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12. The linear model 12.1. Introduction to linear models

Introduction to linear models

Linear models can be used to explain or model the relationship between a
response, or dependent, variable and one or more explanatory variables, or
covariates or predictors.

For example, how do motor insurance claims depend on the age and sex of
the driver, and where they live?

Here the claim rate is the response, and age, sex and region are explanatory
variables, assumed known.
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12. The linear model 12.1. Introduction to linear models

In the linear model, we assume our n observations (responses) are Y1, ..,Yn

are modelled as

Yi = β1xi1 + . . .+ βpxip + εi , i = 1, . . . , n, (1)

where

β1, .., βp are unknown parameters, n > p

xi1, .., xip are the values of p covariates for the ith response (assumed known)

ε1, .., εn are independent (or possible just uncorrelated) random variables with
mean 0 and variance σ2.

From (??),

E(Yi ) = β1xi1 + . . .+ βpxip

var(Yi ) = var(εi ) = σ2

Y1, ..,Yn are independent (or uncorrelated).

Note that (??) is linear in the parameters β1, .., βp (there are a wide range of
more complex models which are non-linear in the parameters).
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12. The linear model 12.2. Simple linear regression

Example 12.1

For each of 24 males, the maximum volume of oxygen uptake in the blood and
the time taken to run 2 miles (in minutes) were measured. Interest lies on how
the time to run 2 miles depends on the oxygen uptake.

oxy=c(42.3,53.1,42.1,50.1,42.5,42.5,47.8,49.9,

36.2,49.7,41.5,46.2,48.2,43.2,51.8,53.3,

53.3,47.2,56.9,47.8,48.7,53.7,60.6,56.7)

time=c(918, 805, 892, 962, 968, 907, 770, 743,

1045, 810, 927, 813, 858, 860, 760, 747,

743, 803, 683, 844, 755, 700, 748, 775)

plot(oxy, time)
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12. The linear model 12.2. Simple linear regression

For individual i , let Yi be the time to run 2 miles, and xi be the maximum
volume of oxygen uptake, i = 1, ..., 24.

A possible model is

Yi = a + bxi + εi , i = 1, . . . , 24,

where εi are independent random variables with variance σ2, and a and b are
constants.
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12. The linear model 12.3. Matrix formulation

Matrix formulation

The linear model may be written in matrix form. Let

Y
n×1

=


Y1

.

.
Yn

 , X
n×p

=


x11 . . x1p
. . . .
. . . .

xn1 . . xnp

 , β
p×1

=


β1
.
.
βp

 , ε
n×1

=


ε1
.
.
εn

 ,

Then from (??),

Y = Xβ + ε (2)

E(ε) = 0

cov(Y) = σ2I

We assume throughout that X has full rank p.

We also assume the error variance is the same for each observation: this is the
homoscedastic case (as opposed to heteroscedastic).
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12. The linear model 12.3. Matrix formulation

Example 12.1 continued

Recall Yi = a + bxi + εi , i = 1, .., 24.

In matrix form:

Y =


Y1

.

.
Y24

 , X =


1 x1
. .
. .
1 x24

 , β =

(
a
b

)
, ε =


ε1
.
.
ε24

 ,

Then
Y = Xβ + ε
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12. The linear model 12.4. Least squares estimation

Least squares estimation

In a linear model Y = Xβ + ε, the least squares estimator β̂ of β minimises

S(β) = ‖Y − Xβ‖2 = (Y − Xβ)T (Y − Xβ)

=
n∑

i=1

(Yi −
p∑

j=1

xijβj)
2

So
∂S

∂βk

∣∣∣∣
β=

ˆβ
= 0, k = 1, .., p.

So −2
∑n

i=1 xik(Yi −
∑p

j=1 xij β̂j) = 0, k = 1, .., p.

i.e.
∑n

i=1 xik
∑p

j=1 xij β̂j =
∑n

i=1 xikYi , k = 1, .., p.

In matrix form,
XTX β̂ = XTY (3)

the least squares equation.
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12. The linear model 12.4. Least squares estimation

Recall we assume X is of full rank p.

This implies
tTXTX t = (X t)T (X t) = ‖X t‖2 > 0

for t 6= 0 in Rp.

i.e. XTX is positive definite, and hence has an inverse.

Hence
β̂ = (XTX )−1XTY (4)

which is linear in the Yi ’s.

We also have that

E(β̂) = (XTX )−1XTE(Y) = (XTX )−1XTXβ = β

so β̂ is unbiased for β.

And
cov(β̂) = (XTX )−1XT cov(Y)X (XTX )−1 = (XTX )−1σ2 (5)

since cov(Y) = σ2I .
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12. The linear model 12.5. Simple linear regression using standardised x ’s

Simple linear regression using standardised x ’s

The model
Yi = a + bxi + εi , i = 1, . . . , n,

can be reparametrised to

Yi = a′ + b(xi − x̄) + εi , i = 1, . . . , n, (6)

where x̄ =
∑

xi/n and a′ = a + bx̄ .

Since
∑

i (xi − x̄) = 0, this leads to simplified calculations.
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12. The linear model 12.5. Simple linear regression using standardised x ’s

In matrix form, X =

 1 (x1 − x̄)
. .
1 (x24 − x̄)

 , so that XTX =

(
n 0
0 Sxx

)
,

where Sxx =
∑

i (xi − x̄)2.

Hence

(XTX )−1 =

(
1
n 0
0 1

Sxx

)
,

so that

β̂ = (XTX )−1XTY =

(
Ȳ
SxY

Sxx

)
,

where SxY =
∑

i Yi (xi − x̄).
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12. The linear model 12.5. Simple linear regression using standardised x ’s

We note that the estimated intercept is â′ = ȳ , and the estimated gradient b̂
is

b̂ =
Sxy

Sxx
=

∑
i yi (xi − x̄)∑
i (xi − x̄)2

=

∑
i (yi − ȳ)(xi − x̄)√∑

i (xi − x̄)2
∑

i (yi − ȳ)2)
×
√

Syy

Sxx

= r ×
√

Syy

Sxx

Thus the estimated gradient is the Pearson product-moment correlation
coefficient r , times the ratio of the empirical standard deviations of the y ’s
and x ’s.

(Note this estimated gradient is the same whether the x ’s are standardised to
have mean 0 or not.)

From (5), cov(β̂) = (XTX )−1σ2, and so

var(â′) = var(Ȳ ) =
σ2

n
; var(b̂) =

σ2

Sxx
;

These estimators are uncorrelated.

All these results are obtained without any explicit distributional assumptions.
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12. The linear model 12.5. Simple linear regression using standardised x ’s

Example 12.1 continued

n = 24, â′ = ȳ = 826.5.

Sxx = 783.5 = 28.02,Sxy = −10077,Syy = 4442, r = −0.81, b̂ = −12.9.

Line goes through (x̄ , ȳ).
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12. The linear model 12.6. ’Gauss Markov’ theorem

’Gauss Markov’ theorem

Theorem 12.2

In the full rank linear model, let β̂ be the least squares estimator of β and let β∗

be any other unbiassed estimator for β which is linear in the Yi ’s.
Then var(tT β̂) ≤ var(tTβ∗) for all t ∈ Rp.
We say that β̂ is the Best Linear Unbiased Estimator of β (BLUE).

Proof:

Since β∗ is linear in the Yi ’s, β∗ = AY for some A
p×n

.

Since β∗ is unbiased, we have that β = E(β∗) = AXβ for all β ∈ Rp, and so
AX = Ip.

Now

cov(β∗) = E
(
β∗ − β)(β∗ − β)T

)
= E

(
AXβ + Aε− β)(AXβ + Aε− β)T

)
= E

(
AεεTAT

)
since AXβ = β

= A(σ2I )AT = σ2AAT

Lecture 12. The linear model 14 (1–1)



12. The linear model 12.6. ’Gauss Markov’ theorem

Now β∗ − β̂ = (A− (XTX )−1XT )Y = B
p×n

Y, say.

And BX = AX − (XTX )−1XTX = Ip − Ip = 0.

So

cov(β∗) = σ2(B + (XTX )−1XT )(B + (XTX )−1XT )T

= σ2(BBT + (XTX )−1)

= σ2BBT + cov(β̂)

So for t ∈ Rp,

var(tTβ∗) = tT cov(β∗)t = tT cov(β̂)t + tTBBT t σ2

= var(tT β̂) + σ2‖BT t‖2

≥ var(tT β̂).

Taking t = (0, .., 1, 0, .., 0)T with a 1 in the ith position, gives

var(β̂i ) ≤ var(β∗i ).

�
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12. The linear model 12.7. Fitted values and residuals

Fitted values and residuals

Definition 12.3

Ŷ = X β̂ is the vector of fitted values.
R = Y − Ŷ is the vector of residuals.
The residual sum of squares is RSS = ‖R‖2 = RTR = (Y − X β̂)T (Y − X β̂)

Note XTR = XT (Y − Ŷ) = XTY − XTX β̂ = 0 by (??).

So R is orthogonal to the column space of X .

Write Ŷ = X β̂ = X (XTX )−1XTY = PY, where P = X (XTX )−1XT .

P represents an orthogonal projection of Rn onto the space spanned by
columns of X . We have P2 = P (P is idempotent) and PT = P (symmetric).
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