Lecture 15. Hypothesis testing in the linear model

Preliminary lemma

Lemma 15.1

Suppose $\mathbf{Z} \sim N_n(\mathbf{0}, \sigma^2 I_n)$ and A_1 and A_2 and symmetric, idempotent $n \times n$ matrices with $A_1 A_2 = 0$. Then $\mathbf{Z}^T A_1 \mathbf{Z}$ and $\mathbf{Z}^T A_2 \mathbf{Z}$ are independent.

Proof:

• Let
$$\mathbf{W}_i = A_i \mathbf{Z}, i = 1, 2$$
 and $\underset{2n \times 1}{\mathbf{W}} = \begin{pmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \end{pmatrix} = A\mathbf{Z}$, where $\underset{2n \times n}{A} = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$.
• By Proposition 11.1(i), $\mathbf{W} \sim N_{2n} \left(\begin{pmatrix} \mathbf{0} \\ \mathbf{0} \end{pmatrix}, \sigma^2 \begin{pmatrix} A_1 & \mathbf{0} \\ \mathbf{0} & A_2 \end{pmatrix} \right)$ check.

• So W_1 and W_2 are independent, which implies $W_1^T W_1 = Z^T A_1 Z$ and $W_2^T W_2 = Z^T A_2 Z$ are independent. \Box .

Hypothesis testing

• Suppose
$$\underset{n \times p}{X} = (\underset{n \times p_0}{X} \underset{n \times (p-p_0)}{X})$$
 and $\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$, where rank $(X) = p$, rank $(X_0) = p_0$.

• We want to test $H_0: oldsymbol{eta}_1 = 0$ against $H_1: oldsymbol{eta}_1
eq 0.$

• Under
$$H_0$$
, $\mathbf{Y} = X_0 \boldsymbol{\beta}_0 + \boldsymbol{\varepsilon}$.

• Under H_0 , MLEs of β_0 and σ^2 are

$$\hat{\hat{\beta}}_0 = (X_0^T X_0)^{-1} X_0^T \mathbf{Y}$$
$$\hat{\hat{\sigma}}^2 = \frac{\text{RSS}_0}{n} = \frac{1}{n} (\mathbf{Y} - X_0 \hat{\hat{\beta}}_0)^T (\mathbf{Y} - X_0 \hat{\hat{\beta}}_0)$$

and these are independent, by Theorem 13.3.

• So fitted values under H_0 are

$$\hat{\hat{\mathbf{Y}}} = X_0 (X_0^T X_0)^{-1} X_0^T \mathbf{Y} = P_0 \mathbf{Y},$$

where $P_0 = X_0 (X_0^T X_0)^{-1} X_0^T$.

Geometric interpretation

Generalised likelihood ratio test

• The generalised likelihood ratio test of H_0 against H_1 is

$$\begin{split} \Lambda_{\mathbf{Y}}(H_0, H_1) &= \frac{\left(\frac{1}{\sqrt{2\pi\hat{\sigma}^2}}\right)^n \exp\left(-\frac{1}{2\hat{\sigma}^2} (\mathbf{Y} - X\hat{\beta})^T (\mathbf{Y} - X\hat{\beta})\right)}{\left(\frac{1}{\sqrt{2\pi\hat{\sigma}^2}}\right)^n \exp\left(-\frac{1}{2\hat{\sigma}^2} (\mathbf{Y} - X\hat{\beta}_0)^T (\mathbf{Y} - X\hat{\beta}_0)\right)} \\ &= \left(\frac{\hat{\sigma}^2}{\hat{\sigma}^2}\right)^{\frac{n}{2}} = \left(\frac{\mathsf{RSS}_0}{\mathsf{RSS}}\right)^{\frac{n}{2}} = \left(1 + \frac{\mathsf{RSS}_0 - \mathsf{RSS}}{\mathsf{RSS}}\right)^{\frac{n}{2}} \end{split}$$

• We reject H_0 when $2 \log \Lambda$ is large, equivalently when $\frac{(RSS_0 - RSS)}{RSS}$ is large. • Using the results in Lecture 8, under H_0

$$2 \log \Lambda = n \log \left(1 + \frac{\mathsf{RSS}_0 - \mathsf{RSS}}{\mathsf{RSS}}\right)$$

is approximately a $\chi^2_{\rho_1-\rho_0}$ rv.

But we can get an exact null distribution.

Null distribution of test statistic

• We have $RSS = \mathbf{Y}^T (I_n - P) \mathbf{Y}$ (see proof of Theorem 13.3 (ii)), and so

$$RSS_0 - RSS = \mathbf{Y}^T (I_n - P_0) \mathbf{Y} - \mathbf{Y}^T (I_n - P) \mathbf{Y} = \mathbf{Y}^T (P - P_0) \mathbf{Y}.$$

• Now $I_n - P$ and $P - P_0$ are symmetric and idempotent, and therefore rank $(I_n - P) = n - p$, and

$$\operatorname{rank}(P - P_0) = \operatorname{tr}(P - P_0) = \operatorname{tr}(P) - \operatorname{tr}(P_0) = \operatorname{rank}(P) - \operatorname{rank}(P_0) = p - p_0.$$

Also

$$(I_n - P)(P - P_0) = (I_n - P)P - (I_n - P)P_0 = 0.$$

• Finally,

$$\begin{aligned} \mathbf{Y}^T(I_n-P)\mathbf{Y} &= (\mathbf{Y}-X_0\beta_0)^T(I_n-P)(\mathbf{Y}-X_0\beta_0) \text{ since } (I_n-P)X_0 = 0, \\ \mathbf{Y}^T(P-P_0)\mathbf{Y} &= (\mathbf{Y}-X_0\beta_0)^T(P-P_0)(\mathbf{Y}-X_0\beta_0) \text{ since } (P-P_0)X_0 = 0, \end{aligned}$$

• Applying Lemmas 13.2 $(\mathbf{Z}^T A_i \mathbf{Z} \sim \sigma^2 \chi_r^2)$ and 15.1 to $\mathbf{Z} = \mathbf{Y} - X_0 \beta_0, A_1 = I_n - P, A_2 = P - P_0$ to get that under H_0 ,

$$RSS = \mathbf{Y}^{T} (I_{n} - P) \mathbf{Y} \sim \chi^{2}_{n-p}$$
$$RSS_{0} - RSS = \mathbf{Y}^{T} (P - P_{0}) \mathbf{Y} \sim \chi^{2}_{p-p_{0}}$$

and these rvs are independent.

• So under H₀,

$$F = \frac{\mathbf{Y}^{\mathsf{T}}(P - P_0)\mathbf{Y}/(p - p_0)}{\mathbf{Y}^{\mathsf{T}}(I_n - P)\mathbf{Y}/(n - p)} = \frac{(\mathsf{RSS}_0 - \mathsf{RSS})/(p - p_0)}{\mathsf{RSS}/(n - p)} \sim F_{p - p_0, n - p}.$$

• Hence we reject H_0 if $F > F_{p-p_0,n-p}(\alpha)$.

• RSS₀ - RSS is the 'reduction in the sum of squares due to fitting β_1 .

Arrangement as an 'analysis of variance' table

Source of variation	degrees of freedom (df)	sum of squares	mean square	F statistic
Fitted model	$p-p_0$	RSS ₀ - RSS	$\frac{(RSS_0 - RSS)}{(p - p_0)}$	$\frac{(\text{RSS}_0 - \text{RSS})/(p - p_0)}{\text{RSS}/(n - p)}$
Residual	n – p	RSS	$\frac{RSS}{(n-p)}$	
	$n - p_0$	RSS₀		

The ratio $\frac{(\text{RSS}_0 - \text{RSS})}{\text{RSS}_0}$ is sometimes known as the *proportion of variance* explained by β_1 , and denoted R^2 .

Simple linear regression

• We assume that

$$Y_i = a' + b(x_i - \bar{x}) + \varepsilon_i, \quad i = 1, \dots, n,$$

where $\bar{x} = \sum x_i/n$, and $\varepsilon_i, i = 1, ..., n$ are iid N(0, σ^2).

- Suppose we want to test the hypothesis H_0 : b = 0, i.e. no linear relationship. From Lecture 14 we have seen how to construct a confidence interval, and so could simply see if it included 0.
- Alternatively, under H_0 , the model is $Y_i \sim N(a', \sigma^2)$, and so $\hat{a}' = \overline{Y}$, and the fitted values are $\hat{Y}_i = \overline{Y}$.
- The observed RSS₀ is therefore

$$\mathsf{RSS}_0 = \sum_i (y_i - \overline{y})^2 = S_{yy}.$$

• The fitted sum of squares is therefore

$$\mathsf{RSS}_0 - \mathsf{RSS} = \sum_i \left((y_i - \overline{y})^2 - (y_i - \overline{y} - \hat{b}(x_i - \overline{x}))^2 \right) = \hat{b}^2 (x_i - \overline{x})^2 = \hat{b}^2 S_{xx}.$$

	15. Hypoth	esis testing in the linear model	15.7. Simple	e linear regression	
Source of variation	d.f.	sum of squares		mean square	F statistic
Fitted model	1	$RSS_0 - RSS = i$	β²S _{xx}	$\hat{b}^2 S_{xx}$	${\it F}=\hat{b}^2 S_{\scriptscriptstyle \! XX}/ ilde{\sigma}^2$
Residual	<i>n</i> – 2	$RSS = \sum_i (y_i - $	$(\hat{y})^2$	$\tilde{\sigma}^2$	

$$n-1$$
 RSS₀ = $\sum_{i} (y_i - \overline{y})^2$

- Note that the proportion of variance explained is $\hat{b}^2 S_{xx}/S_{yy} = \frac{S_{xy}^2}{S_{xx}S_{yy}} = r^2$, where r is Pearson's Product Moment Correlation coefficient $r = S_{xy}/\sqrt{S_{xx}S_{yy}}$.
- From lecture 14, slide 5, we see that under H_0 , $\frac{\hat{b}}{\text{s.e.}(\hat{b})} \sim t_{n-2}$, where s.e. $(\hat{b}) = \tilde{\sigma}/\sqrt{S_{xx}}$. So $\frac{\hat{b}}{\text{s.e.}(\hat{b})} = \frac{\hat{b}\sqrt{S_{xx}}}{\tilde{\sigma}} = t$.
- Checking whether $|t| > t_{n-2}(\frac{\alpha}{2})$ is precisely the same as checking whether $t^2 = F > F_{1,n-2}(\alpha)$, since a $F_{1,n-2}$ variable is t_{n-2}^2 .
- Hence the same conclusion is reached, whether based on a *t*-distribution or the *F* statistic derived from an analysis-of-variance table.

Example 12.1 continued

```
As R code

> fit=lm(time~ oxy.s )

> summary.aov(fit)

Df Sum Sq Mean Sq F value Pr(>F)

oxy.s 1 129690 129690 41.98 1.62e-06 ***

Residuals 22 67968 3089

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Note that the F statistic, 41.98, is -6.48^2 , the square of the t statistic on Slide 5 in Lecture 14.

One way analysis of variance with equal numbers in each group

• Assume J measurements taken in each of I groups, and that

$$Y_{i,j} = \mu_i + \varepsilon_{i,j},$$

where $\varepsilon_{i,j}$ are independent N(0, σ^2) random variables, and the μ_i 's are unknown constants.

- Fitting this model gives $RSS = \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{i,j} - \hat{\mu}_i)^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{i,j} - \overline{Y}_{i.})^2 \text{ on } n - I \text{ degrees of freedom.}$
- Suppose we want to test the hypothesis H₀ : μ_i = μ, i.e. no difference between groups.
- Under H_0 , the model is $Y_{i,j} \sim N(\mu, \sigma^2)$, and so $\hat{\mu} = \overline{Y}_{..}$, and the fitted values are $\hat{Y}_{i,j} = \overline{Y}_{..}$.
- \bullet The observed RSS_0 is therefore

$$\mathsf{RSS}_0 = \sum_i \sum_j (y_{i,j} - \overline{y}_{..})^2.$$

• The fitted sum of squares is therefore

$$\mathsf{RSS}_0 - \mathsf{RSS} = \sum_i \sum_j \left((y_{i,j} - \overline{y}_{..})^2 - (y_{i,j} - \overline{y}_{i.})^2 \right) = J \sum_i (\overline{y}_{i.} - \overline{y}_{..})^2.$$

Source of d.f. sum of squares mean square *F* statistic variation

Fitted model
$$I - 1$$
 $J \sum_{i} (\overline{y}_{i.} - \overline{y}_{..})^2 \qquad \frac{J \sum_{i} (\overline{y}_{i.} - \overline{y}_{..})^2}{(I-1)} \quad F = \frac{J \sum_{i} (\overline{y}_{i.} - \overline{y}_{..})^2}{(I-1)\delta^2}$

Residual n-I $\sum_{i} \sum_{j} (y_{i,j} - \overline{y}_{i,j})^2$ $\tilde{\sigma}^2$

$$n-1$$
 $\sum_{i}\sum_{j}(y_{i,j}-\overline{y}_{..})^2$

Example 13.1

```
As R code
```

```
> summary.aov(fit)
```

	\mathtt{Df}	\mathtt{Sum}	Sq	Mean	Sq	F	value	Pr(>F)
x	4	507	.9	127	.0		1.17	0.354
Residuals	20 2	2170	. 1	108.	.5			

The *p*-value is 0.35, and so there is no evidence for a difference between the instruments.