Lecture 11. Multivariate Normal theory

Properties of means and covariances of vectors

- A random (column) vector $\mathbf{X}=\left(X_{1}, . ., X_{n}\right)^{T}$ has mean

$$
\boldsymbol{\mu}=\mathbb{E}(\mathbf{X})=\left(\mathbb{E}\left(X_{1}\right), \ldots, \mathbb{E}\left(X_{n}\right)\right)^{T}=\left(\mu_{1}, . ., \mu_{n}\right)^{T}
$$

and covariance matrix

$$
\operatorname{cov}(\mathbf{X})=\mathbb{E}\left[(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{T}\right]=\left(\operatorname{cov}\left(X_{i}, X_{j}\right)\right)_{i, j}
$$

provided the relevant expectations exist.

- For $m \times n A$,

$$
\mathbb{E}[A \mathbf{X}]=A \boldsymbol{\mu}
$$

and

$$
\begin{equation*}
\operatorname{cov}(A \mathbf{X})=A \operatorname{cov}(\mathbf{X}) A^{T} \tag{1}
\end{equation*}
$$

since $\left.\operatorname{cov}(A \mathbf{X})=\mathbb{E}\left[(A X-\mathbb{E}(A X))(A X-\mathbb{E}(A X))^{T}\right)\right]=$ $\mathbb{E}\left[A(X-\mathbb{E}(X))(X-\mathbb{E}(X))^{T} A^{T}\right]$.

- Define $\operatorname{cov}(V, W)$ to be a matrix with (i, j) element $\operatorname{cov}\left(V_{i}, W_{j}\right)$. Then $\operatorname{cov}(A \mathbf{X}, B \mathbf{X})=A \operatorname{cov}(\mathbf{X}) B^{T} . \quad$ (check. Important for later)

Multivariate normal distribution

- Recall that a univariate normal $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ has density

$$
f_{X}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right), x \in \mathbb{R},
$$

and mgf

$$
M_{X}(s)=\mathbb{E}\left[e^{s X}\right]=\exp \left(\mu s+\frac{1}{2} \sigma^{2} s^{2}\right) .
$$

- \mathbf{X} has a multivariate normal distribution if, for every $\mathbf{t} \in \mathbb{R}^{n}$, the $r v \mathbf{t}^{T} \mathbf{X}$ has a normal distribution.
- If $\mathbb{E}(\mathbf{X})=\boldsymbol{\mu}$ and $\operatorname{cov}(\mathbf{X})=\Sigma$, we write $\mathbf{X} \sim N_{n}(\boldsymbol{\mu}, \Sigma)$.
- Note Σ is symmetric and is non-negative definite because by (??), $\mathbf{t}^{T} \Sigma \mathbf{t}=\operatorname{var}\left(\mathbf{t}^{\top} \mathbf{X}\right) \geq 0$.
- By (??), $\mathbf{t}^{T} \mathbf{X} \sim \mathrm{~N}\left(\mathbf{t}^{T} \mu, \mathbf{t}^{T} \Sigma \mathbf{t}\right)$ and so has mgf

$$
M_{\mathbf{t}^{T} \mathbf{X}}(s)=\mathbb{E}\left[e^{\mathbf{s t}^{T} \mathbf{x}}\right]=\exp \left(\mathbf{t}^{T} \boldsymbol{\mu} s+\frac{1}{2} \mathbf{t}^{T} \Sigma \mathbf{t s}^{2}\right) .
$$

- Hence \mathbf{X} has mgf

$$
\begin{equation*}
M_{\mathbf{x}}(\mathbf{t})==\mathbb{E}\left[\mathrm{e}^{\mathbf{t}^{T} \mathbf{x}}\right]=M_{\mathbf{t}^{\top} \mathbf{X}}(1)=\exp \left(\mathbf{t}^{T} \boldsymbol{\mu}+\frac{1}{2} \mathbf{t}^{T} \Sigma \mathbf{t}\right) \tag{2}
\end{equation*}
$$

Proposition 11.1

(i) If $\mathbf{X} \sim N_{n}(\boldsymbol{\mu}, \Sigma)$ and A is $m \times n$, then $A \mathbf{X} \sim N_{m}\left(A \boldsymbol{\mu}, A \Sigma A^{T}\right)$
(ii) If $\mathbf{X} \sim N_{n}\left(\mathbf{0}, \sigma^{2}\right.$ I) then

$$
\frac{\|\mathbf{X}\|^{2}}{\sigma^{2}}=\frac{\mathbf{x}^{\top} \mathbf{X}}{\sigma^{2}}=\sum \frac{X_{i}^{2}}{\sigma^{2}} \sim \chi_{n}^{2} .
$$

Proof:

(i) from exercise sheet 3.
(ii) Immediate from definition of χ_{n}^{2}. \square

Note that we often write $\|X\|^{2} \sim \sigma^{2} \chi_{n}^{2}$.

Proposition 11.2

Let $\mathbf{X} \sim N_{n}(\boldsymbol{\mu}, \Sigma), \mathbf{X}=\binom{\mathbf{X}_{1}}{\mathbf{X}_{2}}$, where \mathbf{X}_{i} is a $n_{i} \times 1$ column vector, and
$n_{1}+n_{2}=n$. Write similarly $\boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{1}}{\boldsymbol{\mu}_{2}}$, and $\Sigma=\left(\begin{array}{cc}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22}\end{array}\right)$, where $\Sigma_{i j}$ is $n_{i} \times n_{j}$. Then
(i) $\mathbf{X}_{i} \sim N_{n_{i}}\left(\boldsymbol{\mu}_{i}, \Sigma_{i i}\right)$,
(ii) \mathbf{X}_{1} and \mathbf{X}_{2} are independent iff $\Sigma_{12}=0$.

Proof:
(i) See Example sheet 3.
(ii) From (??), $M_{\mathbf{x}}(\mathbf{t})=\exp \left(\mathbf{t}^{T} \boldsymbol{\mu}+\frac{1}{2} \mathbf{t}^{T} \Sigma \mathbf{t}\right), \mathbf{t} \in \mathbb{R}^{n}$. Write
$M_{\mathbf{x}}(\mathbf{t})=\exp \left(\mathbf{t}_{1}{ }^{T} \boldsymbol{\mu}_{1}+\mathbf{t}_{2}^{T} \boldsymbol{\mu}_{2}+\frac{1}{2} \mathbf{t}_{1}{ }^{T} \Sigma_{11} \mathbf{t}_{1}+\frac{1}{2} \mathbf{t}_{2}^{T} \Sigma_{22} \mathbf{t}_{2}+\frac{1}{2} \mathbf{t}_{1}{ }^{T} \Sigma_{12} \mathbf{t}_{2}+\frac{1}{2} \mathbf{t}_{2}^{T} \Sigma_{21} \mathbf{t}_{1}\right)$.
From (i), $M_{\mathbf{x}_{i}}\left(\mathbf{t}_{i}\right)=\exp \left(\mathbf{t}_{i}^{T} \boldsymbol{\mu}_{i}+\frac{1}{2} \mathbf{t}_{i}^{T} \sum_{i i} \mathbf{t}_{i}\right)$ so $M_{\mathbf{x}}(\mathbf{t})=M_{\mathbf{x}_{1}}\left(\mathbf{t}_{1}\right) M_{\mathbf{x}_{2}}\left(\mathbf{t}_{2}\right)$, for all
$\mathbf{t}=\binom{\mathbf{t}_{1}}{\mathbf{t}_{2}}$ iff $\Sigma_{12}=0$.

Density for a multivariate normal

When Σ is positive definite, then \mathbf{X} has pdf

$$
f_{\mathbf{x}}(\mathbf{x} ; \boldsymbol{\mu}, \Sigma)=\frac{1}{|\Sigma|^{\frac{1}{2}}}\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \exp \left[-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right], \quad \mathbf{x} \in \mathbb{R}^{n}
$$

Normal random samples

We now consider $\bar{X}=\frac{1}{n} \sum X_{i}$, and $S_{X X}=\sum\left(X_{i}-\bar{X}\right)^{2}$ for univariate normal data.

Theorem 11.3

(Joint distribution of \bar{X} and $S_{X X}$) Suppose X_{1}, \ldots, X_{n} are iid $N\left(\mu, \sigma^{2}\right)$, $\bar{X}=\frac{1}{n} \sum X_{i}$, and $S_{X X}=\sum\left(X_{i}-\bar{X}\right)^{2}$. Then
(i) $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$;
(ii) $S_{X X} / \sigma^{2} \sim \chi_{n-1}^{2}$;
(iii) \bar{X} and $S_{X X}$ are independent.

Proof

We can write the joint density as $\mathbf{X} \sim \mathrm{N}_{n}\left(\boldsymbol{\mu}, \sigma^{2} I\right)$, where $\boldsymbol{\mu}=\mu \mathbf{1}$ ($\mathbf{1}$ is a $n \times 1$ column vector of 1 's).
Let A be the $n \times n$ orthogonal matrix

$$
A=\left[\begin{array}{cccccc}
\frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}} \\
\frac{1}{\sqrt{2 \times 1}} & \frac{-1}{\sqrt{2 \times 1}} & 0 & 0 & \cdots & 0 \\
\frac{1}{\sqrt{3 \times 2}} & \frac{1}{\sqrt{3 \times 2}} & \frac{-2}{\sqrt{3 \times 2}} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
\frac{1}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n(n-1)}} & \cdots & \frac{-(n-1)}{\sqrt{n(n-1)}}
\end{array}\right] .
$$

So $A^{T} A=A A^{T}=I$. (check)
(Note that the rows form an orthonormal basis of \mathbb{R}^{n}.)
(Strictly, we just need an orthogonal matrix with the first row matching that of A above.)

- By Proposition 11.1(i), $\mathbf{Y}=A \mathbf{X} \sim \mathrm{~N}_{n}\left(A \boldsymbol{\mu}, A \sigma^{2} I A^{T}\right) \sim \mathrm{N}_{n}\left(A \boldsymbol{\mu}, \sigma^{2} I\right)$, since $A A^{T}=I$.
- We have $A \boldsymbol{\mu}=\left(\begin{array}{c}\sqrt{n} \mu \\ 0 \\ \cdot \\ \cdot \\ 0\end{array}\right)$, so $Y_{1}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}=\sqrt{n} \bar{X} \sim \mathrm{~N}\left(\sqrt{n} \mu, \sigma^{2}\right)$
(Prop 11.1 (ii))
and $Y_{i} \sim \mathrm{~N}\left(0, \sigma^{2}\right), i=2, \ldots, n$ and Y_{1}, \ldots, Y_{n} are independent.
- Note also that

$$
\begin{aligned}
Y_{2}^{2}+\ldots+Y_{n}^{2} & =\mathbf{Y}^{T} \mathbf{Y}-Y_{1}^{2}=\mathbf{X}^{T} A^{T} A \mathbf{X}-Y_{1}^{2}=\mathbf{X}^{T} \mathbf{X}-n \bar{X}^{2} \\
& =\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=S_{X X} .
\end{aligned}
$$

- To prove (ii), note that $S_{X X}=Y_{2}^{2}+\ldots+Y_{n}^{2} \sim \sigma^{2} \chi_{n-1}^{2}$ (from definition of χ_{n-1}^{2}).
- FInally, for (iii), since Y_{1} and Y_{2}, \ldots, Y_{n} are independent (Prop 11.2 (ii)), so are \bar{X} and $S_{X X}$. \square

Student's t-distribution

- Suppose that Z and Y are independent, $Z \sim N(0,1)$ and $Y \sim \chi_{k}^{2}$.
- Then $T=\frac{Z}{\sqrt{Y / k}}$ is said to have a t-distribution on k degrees of freedom, and we write $T \sim t_{k}$.
- The density of t_{k} turns out to be

$$
f_{T}(t)=\frac{\Gamma((k+1) / 2)}{\Gamma(k / 2)} \frac{1}{\sqrt{\pi k}}\left(1+\frac{t^{2}}{k}\right)^{-(k+1) / 2}, \quad t \in \mathbb{R}
$$

- This density is symmetric, bell-shaped, and has a maximum at $t=0$, rather like the standard normal density.
- However, it can be shown that $\mathbb{P}(T>t)>\mathbb{P}(Z>t)$ for all $t>0$, and that the t_{k} distribution approaches a normal distribution as $k \rightarrow \infty$.
- $\mathbb{E}_{k}(T)=0$ for $k>1$, otherwise undefined.
- $\operatorname{var}_{k}(T)=\frac{k}{k-2}$ for $k>2,=\infty$ if $k=2$, otherwise undefined.
- $k=1$ is known as the Cauchy distribution, and has an undefined mean and variance.

t distributions

Let $t_{k}(\alpha)$ be the upper $100 \alpha \%$ point of the t_{k} - distribution, so that $\mathbb{P}\left(T>t_{k}(\alpha)\right)=\alpha$. There are tables of these percentage points.

Application of Student's t-distribution to normal random samples

- Let X_{1}, \ldots, X_{n} iid $N\left(\mu, \sigma^{2}\right)$.
- From Theorem $11.3 \bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$ so $Z=\sqrt{n}(\bar{X}-\mu) / \sigma \sim N(0,1)$.
- Also $S_{X X} / \sigma^{2} \sim \chi_{n-1}^{2}$ independently of \bar{X} and hence of Z.
- Hence

$$
\begin{equation*}
\frac{\sqrt{n}(\bar{X}-\mu) / \sigma}{\sqrt{S_{X X} /\left((n-1) \sigma^{2}\right)}} \sim t_{n-1}, \text { ie } \frac{\sqrt{n}(\bar{X}-\mu)}{\sqrt{S_{X X} /(n-1)}} \sim t_{n-1} . \tag{3}
\end{equation*}
$$

- Let $\tilde{\sigma}^{2}=\frac{S_{X X}}{n-1}$. Note this is an unbiased estimator, as $\mathbb{E}\left(S_{X X}\right)=(n-1) \sigma^{2}$.
- Then a $100(1-\alpha) \% \mathrm{Cl}$ for μ is found from

$$
1-\alpha=\mathbb{P}\left(-t_{n-1}\left(\frac{\alpha}{2}\right) \leq \frac{\sqrt{n}(\bar{X}-\mu)}{\tilde{\sigma}} \leq t_{n-1}\left(\frac{\alpha}{2}\right)\right)
$$

and has endpoints

$$
\bar{X} \pm \frac{\tilde{\sigma}}{\sqrt{n}} t_{n-1}\left(\frac{\alpha}{2}\right) .
$$

- See example sheet 3 for use of t distributions in hypothesis tests.

