Lecture 14. Applications of the distribution theory

Inference for $\boldsymbol{\beta}$

We know that $\hat{\boldsymbol{\beta}} \sim \mathrm{N}_{p}\left(\boldsymbol{\beta}, \sigma^{2}\left(X^{\top} X\right)^{-1}\right)$, and so

$$
\hat{\beta}_{j} \sim \mathrm{~N}\left(\beta_{j}, \sigma^{2}\left(X^{\top} X\right)_{j j}^{-1}\right)
$$

The standard error of $\hat{\boldsymbol{\beta}}_{j}$ is

$$
\text { s.e. }\left(\hat{\beta}_{j}\right)=\sqrt{\tilde{\sigma}^{2}\left(X^{\top} X\right)_{j j}^{-1}},
$$

where $\tilde{\sigma}^{2}=\operatorname{RSS} /(n-p)$, as in Theorem 13.3.
Then

$$
\frac{\hat{\beta}_{j}-\beta_{j}}{\text { s.e. }\left(\hat{\beta}_{j}\right)}=\frac{\hat{\beta}_{j}-\beta_{j}}{\sqrt{\tilde{\sigma}^{2}\left(X^{\top} X\right)_{j j}^{-1}}}=\frac{\left(\hat{\beta}_{j}-\beta_{j}\right) / \sqrt{\sigma^{2}\left(X^{\top} X\right)_{j j}^{-1}}}{\sqrt{\mathrm{RSS} /\left((n-p) \sigma^{2}\right)}} .
$$

The numerator is a standard normal $\mathrm{N}(0,1)$, the denominator is an independent $\sqrt{\chi_{n-p}^{2} /(n-p)}$, and so $\frac{\hat{\beta}_{j}-\beta_{j}}{\text { s.e. }\left(\hat{\beta}_{j}\right)} \sim \mathrm{t}_{n-p}$.

So a $100(1-\alpha) \% \mathrm{Cl}$ for β_{j} has endpoints $\hat{\beta}_{j} \pm$ s.e. $\left(\hat{\beta}_{j}\right) t_{n-p}\left(\frac{\alpha}{2}\right)$.
To test $H_{0}: \beta_{j}=0$, use the fact that, under $H_{0}, \frac{\hat{\beta}_{j}}{\text { s.e. }\left(\hat{\beta}_{j}\right)} \sim t_{n-p}$.

Simple linear regression

We assume that

$$
Y_{i}=a^{\prime}+b\left(x_{i}-\bar{x}\right)+\varepsilon_{i}, \quad i=1, \ldots, n,
$$

where $\bar{x}=\sum x_{i} / n$, and $\varepsilon_{i}, i=1, \ldots, n$ are iid $\mathrm{N}\left(0, \sigma^{2}\right)$.
Then from Lecture 12 and Theorem 13.3 we have that

$$
\begin{gathered}
\hat{a}^{\prime}=\bar{Y} \sim \mathrm{~N}\left(a^{\prime}, \frac{\sigma^{2}}{n}\right), \quad \hat{b}=\frac{S_{x Y}}{S_{x x}} \sim \mathrm{~N}\left(b, \frac{\sigma^{2}}{S_{x x}}\right), \\
\hat{Y}_{i}=\hat{a}^{\prime}+\hat{b}\left(x_{i}-\bar{x}\right), \quad \mathrm{RSS}=\sum_{i}\left(Y_{i}-\hat{Y}_{i}\right)^{2} \sim \sigma^{2} \chi_{n-2}^{2},
\end{gathered}
$$

and $\left(\hat{a}^{\prime}, \hat{b}\right)$ and $\hat{\sigma}^{2}=\operatorname{RSS} / n$ are independent.

Example 12.1 continued

- We have seen that $\tilde{\sigma}^{2}=\frac{\mathrm{RSS}}{n-p}=\frac{67968}{(24-2)}=3089=55.6^{2}$.
- So the standard error of \hat{b} is

$$
\text { s.e. }(\hat{b})=\sqrt{\tilde{\sigma}^{2}\left(X^{\top} X\right)_{22}^{-1}}=\sqrt{\frac{3089}{S_{x x}}}=\frac{55.6}{28.0}=1.99 .
$$

- So a 95% interval for b has endpoints $\hat{b} \pm$ s.e. $(\hat{b}) \times t_{n-p}(0.025)=-12.9 \pm 1.99 * t_{22}(0.025)=(-17.0,-8.8)$, where $t_{22}(0.025)=2.07$.
- This does not contain 0 . Hence if carry out a size 0.05 test of $H_{0}: b=0$ vs $H_{1}: b \neq 0$, the test statistic would be $\frac{\hat{b}}{\text { s.e. }(\hat{b})}=\frac{-12.9}{1.99}=-6.48$, and we would reject H_{0} since this is less than $-t_{22}(0.025)=-2.07$.

Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	826.500	11.346	72.846	$<2 e-16$	$* * *$
oxy.s	-12.869	1.986	-6.479	$1.62 \mathrm{e}-06$	$* * *$

Signif. codes: 0 *** 0.001 ** $0.01 * 0.05$. 0.11
Residual standard error: 55.58 on 22 degrees of freedom

Expected response at \mathbf{x}^{*}

- Let \mathbf{x}^{*} be a new vector of values for the explanatory variables
- The expected response at \mathbf{x}^{*} is $\mathbb{E}\left(Y \mid \mathbf{x}^{*}\right)=\mathbf{x}^{* T} \boldsymbol{\beta}$.
- We estimate this by $\mathbf{x}^{* T} \hat{\boldsymbol{\beta}}$.
- By Theorem 13.3 and Proposition 11.1(i),

$$
\mathbf{x}^{* T}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \sim \mathrm{N}\left(0, \sigma^{2} \mathbf{x}^{* T}\left(X^{T} X\right)^{-1} \mathbf{x}^{*}\right)
$$

- Let $\tau^{2}=\mathbf{x}^{* T}\left(X^{T} X\right)^{-1} \mathbf{x}^{*}$.
- Then

$$
\frac{\mathbf{x}^{* T}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})}{\tilde{\sigma} \tau} \sim t_{n-p} .
$$

- A $100(1-\alpha) \%$ confidence interval for the expected response $\mathbf{x}^{* T} \boldsymbol{\beta}$ has endpoints

$$
\mathbf{x}^{* T} \hat{\boldsymbol{\beta}} \pm \tilde{\sigma} \tau t_{n-p}\left(\frac{\alpha}{2}\right) .
$$

Example 12.1 continued

- Suppose we wish to estimate the time to run 2 miles for a man with an oxygen take-up measurement of 50 .
- Here $\mathbf{x}^{* T}=(1,(50-\bar{x}))$, where $\bar{x}=48.6$.
- The estimated expected response at $\mathbf{x}^{* T}$ is

$$
\mathbf{x}^{* \top} \hat{\boldsymbol{\beta}}=\hat{a^{\prime}}+(50-48.6) \times \hat{b}=826.5-1.4 \times 12.9=808.5 .
$$

- We find $\tau^{2}=\mathbf{x}^{* T}\left(X^{T} X\right)^{-1} \mathbf{x}^{*}=\frac{1}{n}+\frac{\mathbf{x}^{* 2}}{S_{x x}}=\frac{1}{24}+\frac{1.4^{2}}{783.5}=0.044=0.21^{2}$.
- So a $95 \% \mathrm{Cl}$ for $\mathbb{E}\left(Y \mid \mathbf{x}^{*}=50-\bar{x}\right)$ is

$$
\mathbf{x}^{* T} \hat{\boldsymbol{\beta}} \pm \tilde{\sigma} \tau t_{n-p}\left(\frac{\alpha}{2}\right)=808.5 \pm 55.6 \times 0.21 \times 2.07=(783.6,832.2)
$$

```
oxy.s = oxy - mean(oxy)
fit=lm(time~ oxy.s )
pred=predict.lm(fit, interval="confidence")
plot(oxy, time,col="red", pch=19, xlab="Oxygen uptake",ylab="Time for 2 miles", mail
lines(oxy, pred[, "fit"])
lines(oxy, pred[, "lwr"], lty = "dotted")
lines(oxy, pred[, "upr"], lty = "dotted")
```

95\% CI for fitted line

Predicted response at $x *$

- The response at \mathbf{x}^{*} is $\boldsymbol{Y}^{*}=\mathbf{x}^{*} \boldsymbol{\beta}+\varepsilon^{*}$, where $\varepsilon^{*} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$, and \boldsymbol{Y}^{*} is independent of $Y_{1}, . ., Y_{n}$.
- We predict \hat{Y}^{*} by $\mathbf{x}^{* \top} \hat{\boldsymbol{\beta}}$.
- A $100(1-\alpha) \%$ prediction interval for Y^{*} is an interval $I(\mathbf{Y})$ such that $\mathbb{P}\left(Y^{*} \in I(\mathbf{Y})\right)=1-\alpha$, where the probability is over the joint distribution of $\left(Y^{*}, Y_{1}, \ldots, Y_{n}\right)$.
- Observe that $\hat{Y}^{*}-Y^{*}=\mathbf{x}^{* T}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})-\varepsilon^{*}$.
- So $\mathbb{E}\left(\hat{Y}^{*}-Y^{*}\right)=\mathbf{x}^{* T}(\boldsymbol{\beta}-\boldsymbol{\beta})=0$.
- And

$$
\begin{aligned}
\operatorname{var}\left(\hat{Y}^{*}-Y^{*}\right) & =\operatorname{var}\left(\mathbf{x}^{* T}(\hat{\boldsymbol{\beta}})\right)+\operatorname{var}\left(\varepsilon^{*}\right) \\
& =\sigma^{2} \mathbf{x}^{* T}\left(X^{T} X\right)^{-1} \mathbf{x}^{*}+\sigma^{2} \\
& =\sigma^{2}\left(\tau^{2}+1\right)
\end{aligned}
$$

- So

$$
\hat{Y}^{*}-Y^{*} \sim \mathrm{~N}\left(0, \sigma^{2}\left(\tau^{2}+1\right)\right) .
$$

- We therefore find that

$$
\frac{\hat{Y}^{*}-Y^{*}}{\tilde{\sigma} \sqrt{\left(\tau^{2}+1\right)}} \sim t_{n-p}
$$

- So the interval with endpoints

$$
\mathbf{x}^{* T} \hat{\boldsymbol{\beta}} \pm \tilde{\sigma} \sqrt{\left(\tau^{2}+1\right)} t_{n-p}\left(\frac{\alpha}{2}\right) .
$$

is a 95% prediction interval for Y^{*}.

Example 12.1 continued

A 95% prediction interval for Y^{*} at $\mathbf{x}^{* T}=(1,(50-\bar{x}))$ is

$$
\mathbf{x}^{* T} \hat{\boldsymbol{\beta}} \pm \tilde{\sigma} \sqrt{\left(\tau^{2}+1\right)} t_{n-p}\left(\frac{\alpha}{2}\right)=808.5 \pm 55.6 \times 1.02 \times 2.07=(691.1,925.8) .
$$

```
pred=predict.lm(fit, interval="prediction")
```

95\% interval for predicted values

Note wide prediction intervals for individual points, with the width of the interval dominated by the residual error term $\tilde{\sigma}$ rather than the uncertainty about the fitted line.

Example 13.1 continued. One-way analysis of variance

- Suppose we wish to estimate the expected resistivity of a new wafer in the first instrument.
- Here $\mathbf{x}^{* T}=(1,0, . .0)$.
- The estimated expected response at $\mathbf{x}^{* T}$ is

$$
\mathbf{x}^{* T} \hat{\boldsymbol{\mu}}=\hat{\mu}_{1}=\bar{Y}_{1 .}=124.3
$$

- We find $\tau^{2}=\mathbf{x}^{* T}\left(X^{\top} X\right)^{-1} \mathbf{x}^{*}=\frac{1}{5}$.
- So a $95 \% \mathrm{Cl}$ for $\mathbb{E}\left(Y_{1 *}\right)$ is $\mathbf{x}^{* T} \hat{\boldsymbol{\mu}} \pm \tilde{\sigma} \tau t_{n-p}\left(\frac{\alpha}{2}\right)$

$$
=124.3 \pm 10.4 / \sqrt{5} \times 2.09=124.3 \pm 4.66 \times 2.09=(114.6,134.0) .
$$

- Note that we are using an estimate of σ obtained from all five instruments. If we had only used the data from the first instrument, σ would be estimated as

$$
\tilde{\sigma}_{1}=\sqrt{\sum_{j=1}^{5}\left(y_{1, j}-\bar{y}_{1 .}\right)^{2} /(5-1)}=8.74 \text {. }
$$

- The observed 95% confidence interval for μ_{1} would have been

$$
\overline{y_{1 .}} \pm \frac{\tilde{\sigma}_{1}}{\sqrt{5}} t_{4}\left(\frac{\alpha}{2}\right)=124.3 \pm 3.91 \times 2.78=(113.5,135.1) .
$$

- The 'pooled' analysis gives a slightly narrower interval.

95\% confidence intervals for means

A 95% prediction interval for $Y_{1 *}$ at $\mathbf{x}^{* T}=(1,0, \ldots, 0)$ is

$$
\mathbf{x}^{* T} \hat{\boldsymbol{\mu}} \pm \tilde{\sigma} \sqrt{\left(\tau^{2}+1\right)} t_{n-p}\left(\frac{\alpha}{2}\right)=124.3 \pm 10.42 \times 1.1 \times 2.07=(100.5,148.1) .
$$

95\% prediction intervals for new wafer

