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Lecture 14. Applications of the distribution theory
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14. Applications of the distribution theory 14.1. Inference for β

Inference for β

We know that β̂ ∼ Np(β, σ2(XTX )−1), and so

β̂j ∼ N(βj , σ
2(XTX )−1jj ).

The standard error of β̂j is

s.e.(β̂j) =
√
σ̃2(XTX )−1jj ,

where σ̃2 = RSS/(n − p), as in Theorem 13.3.

Then

β̂j − βj
s.e.(β̂j)

=
β̂j − βj√
σ̃2(XTX )−1jj

=
(β̂j − βj)/

√
σ2(XTX )−1jj√

RSS/((n − p)σ2)
.

The numerator is a standard normal N(0, 1), the denominator is an independent√
χ2
n−p/(n − p), and so

β̂j−βj

s.e.(β̂j )
∼ tn−p.
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14. Applications of the distribution theory 14.1. Inference for β

So a 100(1− α)% CI for βj has endpoints β̂j ± s.e.(β̂j) tn−p(α2 ).

To test H0 : βj = 0, use the fact that, under H0,
β̂j

s.e.(β̂j )
∼ tn−p.
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14. Applications of the distribution theory 14.2. Simple linear regression

Simple linear regression

We assume that
Yi = a′ + b(xi − x̄) + εi , i = 1, . . . , n,

where x̄ =
∑

xi/n, and εi , i = 1, ..., n are iid N(0, σ2).

Then from Lecture 12 and Theorem 13.3 we have that

â′ = Y ∼ N

(
a′,

σ2

n

)
, b̂ =

SxY
Sxx
∼ N

(
b,
σ2

Sxx

)
,

Ŷi = â′ + b̂(xi − x̄), RSS =
∑
i

(Yi − Ŷi )
2 ∼ σ2χ2

n−2,

and (â′, b̂) and σ̂2 = RSS/n are independent.
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14. Applications of the distribution theory 14.2. Simple linear regression

Example 12.1 continued

We have seen that σ̃2 = RSS
n−p = 67968

(24−2) = 3089 = 55.62.

So the standard error of b̂ is

s.e.(b̂) =
√
σ̃2(XTX )−122 ,=

√
3089

Sxx
=

55.6

28.0
= 1.99.

So a 95% interval for b has endpoints
b̂ ± s.e.(b̂)× tn−p(0.025) = −12.9± 1.99 ∗ t22(0.025) = (−17.0,−8.8),
where t22(0.025) = 2.07.

This does not contain 0. Hence if carry out a size 0.05 test of H0 : b = 0 vs

H1 : b 6= 0, the test statistic would be b̂
s.e.(b̂) = −12.9

1.99 = −6.48, and we would

reject H0 since this is less than −t22(0.025) = −2.07.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 826.500 11.346 72.846 < 2e-16 ***

oxy.s -12.869 1.986 -6.479 1.62e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 55.58 on 22 degrees of freedom

Lecture 14. Applications of the distribution theory 5 (1–75)



14. Applications of the distribution theory 14.3. Expected response at x∗

Expected response at x∗

Let x∗ be a new vector of values for the explanatory variables

The expected response at x∗ is E(Y |x∗) = x∗Tβ.

We estimate this by x∗T β̂.

By Theorem 13.3 and Proposition 11.1(i),

x∗T (β̂ − β) ∼ N(0, σ2 x∗T (XTX )−1x∗).

Let τ 2 = x∗T (XTX )−1x∗.

Then
x∗T (β̂ − β)

σ̃τ
∼ tn−p.

A 100(1− α)% confidence interval for the expected response x∗Tβ has
endpoints

x∗T β̂ ± σ̃τ tn−p(α2 ).
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14. Applications of the distribution theory 14.3. Expected response at x∗

Example 12.1 continued

Suppose we wish to estimate the time to run 2 miles for a man with an
oxygen take-up measurement of 50.

Here x∗T = (1, (50− x̄)), where x̄ = 48.6.

The estimated expected response at x∗T is

x∗T β̂ = â′ + (50− 48.6)× b̂ = 826.5− 1.4× 12.9 = 808.5.

We find τ 2 = x∗T (XTX )−1x∗ = 1
n + x∗2

Sxx
= 1

24 + 1.42

783.5 = 0.044 = 0.212.

So a 95% CI for E(Y |x∗ = 50− x̄) is

x∗T β̂ ± σ̃τ tn−p(α2 ) = 808.5± 55.6× 0.21× 2.07 = (783.6, 832.2).
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14. Applications of the distribution theory 14.3. Expected response at x∗

oxy.s = oxy - mean(oxy)

fit=lm(time~ oxy.s )

pred=predict.lm(fit, interval="confidence")

plot(oxy, time,col="red", pch=19, xlab="Oxygen uptake",ylab="Time for 2 miles", main="96\% CI for fitted line")

lines(oxy, pred[, "fit"])

lines(oxy, pred[, "lwr"], lty = "dotted")

lines(oxy, pred[, "upr"], lty = "dotted")
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14. Applications of the distribution theory 14.4. Predicted response at x∗

Predicted response at x∗
The response at x∗ is Y ∗ = x∗β + ε∗, where ε∗ ∼ N(0, σ2), and Y ∗ is
independent of Y1, ..,Yn.

We predict Ŷ ∗ by x∗T β̂.

A 100(1− α)% prediction interval for Y ∗ is an interval I (Y) such that
P(Y ∗ ∈ I (Y)) = 1− α, where the probability is over the joint distribution of
(Y ∗,Y1, ...,Yn).

Observe that Ŷ ∗ − Y ∗ = x∗T (β̂ − β)− ε∗.
So E(Ŷ ∗ − Y ∗) = x∗T (β − β) = 0.

And

var(Ŷ ∗ − Y ∗) = var(x∗T (β̂)) + var(ε∗)

= σ2x∗T (XTX )−1x∗ + σ2

= σ2(τ 2 + 1)

So
Ŷ ∗ − Y ∗ ∼ N(0, σ2(τ 2 + 1)).
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14. Applications of the distribution theory 14.4. Predicted response at x∗

We therefore find that
Ŷ ∗ − Y ∗

σ̃
√

(τ 2 + 1)
∼ tn−p.

So the interval with endpoints

x∗T β̂ ± σ̃
√

(τ 2 + 1) tn−p(α2 ).

is a 95% prediction interval for Y ∗.

Example 12.1 continued

A 95% prediction interval for Y ∗ at x∗T = (1, (50− x̄)) is

x∗T β̂ ± σ̃
√

(τ 2 + 1) tn−p(α2 ) = 808.5± 55.6× 1.02× 2.07 = (691.1, 925.8).

Lecture 14. Applications of the distribution theory 10 (1–75)



14. Applications of the distribution theory 14.4. Predicted response at x∗

pred=predict.lm(fit, interval="prediction")

Note wide prediction intervals for individual points, with the width of the interval
dominated by the residual error term σ̃ rather than the uncertainty about the
fitted line.
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14. Applications of the distribution theory 14.4. Predicted response at x∗

Example 13.1 continued. One-way analysis of variance

Suppose we wish to estimate the expected resistivity of a new wafer in the
first instrument.

Here x∗T = (1, 0, .., 0).

The estimated expected response at x∗T is

x∗T µ̂ = µ̂1 = Y 1. = 124.3

We find τ 2 = x∗T (XTX )−1x∗ = 1
5 .

So a 95% CI for E(Y1∗) is x∗T µ̂± σ̃ τ tn−p(α2 )

= 124.3± 10.4/
√

5× 2.09 = 124.3± 4.66× 2.09 = (114.6, 134.0).

Note that we are using an estimate of σ obtained from all five instruments. If
we had only used the data from the first instrument, σ would be estimated as

σ̃1 =
√∑5

j=1(y1,j − y1.)
2/(5− 1) = 8.74.

The observed 95% confidence interval for µ1 would have been

y1. ± σ̃1√
5
t4(α2 ) = 124.3± 3.91× 2.78 = (113.5, 135.1).

The ’pooled’ analysis gives a slightly narrower interval.
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14. Applications of the distribution theory 14.4. Predicted response at x∗
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14. Applications of the distribution theory 14.4. Predicted response at x∗

A 95% prediction interval for Y1∗ at x∗T = (1, 0, ..., 0) is

x∗T µ̂± σ̃
√

(τ 2 + 1) tn−p(α2 ) = 124.3± 10.42× 1.1× 2.07 = (100.5, 148.1).
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