Lecture 15. Hypothesis testing in the linear model

Preliminary lemma

Lemma 15.1

Suppose $\mathbf{Z} \sim N_{n}\left(\mathbf{0}, \sigma^{2} I_{n}\right)$ and A_{1} and A_{2} and symmetric, idempotent $n \times n$ matrices with $A_{1} A_{2}=0$. Then $\mathbf{Z}^{T} A_{1} \mathbf{Z}$ and $\mathbf{Z}^{\top} A_{2} \mathbf{Z}$ are independent.

Proof:

- Let $\mathbf{W}_{i}=A_{i} \mathbf{Z}, i=1,2$ and $\underset{2 n \times 1}{\mathbf{W}}=\binom{\mathbf{W}_{1}}{\mathbf{W}_{2}}=A \mathbf{Z}$, where $\underset{2 n \times n}{A}=\binom{A_{1}}{A_{2}}$.
- By Proposition 11.1(i), $\mathbf{W} \sim \mathrm{N}_{2 n}\left(\binom{\mathbf{0}}{\mathbf{0}}, \sigma^{2}\left(\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right)\right) \quad$ check.
- So \mathbf{W}_{1} and \mathbf{W}_{2} are independent, which implies $\mathbf{W}_{1}^{T} \mathbf{W}_{1}=\mathbf{Z}^{T} A_{1} \mathbf{Z}$ and $\mathbf{W}_{2}{ }^{T} \mathbf{W}_{2}=\mathbf{Z}^{\top} A_{2} \mathbf{Z}$ are independent. \square.

Hypothesis testing

- Suppose $\underset{n \times p}{X}=\left(\underset{n \times p_{0}}{X_{0}} \underset{n \times\left(p-p_{0}\right)}{X_{1}}\right)$ and $\boldsymbol{\beta}=\binom{\boldsymbol{\beta}_{0}}{\boldsymbol{\beta}_{1}}$, where $\operatorname{rank}(X)=p, \operatorname{rank}\left(X_{0}\right)=p_{0}$.
- We want to test $H_{0}: \boldsymbol{\beta}_{1}=0$ against $H_{1}: \boldsymbol{\beta}_{1} \neq 0$.
- Under $H_{0}, \quad \mathbf{Y}=X_{0} \boldsymbol{\beta}_{0}+\varepsilon$.
- Under H_{0}, MLEs of $\boldsymbol{\beta}_{0}$ and σ^{2} are

$$
\begin{aligned}
\hat{\boldsymbol{\beta}}_{0} & =\left(X_{0}^{T} X_{0}\right)^{-1} X_{0}^{T} \mathbf{Y} \\
\hat{\sigma}^{2} & =\frac{\operatorname{RSS}_{0}}{n}=\frac{1}{n}\left(\mathbf{Y}-X_{0} \hat{\hat{\boldsymbol{\beta}}}_{0}\right)^{T}\left(\mathbf{Y}-X_{0} \hat{\hat{\boldsymbol{\beta}}}_{0}\right)
\end{aligned}
$$

and these are independent, by Theorem 13.3.

- So fitted values under H_{0} are

$$
\hat{\hat{\mathbf{Y}}}=X_{0}\left(X_{0}^{\top} X_{0}\right)^{-1} X_{0}^{\top} \mathbf{Y}=P_{0} \mathbf{Y}
$$

where $P_{0}=X_{0}\left(X_{0}{ }^{T} X_{0}\right)^{-1} X_{0}{ }^{T}$.

Geometric interpretation

Generalised likelihood ratio test

- The generalised likelihood ratio test of H_{0} against H_{1} is

$$
\begin{aligned}
\Lambda_{\mathbf{Y}}\left(H_{0}, H_{1}\right) & =\frac{\left(\frac{1}{\sqrt{2 \pi \hat{\sigma}^{2}}}\right)^{n} \exp \left(-\frac{1}{2 \hat{\sigma}^{2}}(\mathbf{Y}-X \hat{\beta})^{T}(\mathbf{Y}-X \hat{\beta})\right)}{\left(\frac{1}{\sqrt{2 \pi \hat{\hat{\sigma}}^{2}}}\right)^{n} \exp \left(-\frac{1}{2 \hat{\hat{\sigma}}^{2}}\left(\mathbf{Y}-X \hat{\beta}_{0}\right)^{T}\left(\mathbf{Y}-X \hat{\beta}_{0}\right)\right)} \\
& =\left(\frac{\hat{\hat{\sigma}}^{2}}{\hat{\sigma}^{2}}\right)^{\frac{n}{2}}=\left(\frac{\mathrm{RSS}_{0}}{\mathrm{RSS}}\right)^{\frac{n}{2}}=\left(1+\frac{\mathrm{RSS}_{0}-\mathrm{RSS}}{\mathrm{RSS}}\right)^{\frac{n}{2}}
\end{aligned}
$$

- We reject H_{0} when $2 \log \Lambda$ is large, equivalently when $\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}\right)}{\mathrm{RSS}}$ is large.
- Using the results in Lecture 8, under H_{0}

$$
2 \log \Lambda=n \log \left(1+\frac{\mathrm{RSS}_{0}-\mathrm{RSS}}{\mathrm{RSS}}\right)
$$

is approximately a $\chi_{p_{1}-p_{0}}^{2} \mathrm{rv}$.

- But we can get an exact null distribution.

Null distribution of test statistic

- We have RSS $=\mathbf{Y}^{\boldsymbol{T}}\left(I_{n}-P\right) \mathbf{Y}$ (see proof of Theorem 13.3 (ii)), and so

$$
\mathrm{RSS}_{0}-\mathrm{RSS}=\mathbf{Y}^{T}\left(I_{n}-P_{0}\right) \mathbf{Y}-\mathbf{Y}^{T}\left(I_{n}-P\right) \mathbf{Y}=\mathbf{Y}^{T}\left(P-P_{0}\right) \mathbf{Y} .
$$

- Now $I_{n}-P$ and $P-P_{0}$ are symmetric and idempotent, and therefore $\operatorname{rank}\left(I_{n}-P\right)=n-p$, and $\operatorname{rank}\left(P-P_{0}\right)=\operatorname{tr}\left(P-P_{0}\right)=\operatorname{tr}(P)-\operatorname{tr}\left(P_{0}\right)=\operatorname{rank}(P)-\operatorname{rank}\left(P_{0}\right)=p-p_{0}$.
- Also

$$
\left(I_{n}-P\right)\left(P-P_{0}\right)=\left(I_{n}-P\right) P-\left(I_{n}-P\right) P_{0}=0 .
$$

- Finally,

$$
\begin{aligned}
\mathbf{Y}^{T}\left(I_{n}-P\right) \mathbf{Y} & =\left(\mathbf{Y}-X_{0} \boldsymbol{\beta}_{0}\right)^{T}\left(I_{n}-P\right)\left(\mathbf{Y}-X_{0} \boldsymbol{\beta}_{0}\right) \text { since }\left(I_{n}-P\right) X_{0}=0 \\
\mathbf{Y}^{\top}\left(P-P_{0}\right) \mathbf{Y} & =\left(\mathbf{Y}-X_{0} \boldsymbol{\beta}_{0}\right)^{T}\left(P-P_{0}\right)\left(\mathbf{Y}-X_{0} \boldsymbol{\beta}_{0}\right) \text { since }\left(P-P_{0}\right) X_{0}=0,
\end{aligned}
$$

- Applying Lemmas $13.2\left(\mathbf{Z}^{T} A_{i} \mathbf{Z} \sim \sigma^{2} \chi_{r}^{2}\right)$ and 15.1 to $\mathbf{Z}=\mathbf{Y}-X_{0} \boldsymbol{\beta}_{0}, A_{1}=I_{n}-P, A_{2}=P-P_{0}$ to get that under H_{0},

$$
\begin{aligned}
\mathrm{RSS}=\mathbf{Y}^{T}\left(I_{n}-P\right) \mathbf{Y} & \sim \chi_{n-p}^{2} \\
\mathrm{RSS}_{0}-\mathrm{RSS}=\mathbf{Y}^{T}\left(P-P_{0}\right) \mathbf{Y} & \sim \chi_{p-p_{0}}^{2}
\end{aligned}
$$

and these rvs are independent.

- So under H_{0},

$$
F=\frac{\mathbf{Y}^{T}\left(P-P_{0}\right) \mathbf{Y} /\left(p-p_{0}\right)}{\mathbf{Y}^{\top}\left(I_{n}-P\right) \mathbf{Y} /(n-p)}=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}\right) /\left(p-p_{0}\right)}{\mathrm{RSS} /(n-p)} \sim F_{p-p_{0}, n-p}
$$

- Hence we reject H_{0} if $F>F_{p-p_{0}, n-p}(\alpha)$.
- $\mathrm{RSS}_{0}-\mathrm{RSS}$ is the 'reduction in the sum of squares due to fitting $\boldsymbol{\beta}_{1}$.

Arrangement as an 'analysis of variance' table

Source of variation	degrees of freedom (df)	sum of squares	mean square	F statistic
Fitted model	$p-p_{0}$	$\mathrm{RSS}_{0}-\mathrm{RSS}$	$\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}\right)}{\left(p-p_{0}\right)}$	$\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}\right) /\left(p-p_{0}\right)}{\mathrm{RSS} /(n-p)}$
Residual	$n-p$	RSS	$\frac{\mathrm{RSS}}{(n-p)}$	

$$
n-p_{0} \quad \mathrm{RSS}_{0}
$$

The ratio $\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}\right)}{\mathrm{RSS}_{0}}$ is sometimes known as the proportion of variance explained by $\boldsymbol{\beta}_{1}$, and denoted R^{2}.

Simple linear regression

- We assume that

$$
Y_{i}=a^{\prime}+b\left(x_{i}-\bar{x}\right)+\varepsilon_{i}, \quad i=1, \ldots, n
$$

where $\bar{x}=\sum x_{i} / n$, and $\varepsilon_{i}, i=1, \ldots, n$ are iid $\mathrm{N}\left(0, \sigma^{2}\right)$.

- Suppose we want to test the hypothesis $H_{0}: b=0$, i.e. no linear relationship. From Lecture 14 we have seen how to construct a confidence interval, and so could simply see if it included 0 .
- Alternatively, under H_{0}, the model is $Y_{i} \sim \mathrm{~N}\left(a^{\prime}, \sigma^{2}\right)$, and so $\hat{a}^{\prime}=\bar{Y}$, and the fitted values are $\hat{Y}_{i}=\bar{Y}$.
- The observed RSS_{0} is therefore

$$
\operatorname{RSS}_{0}=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}=S_{y y}
$$

- The fitted sum of squares is therefore

$$
\operatorname{RSS}_{0}-\operatorname{RSS}=\sum_{i}\left(\left(y_{i}-\bar{y}\right)^{2}-\left(y_{i}-\bar{y}-\hat{b}\left(x_{i}-\bar{x}\right)\right)^{2}\right)=\hat{b}^{2}\left(x_{i}-\bar{x}\right)^{2}=\hat{b}^{2} S_{x x}
$$

Fitted model $1 \quad \mathrm{RSS}_{0}-\mathrm{RSS}=\hat{b}^{2} S_{x x} \quad \hat{b}^{2} S_{x x} \quad F=\hat{b}^{2} S_{x x} / \tilde{\sigma}^{2}$

$$
\begin{array}{ccc}
\text { Residual } & n-2 & \mathrm{RSS}=\sum_{i}\left(y_{i}-\hat{y}\right)^{2} \\
& n-1 & \mathrm{RSS}_{0}=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}
\end{array}
$$

- Note that the proportion of variance explained is $\hat{b}^{2} S_{x x} / S_{y y}=\frac{S_{x y}^{2}}{S_{x x} S_{y y}}=r^{2}$, where r is Pearson's Product Moment Correlation coefficient $r=S_{x y} / \sqrt{S_{x x} S_{y y}}$.
- From lecture 14 , slide 5 , we see that under $H_{0}, \frac{\hat{b}}{\text { s.e. }(\hat{b})} \sim t_{n-2}$, where s.e. $(\hat{b})=\tilde{\sigma} / \sqrt{S_{x x}}$.

So $\frac{\hat{b}}{\text { s.e. }(\hat{b})}=\frac{\hat{b} \sqrt{S_{\text {Kx }}}}{\tilde{\sigma}}=t$.

- Checking whether $|t|>t_{n-2}\left(\frac{\alpha}{2}\right)$ is precisely the same as checking whether $t^{2}=F>F_{1, n-2}(\alpha)$, since a $F_{1, n-2}$ variable is t_{n-2}^{2}.
- Hence the same conclusion is reached, whether based on a t-distribution or the F statistic derived from an analysis-of-variance table.

```
Example 12.1 continued
As R code
> fit=lm(time~ oxy.s )
> summary.aov(fit)
```

| | Df | Sum Sq Mean Sq F value | $\operatorname{Pr}(>F)$ | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| | 1 | 129690 | 129690 | 41.98 | $1.62 \mathrm{e}-06$ | $* * *$ | | |
| oxy.s | 22 | 67968 | 3089 | | | | | |
| Residuals | | | | | | | | |
| --- | | | | | | | | |
| Signif. codes: | 0 | $* * *$ | 0.001 | $* *$ | $0.01 *$ | 0.05 | 0.1 | 1 |

Note that the F statistic, 41.98 , is -6.48^{2}, the square of the t statistic on Slide 5 in Lecture 14.

One way analysis of variance with equal numbers in each group

- Assume J measurements taken in each of I groups, and that

$$
Y_{i, j}=\mu_{i}+\varepsilon_{i, j}
$$

where $\varepsilon_{i, j}$ are independent $\mathrm{N}\left(0, \sigma^{2}\right)$ random variables, and the μ_{i} 's are unknown constants.

- Fitting this model gives
$\mathrm{RSS}=\sum_{i=1}^{l} \sum_{j=1}^{J}\left(Y_{i, j}-\hat{\mu}_{i}\right)^{2}=\sum_{i=1}^{l} \sum_{j=1}^{J}\left(Y_{i, j}-\bar{Y}_{i .}\right)^{2}$ on $n-I$ degrees of freedom.
- Suppose we want to test the hypothesis $H_{0}: \mu_{i}=\mu$, i.e. no difference between groups.
- Under H_{0}, the model is $Y_{i, j} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, and so $\hat{\mu}=\bar{Y}_{. .}$, and the fitted values are $\hat{Y}_{i, j}=\bar{Y}_{. .}$.
- The observed RSS_{0} is therefore

$$
\mathrm{RSS}_{0}=\sum_{i} \sum_{j}\left(y_{i, j}-\bar{y}_{. .}\right)^{2}
$$

- The fitted sum of squares is therefore

$$
\mathrm{RSS}_{0}-\mathrm{RSS}=\sum_{i} \sum_{j}\left(\left(y_{i, j}-\bar{y}_{. .}\right)^{2}-\left(y_{i, j}-\bar{y}_{i .}\right)^{2}\right)=J \sum_{i}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2} .
$$

Source of d.f. sum of squares mean square F statistic variation

Fitted model $\quad I-1 \quad J \sum_{i}\left(\bar{y}_{i .}-\bar{y}_{. .}\right)^{2} \quad \frac{J \sum_{i}\left(\bar{y}_{i,}-\bar{y}_{. .}\right)^{2}}{(I-1)} \quad F=\frac{J \sum_{i}\left(\bar{y}_{i}-\bar{y}_{. .}\right)^{2}}{(I-1) \tilde{\sigma}^{2}}$ $\begin{array}{cccc}\text { Residual } & n-l & \sum_{i} \sum_{j}\left(y_{i, j}-\bar{y}_{i .}\right)^{2} & \tilde{\sigma}^{2}\end{array}$

$$
n-1 \quad \sum_{i} \sum_{j}\left(y_{i, j}-\bar{y}_{. .}\right)^{2}
$$

Example 13.1

As R code
> summary.aov(fit)

	Df	Sum Sq	Mean Sq	F	value	$\operatorname{Pr}(>F)$
x	4	507.9	127.0	1.17	0.354	
Residuals	20	2170.1	108.5			

The p-value is 0.35 , and so there is no evidence for a difference between the instruments.

