: here the valency of every vertex equals 2, except for the
endpoints where the valence is 1. See Fig. 8.2 a).

. .. . . . . .
..

.

.
..
..

. .

..
=l 12= 8l

Figure  8.2
a) b)

An interesting class is formed by graphs with a constant valency: vi ≡ v;
again the simplest case is v = 2, where ℓ vertices are placed on a circle (or on
a perfect polygon or any closed path). See Fig. 8.2 b). A popular example
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of a graph with a constant valency is a fully connected graph with a given
number of vertices, say {1, . . . , m}: here the valency equals m − 1, and the
graph has m(m − 1)/2 (non-directed) edges in total. See Fig. 8.3.
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m = 6= 5m

Figure  8.3

a) b)

Another important example is a regular cube in d dimensions, with 2d

vertices. Here the valency equals d, and the graph has d2d−1 (still non-
directed) edges joining neigbouring vertices. See Fig. 8.4.
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Figure  8.4

Popular examples of infinite graphs of constant valency are lattices and
trees.

In the case of a general finite graph of constant valency vi = v ∀ vertix
i, the sum

∑
i

vi equals v × |G| where |G| is the number of vertices. Then
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probabilities pij = pji = vij/v, ∀ neighbouring pair i, j. That is, the transition
matrix P = (pij) is Hermitian: P = PT. Furthermore, the equilibrium
distribution π = (πi) is uniform: πi = 1/|G|.

In Linear Algebra courses, it is asserted that a (complex) Hermitian matrix
has an orthonormal basis of eigen-vectors, and its eigen-values are all real.
This handy property is nice to retain whenever possible. For a Markov
chain, even when P is originally non-Hermitian, it can be ‘converted’ into a
Hermitian matrix, by changing the scalar product. We will explore further
this avenue in Sections 12–14.

Example 8.1 (Markov Chains, Part IIA, 2002, A101M and Part IIA,
2002, B101M)

(i) We are given a finite set of airports. Assume that between any two
airports, i and j, there are aij = aji flights in each direction on every day.
A confused traveller takes one flight per day, choosing at random from all
available flights. Starting from i, how many days on average will pass until
the traveller returns again to i? Be careful to allow for the case where may
be no flights at all between two given airports.

(ii) Consider the infinite tree T with root R, where for all m ≥ 0, all
vertices at distance 2m from R have degree 3, and where all other vertices
(except R) have degree 2. Show that the random walk on T is recurrent.

Solution. (i) Let X0 = i be the starting airport, Xn the destination
of the nth flight and I denote the set of airports reachable from i. Then
(Xn) is an irreducible Markov chain on I, so the expected return time to i,
is given by (1/πi), where π is the unique equilibrium distribution. We will

show that 1/πi =
∑

j,k∈I

ajk

/∑
k∈I

aik

In fact,

pjk =
ajk∑

l∈I

ajl
and

(∑

l∈I

ajl

)
pjk =

(∑

l∈I

akl

)
pkj.
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So the vector v = (vj) with vj =
∑
l∈I

ajl is in detailed balance with P . Hence

πj =
∑

k∈I

ajk

/
∑

k,l∈I

akl.

(ii) Consider the distance Xn from the root R at time n. Then (Xn)n≥0

is a birth-death Markov chain with transition

qi = pi = 1/2, if i 6= 2m,

qi = 1/3, pi = 2/3, if i = 2m.

By a standard argument for hi = Pi(hit 0)

h0 = 1, hi = pihi+1 + qihi−1, i ≥ 1,

piui+1 = qiui, ui = hi−1 − hi,

ui+1 =
qi

pi
ui = γiu1, γi =

qi . . . q1

pi . . . p1
,

and
u1 + · · ·+ ui = h0 − hi, hi = 1 − A(γ0 + · · ·+ γi−1).

The condition
∑
i

γi = ∞ forces A = 0 and hence hi = 1 for all i. Here,

γ2m−1 = 2−m,

so
∑
i

γi = ∞ and the walk is recurrent.

The DBEs are a convenient tool to find an equilibrium distribution: if
a measure λ ≥ 0 is in detailed balance with P and has

∑
i

λi < ∞, then

πj = λj/
∑
i

λi is an equilibrium distribution.

Example 8.2 Suppose π = (πi) forms an ED for transition matrix
P = (pij), with πP = π, but the DBE’s (8.3) are not satisfied. What is the
time reversal of chain (Xn) in equilibrium?
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Assume, for definiteness, that P is irreducible, and πi > 0 ∀ i ∈ I. The
answer comes out after we define the transition matrix P RV = (pRV

ij ) by

πip
RV
ij = πjpij, i, j ∈ I. (8.6)

or
pRV

ij =
πj

πi
pji, i, j ∈ I. (8.7)

Eqns (8.6), (8.7) indeed determine a transition matrix, as ∀ i, j ∈ I,

pRV
ij ≥ 0, and

∑

j∈I

pRV
ij =

1

πi

∑

j∈I

πjpji =
1

πi
πi = 1.

Next, π gives an ED for P RV: ∀ j ∈ I,
∑

i∈I

πip
RV
ij =

∑

i∈I

πjpji = πj .

Then, repeating the argument from the proof of Theorem 8.1, we obtain
that ∀ N ≥ 1, the time reversal (XN−n, 0 ≤ n ≤ N) is a Markov chain in
equilibrium, with transition matrix PRV and the same ED π. Symbolically,

(XRV
n ) ∼

(
π, P RV

)
− Markovchain, (8.8)

where (XRV
n ) = (XN−n) stands for the time reversal of T .

It is instructive to remember that PRV was proven to be a stochastic matrix
because π is an ED for P while the proof that π is an ED for P RV used only
the fact that P is stochastic.

Example 8.3 The detailed balance equations have a useful geometric
meaning. Suppose that the state space I = {1, . . . , s}. Matrix P generates

a linear transformation R
s → R

s, where vector x =




x1
...
xs



 is taken to Px.

Assuming P irreducible, let π be the ED, with πi > 0, i = 1, . . . , s. Consider
a ‘tilted’ scalar product 〈 · , · 〉π in R

s, where

〈x,y〉π =

s∑

i=1

xiyiπi. (8.9)
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Then detailed balance equations (8.3) mean that P is self-adjoint (or Hermi-
tian) relative to scalar product 〈 · , · 〉π. that is,

〈x, Py〉π = 〈Px,y〉π, x,y ∈ R
s. (8.10)

In fact,

〈x, Py〉π =
∑

i,j

xipijyjπi =
∑

i,j

xipjiyjπj = 〈Px,y〉π.

The converse is also true: Eqn (8.10) implies (8.3), as we can take as x and
y the vectors δi and δj with the only non-zero entries 1 at positions i and j,
respectively, ∀ i, j = 1, . . . , s.

This observation yields a benefit, as Hermitian matrices have all eigen-
values real, and their eigen-vectors are mutually orthogonal (relative to the
scalar product in question, in this instance, 〈 · , · 〉π). We will use this in
Section 12.

Remark 8.1. The concept of reversibility and time reversal will be
particularly helpful in a continuous-time setting of Part II Applied Probabil-
ity.

It is now time to give a brief summary of essential results established about
various equations emerging in the analysis of Markov chains. We have seen
two sets of equations: (I) for hitting probabilities hA

i and mean hitting times
kA

i and (II) for equilibrium distributions π = (πi) and expected times γk
i

spent in state i before returning to k. Although they are in a sense similar,
there are also differences between them which it is important to remember.

(I.1) For hj
i = Pi(hit j) the equations are

hj
j = 1, hj

i =
∑

l∈I

pilh
j
l = (hjPT)i, i 6= j,

where
hj = (hj

i , i ∈ I), with hj
j = 1.

Here, hj
i ≡ 1 is always a solution

1PT = 1, as (1PT)i =
∑

l

pil = 1 ∀ i ∈ I.
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(I.2) For kj
i = Ei(time to hit j) the equations are

kj
j = 0, kj

i = 1 +
∑

l∈I, l 6=j

pilk
j
l = 1 + (kjPT)i, i 6= j.

where
kj = (kj

i , i ∈ I), with kj
j = 0.

Here, taking that 0 · ∞ = 0, kj
i = (1 − δij)∞ is always a solution when the

chain is irreducible.

These equations are produced by conditioning on the first jump. The
vectors hj and kj are labelled by the terminal states while their entries hj

i

and kj
i indicate the initial states. The solution we look for is identified as a

minimal non-negative solution satisfying the normalisation constraints hj
j = 1

and kj
j = 0.

(II.1) For

γk
i = Ek(time spent in i before returning to k)

the equations are

γk
k = 1, γk

i =
∑

l

γk
l pli, i 6= k,

or
γk = γkP, when k is recurrent.

Here, the conditioning is on the last jump, and vectors γk are labelled by
starting states. The indentification of the solution is by the conditions γk

i ≥ 0
and γk

k = 1.

(II.2) Similarly, for an equilibrium distribution (or more generally, an in-
variant measure)

π = πP.

The identification here is through the condition πi ≥ 0 and
∑
i

πi = 1.

(II.3) A solution to the detailed balance equations

πipij = πjpji,

always produces an invariant measure. If in addition,
∑
i

πi = 1, it gives an

equilibrium distribution. As the detailed balance equations are usually easy
to solve (when they have a solution), it is a powerful tool which is always
worth trying when you need to find an equilibrium distribution.
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