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Lecture 15. Hypothesis testing in the linear model
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15. Hypothesis testing in the linear model 15.1. Preliminary lemma

Preliminary lemma

Lemma 15.1

Suppose Z ∼ Nn(0, σ2In) and A1 and A2 and symmetric, idempotent n × n
matrices with A1A2 = 0. Then ZTA1Z and ZTA2Z are independent.

Proof:

Let Wi = AiZ, i = 1, 2 and W
2n×1

=

(
W1

W2

)
= AZ, where A

2n×n
=

(
A1

A2

)
.

By Proposition 11.1(i), W ∼ N2n

((
0
0

)
, σ2

(
A1 0
0 A2

))
check.

So W1 and W2 are independent, which implies W1
TW1 = ZTA1Z and

W2
TW2 = ZTA2Z are independent. �.
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15. Hypothesis testing in the linear model 15.2. Hypothesis testing

Hypothesis testing

Suppose X
n×p

= ( X0
n×p0

X1
n×(p−p0)

) and β =

(
β0

β1

)
, where

rank(X ) = p, rank(X0) = p0.

We want to test H0 : β1 = 0 against H1 : β1 6= 0.

Under H0, Y = X0β0 + ε.

Under H0, MLEs of β0 and σ2 are

ˆ̂β0 = (X0
TX0)−1X0

TY

ˆ̂σ2 =
RSS0

n
=

1

n
(Y − X0

ˆ̂β0)T (Y − X0
ˆ̂β0)

and these are independent, by Theorem 13.3.

So fitted values under H0 are

ˆ̂Y = X0(X0
TX0)−1X0

TY = P0Y,

where P0 = X0(X0
TX0)−1X0

T .
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15. Hypothesis testing in the linear model 15.3. Geometric interpretation

Geometric interpretation
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15. Hypothesis testing in the linear model 15.4. Generalised likelihood ratio test

Generalised likelihood ratio test

The generalised likelihood ratio test of H0 against H1 is

ΛY(H0,H1) =

(
1√
2πσ̂2

)n
exp

(
− 1

2σ̂2 (Y − X β̂)T (Y − X β̂)
)

(
1√
2π ˆ̂σ2

)n

exp
(
− 1

2ˆ̂σ2
(Y − X ˆ̂

β0)T (Y − X ˆ̂
β0)
)

=

(
ˆ̂σ2

σ̂2

) n
2

=

(
RSS0

RSS

) n
2

=

(
1 +

RSS0 − RSS

RSS

) n
2

We reject H0 when 2 log Λ is large, equivalently when (RSS0−RSS)

RSS is large.

Using the results in Lecture 8, under H0

2 log Λ = n log

(
1 +

RSS0 − RSS

RSS

)
is approximately a χ2

p1−p0 rv.

But we can get an exact null distribution.
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15. Hypothesis testing in the linear model 15.5. Null distribution of test statistic

Null distribution of test statistic

We have RSS = YT (In − P)Y (see proof of Theorem 13.3 (ii)), and so

RSS0 − RSS = YT (In − P0)Y − YT (In − P)Y = YT (P − P0)Y.

Now In − P and P − P0 are symmetric and idempotent, and therefore
rank(In − P) = n − p, and

rank(P − P0) = tr(P − P0) = tr(P)− tr(P0) = rank(P)− rank(P0) = p − p0.

Also
(In − P)(P − P0) = (In − P)P − (In − P)P0 = 0.

Finally,

YT (In − P)Y = (Y − X0β0)T (In − P)(Y − X0β0) since (In − P)X0 = 0,

YT (P − P0)Y = (Y − X0β0)T (P − P0)(Y − X0β0) since (P − P0)X0 = 0,
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15. Hypothesis testing in the linear model 15.5. Null distribution of test statistic

Applying Lemmas 13.2 (ZTAiZ ∼ σ2χ2
r ) and 15.1 to

Z = Y − X0β0,A1 = In − P,A2 = P − P0 to get that under H0,

RSS = YT (In − P)Y ∼ χ2
n−p

RSS0 − RSS = YT (P − P0)Y ∼ χ2
p−p0

and these rvs are independent.

So under H0,

F =
YT (P − P0)Y/(p − p0)

YT (In − P)Y/(n − p)
=

(RSS0 − RSS)/(p − p0)

RSS/(n − p)
∼ Fp−p0,n−p.

Hence we reject H0 if F > Fp−p0,n−p(α).

RSS0 - RSS is the ’reduction in the sum of squares due to fitting β1.
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15. Hypothesis testing in the linear model 15.6. Arrangement as an ’analysis of variance’ table

Arrangement as an ’analysis of variance’ table

Source of degrees of sum of squares mean square F statistic
variation freedom (df)

Fitted model p − p0 RSS0 - RSS (RSS0−RSS)
(p−p0)

(RSS0−RSS)/(p−p0)
RSS/(n−p)

Residual n − p RSS RSS
(n−p)

n − p0 RSS0

The ratio (RSS0−RSS)

RSS0
is sometimes known as the proportion of variance

explained by β1, and denoted R2.
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15. Hypothesis testing in the linear model 15.7. Simple linear regression

Simple linear regression

We assume that

Yi = a′ + b(xi − x̄) + εi , i = 1, . . . , n,

where x̄ =
∑

xi/n, and εi , i = 1, ..., n are iid N(0, σ2).

Suppose we want to test the hypothesis H0 : b = 0, i.e. no linear relationship.
From Lecture 14 we have seen how to construct a confidence interval, and so
could simply see if it included 0.

Alternatively , under H0, the model is Yi ∼ N(a′, σ2), and so â′ = Y , and the
fitted values are Ŷi = Y .

The observed RSS0 is therefore

RSS0 =
∑
i

(yi − y)2 = Syy .

The fitted sum of squares is therefore

RSS0−RSS =
∑
i

(
(yi − y)2 − (yi − y − b̂(xi − x̄))2

)
= b̂2(xi−x̄)2 = b̂2Sxx .
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15. Hypothesis testing in the linear model 15.7. Simple linear regression

Source of d.f. sum of squares mean square F statistic
variation

Fitted model 1 RSS0 − RSS = b̂2Sxx b̂2Sxx F = b̂2Sxx/σ̃
2

Residual n − 2 RSS =
∑

i (yi − ŷ)2 σ̃2

n − 1 RSS0 =
∑

i (yi − y)2

Note that the proportion of variance explained is b̂2Sxx/Syy =
S2
xy

SxxSyy
= r2,

where r is Pearson’s Product Moment Correlation coefficient
r = Sxy/

√
SxxSyy .

From lecture 14, slide 5, we see that under H0, b̂
s.e.(b̂) ∼ tn−2, where

s.e.(b̂) = σ̃/
√
Sxx .

So b̂
s.e.(b̂) = b̂

√
Sxx

σ̃ = t.

Checking whether |t| > tn−2(α2 ) is precisely the same as checking whether
t2 = F > F1,n−2(α), since a F1,n−2 variable is t2n−2.

Hence the same conclusion is reached, whether based on a t-distribution or
the F statistic derived from an analysis-of-variance table.
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15. Hypothesis testing in the linear model 15.7. Simple linear regression

Example 12.1 continued

As R code

> fit=lm(time~ oxy.s )

> summary.aov(fit)

Df Sum Sq Mean Sq F value Pr(>F)

oxy.s 1 129690 129690 41.98 1.62e-06 ***

Residuals 22 67968 3089

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Note that the F statistic, 41.98, is −6.482, the square of the t statistic on Slide 5
in Lecture 14.
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15. Hypothesis testing in the linear model 15.8. One way analysis of variance with equal numbers in each group

One way analysis of variance with equal numbers in each
group

Assume J measurements taken in each of I groups, and that

Yi,j = µi + εi,j ,

where εi,j are independent N(0, σ2) random variables, and the µi ’s are
unknown constants.

Fitting this model gives
RSS =

∑I
i=1

∑J
j=1(Yi,j − µ̂i )

2 =
∑I

i=1

∑J
j=1(Yi,j − Y i.)

2 on n − I degrees of
freedom.

Suppose we want to test the hypothesis H0 : µi = µ, i.e. no difference
between groups.

Under H0, the model is Yi,j ∼ N(µ, σ2), and so µ̂ = Y .., and the fitted values

are Ŷi,j = Y ...

The observed RSS0 is therefore

RSS0 =
∑
i

∑
j

(yi,j − y ..)
2.
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15. Hypothesis testing in the linear model 15.8. One way analysis of variance with equal numbers in each group

The fitted sum of squares is therefore

RSS0 − RSS =
∑
i

∑
j

(
(yi,j − y ..)

2 − (yi,j − y i.)
2
)

= J
∑
i

(y i. − y ..)
2.

Source of d.f. sum of squares mean square F statistic
variation

Fitted model I − 1 J
∑

i (y i. − y ..)
2 J

∑
i (y i.−y ..)

2

(I−1) F =
J
∑

i (y i.−y ..)
2

(I−1)σ̃2

Residual n − I
∑

i

∑
j(yi,j − y i.)

2 σ̃2

n − 1
∑

i

∑
j(yi,j − y ..)

2
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15. Hypothesis testing in the linear model 15.8. One way analysis of variance with equal numbers in each group

Example 13.1

As R code

> summary.aov(fit)

Df Sum Sq Mean Sq F value Pr(>F)

x 4 507.9 127.0 1.17 0.354

Residuals 20 2170.1 108.5

The p-value is 0.35, and so there is no evidence for a difference between the
instruments.
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