Lecture 14. Applications of the distribution theory

Inference for $oldsymbol{eta}$

We know that $\hat{\boldsymbol{\beta}} \sim \mathsf{N}_{p}(\boldsymbol{\beta}, \sigma^{2}(X^{T}X)^{-1}),$ and so

$$\hat{\beta}_j \sim \mathsf{N}(\beta_j, \sigma^2(X^TX)_{jj}^{-1}).$$

The standard error of $\hat{oldsymbol{eta}}_j$ is

$$\mathrm{s.e.}(\hat{\beta}_j) = \sqrt{\tilde{\sigma}^2(X^TX)_{jj}^{-1}},$$

where $\tilde{\sigma}^2 = \text{RSS}/(n-p)$, as in Theorem 13.3.

Then

$$\frac{\hat{\beta}_j - \beta_j}{\text{s.e.}(\hat{\beta}_j)} = \frac{\hat{\beta}_j - \beta_j}{\sqrt{\tilde{\sigma}^2 (X^T X)_{jj}^{-1}}} = \frac{(\hat{\beta}_j - \beta_j)/\sqrt{\sigma^2 (X^T X)_{jj}^{-1}}}{\sqrt{\mathsf{RSS}/((n-p)\sigma^2)}}.$$

The numerator is a standard normal N(0,1), the denominator is an independent $\sqrt{\chi^2_{n-p}/(n-p)}$, and so $\frac{\hat{\beta}_j-\beta_j}{\text{s.e.}(\hat{\beta}_j)}\sim t_{n-p}$.

So a $100(1-\alpha)\%$ CI for β_j has endpoints $\hat{\beta}_j \pm \text{s.e.}(\hat{\beta}_j)$ $t_{n-p}(\frac{\alpha}{2})$.

To test $H_0: \beta_j = 0$, use the fact that, under $H_0, \ \frac{\hat{\beta}_j}{\text{s.e.}(\hat{\beta}_i)} \sim \mathsf{t}_{n-p}.$

Simple linear regression

We assume that

$$Y_i = a' + b(x_i - \bar{x}) + \varepsilon_i, \quad i = 1, \ldots, n,$$

where $\bar{x} = \sum x_i/n$, and ε_i , i = 1, ..., n are iid $N(0, \sigma^2)$.

Then from Lecture 12 and Theorem 13.3 we have that

$$\hat{a}' = \overline{Y} \sim N\left(a', \frac{\sigma^2}{n}\right), \qquad \hat{b} = \frac{S_{xY}}{S_{xx}} \sim N\left(b, \frac{\sigma^2}{S_{xx}}\right),$$

$$\hat{Y}_i = \hat{a}' + \hat{b}(x_i - \bar{x}), \qquad \text{RSS} = \sum_i (Y_i - \hat{Y}_i)^2 \sim \sigma^2 \chi_{n-2}^2,$$

and (\hat{a}', \hat{b}) and $\hat{\sigma}^2 = RSS/n$ are independent.

Example 12.1 continued

- We have seen that $\tilde{\sigma}^2 = \frac{\text{RSS}}{n-p} = \frac{67968}{(24-2)} = 3089 = 55.6^2$.
- So the standard error of \hat{b} is

s.e.
$$(\hat{b}) = \sqrt{\tilde{\sigma}^2 (X^T X)_{22}^{-1}}, = \sqrt{\frac{3089}{S_{xx}}} = \frac{55.6}{28.0} = 1.99.$$

- So a 95% interval for b has endpoints $\hat{b} \pm \text{s.e.}(\hat{b}) \times t_{n-p}(0.025) = -12.9 \pm 1.99 * t_{22}(0.025) = (-17.0, -8.8),$ where $t_{22}(0.025) = 2.07$.
- This does not contain 0. Hence if carry out a size 0.05 test of H_0 : b=0 vs H_1 : $b \neq 0$, the test statistic would be $\frac{\hat{b}}{\text{s.e.}(\hat{b})} = \frac{-12.9}{1.99} = -6.48$, and we would reject H_0 since this is less than $-t_{22}(0.025) = -2.07$.

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

Residual standard error: 55.58 on 22 degrees of freedom

Expected response at \mathbf{x}^*

- ullet Let \mathbf{x}^* be a new vector of values for the explanatory variables
- The expected response at \mathbf{x}^* is $\mathbb{E}(Y|\mathbf{x}^*) = \mathbf{x}^{*T}\boldsymbol{\beta}$.
- We estimate this by $\mathbf{x}^{*T}\hat{\boldsymbol{\beta}}$.
- By Theorem 13.3 and Proposition 11.1(i),

$$\mathbf{x}^{*T}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \sim \mathsf{N}(0, \sigma^2 \mathbf{x}^{*T} (X^T X)^{-1} \mathbf{x}^*).$$

- Let $\tau^2 = \mathbf{x}^{*T} (X^T X)^{-1} \mathbf{x}^*$.
- Then

$$rac{\mathbf{x}^{*T}(\hat{oldsymbol{eta}}-oldsymbol{eta})}{ ilde{\sigma} au}\sim t_{n-p}.$$

• A $100(1-\alpha)\%$ confidence interval for the expected response $\mathbf{x}^{*T}\boldsymbol{\beta}$ has endpoints

$$\mathbf{x}^{*T}\hat{\boldsymbol{\beta}} \pm \tilde{\sigma} \tau t_{n-p}(\frac{\alpha}{2}).$$

Example 12.1 continued

- Suppose we wish to estimate the time to run 2 miles for a man with an oxygen take-up measurement of 50.
- Here $\mathbf{x}^{*T} = (1, (50 \bar{x}))$, where $\bar{x} = 48.6$.
- The estimated expected response at \mathbf{x}^{*T} is

$$\mathbf{x}^{*T}\hat{\boldsymbol{\beta}} = \hat{a'} + (50 - 48.6) \times \hat{b} = 826.5 - 1.4 \times 12.9 = 808.5.$$

- We find $\tau^2 = \mathbf{x}^{*T} (X^T X)^{-1} \mathbf{x}^* = \frac{1}{n} + \frac{\mathbf{x}^{*2}}{S_{xx}} = \frac{1}{24} + \frac{1.4^2}{783.5} = 0.044 = 0.21^2$.
- So a 95% CI for $\mathbb{E}(Y|\mathbf{x}^*=50-\bar{x})$ is

$$\mathbf{x}^{*T}\hat{\boldsymbol{\beta}} \pm \tilde{\sigma}\tau t_{n-\rho}(\frac{\alpha}{2}) = 808.5 \pm 55.6 \times 0.21 \times 2.07 = (783.6, 832.2).$$

```
oxy.s = oxy - mean(oxy)
fit=lm(time~ oxy.s )
pred=predict.lm(fit, interval="confidence")
plot(oxy, time,col="red", pch=19, xlab="Oxygen uptake",ylab="Time for 2 miles", mainlines(oxy, pred[, "fit"])
lines(oxy, pred[, "lwr"], lty = "dotted")
lines(oxy, pred[, "upr"], lty = "dotted")
```

95% CI for fitted line

Predicted response at x*

- The response at \mathbf{x}^* is $Y^* = \mathbf{x}^*\boldsymbol{\beta} + \varepsilon^*$, where $\varepsilon^* \sim N(0, \sigma^2)$, and Y^* is independent of $Y_1, ..., Y_n$.
- We predict \hat{Y}^* by $\mathbf{x}^{*T}\hat{\boldsymbol{\beta}}$.
- A $100(1-\alpha)\%$ prediction interval for Y^* is an interval $I(\mathbf{Y})$ such that $\mathbb{P}(Y^* \in I(\mathbf{Y})) = 1-\alpha$, where the probability is over the joint distribution of $(Y^*, Y_1, ..., Y_n)$.
- Observe that $\hat{Y}^* Y^* = \mathbf{x}^{*T}(\hat{\boldsymbol{\beta}} \boldsymbol{\beta}) \varepsilon^*$.
- So $\mathbb{E}(\hat{Y}^* Y^*) = \mathbf{x}^{*T}(\beta \beta) = 0.$
- And

$$\operatorname{var}(\hat{Y}^* - Y^*) = \operatorname{var}(\mathbf{x}^{*T}(\hat{\boldsymbol{\beta}})) + \operatorname{var}(\varepsilon^*)$$
$$= \sigma^2 \mathbf{x}^{*T} (X^T X)^{-1} \mathbf{x}^* + \sigma^2$$
$$= \sigma^2 (\tau^2 + 1)$$

So

$$\hat{Y}^* - Y^* \sim N(0, \sigma^2(\tau^2 + 1)).$$

We therefore find that

$$\frac{\hat{Y}^* - Y^*}{\tilde{\sigma}\sqrt{(\tau^2 + 1)}} \sim t_{n-p}.$$

So the interval with endpoints

$$\mathbf{x}^{*T}\hat{\boldsymbol{\beta}} \pm \tilde{\sigma}\sqrt{(\tau^2+1)} t_{n-p}(\frac{\alpha}{2}).$$

is a 95% prediction interval for Y^* .

Example 12.1 continued

A 95% prediction interval for Y^* at $\mathbf{x}^{*T} = (1, (50 - \bar{x}))$ is

$$\mathbf{x}^{*T}\hat{\boldsymbol{\beta}} \pm \tilde{\sigma}\sqrt{(\tau^2+1)} \ t_{n-\rho}(\frac{\alpha}{2}) = 808.5 \pm 55.6 \times 1.02 \times 2.07 = (691.1, 925.8).$$

pred=predict.lm(fit, interval="prediction")

95% interval for predicted values

Note wide prediction intervals for individual points, with the width of the interval dominated by the residual error term $\tilde{\sigma}$ rather than the uncertainty about the fitted line.

Example 13.1 continued. One-way analysis of variance

- Suppose we wish to estimate the expected resistivity of a new wafer in the first instrument.
- Here $\mathbf{x}^{*T} = (1, 0, ..., 0)$.
- The estimated expected response at \mathbf{x}^{*T} is

$$\mathbf{x}^{*T}\hat{\boldsymbol{\mu}} = \hat{\mu}_1 = \overline{Y}_{1.} = 124.3$$

- We find $\tau^2 = \mathbf{x}^{*T} (X^T X)^{-1} \mathbf{x}^* = \frac{1}{5}$.
- So a 95% CI for $\mathbb{E}(Y_{1*})$ is $\mathbf{x}^{*T}\hat{\boldsymbol{\mu}} \pm \tilde{\sigma}\, \tau\, t_{n-p}(\frac{\alpha}{2})$

$$= 124.3 \pm 10.4/\sqrt{5} \times 2.09 = 124.3 \pm 4.66 \times 2.09 = (114.6, 134.0).$$

- Note that we are using an estimate of σ obtained from all five instruments. If we had only used the data from the first instrument, σ would be estimated as $\tilde{\sigma}_1 = \sqrt{\sum_{j=1}^5 (y_{1,j} \overline{y}_{1.})^2/(5-1)} = 8.74$.
- ullet The observed 95% confidence interval for μ_1 would have been

$$\overline{y_{1.}} \pm \frac{\tilde{\sigma}_1}{\sqrt{5}} \ t_4(\frac{\alpha}{2}) = 124.3 \pm 3.91 \times 2.78 = (113.5, 135.1).$$

• The 'pooled' analysis gives a slightly narrower interval.

95% confidence intervals for means

A 95% prediction interval for Y_{1*} at $\mathbf{x}^{*T} = (1, 0, ..., 0)$ is

$$\mathbf{x}^{*T}\hat{\boldsymbol{\mu}} \pm \tilde{\sigma}\sqrt{(\tau^2+1)} \ t_{n-p}(\frac{\alpha}{2}) = 124.3 \pm 10.42 \times 1.1 \times 2.07 = (100.5, 148.1).$$

95% prediction intervals for new wafer

