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Tests of homogeneity

Example 10.1

150 patients were randomly allocated to three groups of 50 patients each. Two
groups were given a new drug at different dosage levels, and the third group
received a placebo. The responses were as shown in the table below.

Improved No difference Worse
Placebo 18 17 15 50
Half dose 20 10 20 50
Full dose 25 13 12 50

63 40 47 150

Here the row totals are fixed in advance, in contrast to Example 9.4 where the
row totals are random variables.

For the above table, we may be interested in testing H0: the probability of
“improved” is the same for each of the three treatment groups, and so are the
probabilities of “no difference” and “worse,” ie H0 says that we have homogeneity
down the rows. �
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In general, we have independent observations from r multinomial
distributions each of which has c categories,

ie we observe an r × c table (nij), i = 1, . . . , r , j = 1, . . . , c , where
(Ni1, . . . ,Nic) ∼ Multinomial(ni+; pi1, . . . , pic) independently for i = 1, . . . , r .

We test H0 : p1j = p2j = . . . = prj = pj say, j = 1, . . . , c where p+ = 1, and
H1 : pij are unrestricted (but with pij ≥ 0 and pi+ = 1, i = 1, . . . , r).

Under H1: like((pij)) =
∏r

i=1
ni+!

ni1!...nic ! pni1
i1 . . . pnic

ic , and

loglike = constant +
∑r

i=1

∑c
j=1 nij log pij .

Using Lagrangian methods (with constraints pi+ = 1, i = 1, . . . , r) we find
p̂ij = nij/ni+.

Under H0:
loglike = constant +

∑r
i=1

∑c
j=1 nij log pj = constant +

∑c
j=1 n+j log pj .

Lagrangian techniques here (with constraint
∑

pj = 1) give p̂j = n+j/n++.

Lecture 10. Tests of homogeneity, and connections to confidence intervals 3 (1–56)



10. Tests of homogeneity, and connections to confidence intervals 10.1. Tests of homogeneity

Hence

2 log Λ = 2
r∑

i=1

c∑
j=1

nij log

(
p̂ij

p̂j

)

= 2
r∑

i=1

c∑
j=1

nij log

(
nij

ni+n+j/n++

)
,

ie the same as in Example 9.5.

We have |Θ1| = r(c − 1) (because there are c − 1 free parameters for each of
r distributions).

Also |Θ0| = c − 1 (because H0 has c parameters p1, . . . , pc with constraint
p+ = 1).

So df = |Θ1| − |Θ0| = r(c − 1)− (c − 1) = (r − 1)(c − 1), and under H0,
2 log Λ is approximately χ2

(r−1)(c−1) (ie same as in Example 9.5).

We reject H0 if 2 log Λ > χ2
(r−1)(c−1)(α) for an approximate size α test.

Let oij = nij , eij = ni+n+j/n++ δij = oij − eij , and use the same approximating

steps as for Pearson’s Chi-squared to see that 2 log Λ ≈
∑

i

∑
j

(oij−eij )
2

eij
.
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Example 10.2

Example 10.1 continued

oij Improved No difference Worse
Placebo 18 17 15 50
Half dose 20 10 20 50
Full dose 25 13 12 50

63 40 47 150

eij Improved No difference Worse
Placebo 21 13.3 15.7 50
Half dose 21 13.3 15.7 50
Full dose 21 13.3 15.7 50

We find 2 log Λ = 5.129, and we refer this to χ2
4.

From tables, χ2
4(0.05) = 9.488, so our observed value is not significant at 5%

level, and the data are consistent with H0.

We conclude that there is no evidence for a difference between the drug at the
given doses and the placebo.

For interest,
∑∑

(oij − eij)
2/eij = 5.173, leading to the same conclusion. �
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Confidence intervals and hypothesis tests

Confidence intervals or sets can be obtained by inverting hypothesis tests,
and vice versa.

Define the acceptance region A of a test to be the complement of the
critical region C .

NB By ’acceptance’, we really mean ’non-rejection’

Suppose X1, . . . ,Xn have joint pdf fX(x |θ), θ ∈ Θ.

Theorem 10.3

(i) Suppose that for every θ0 ∈ Θ there is a size α test of H0 : θ = θ0. Denote
the acceptance region by A(θ0). Then the set I (X) = {θ : X ∈ A(θ)} is a
100(1− α)% confidence set for θ.

(ii) Suppose I (X) is a 100(1− α)% confidence set for θ. Then
A(θ0) = {X : θ0 ∈ I (X)} is an acceptance region for a size α test of
H0 : θ = θ0.
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Proof:

First note that θ0 ∈ I (X)⇔ X ∈ A(θ0).

For (i), since the test is size α, we have
P(accept H0 | H0 is true) = P(X ∈ A(θ0) |θ = θ0) = 1− α
And so P(I (X) 3 θ0 |θ = θ0) = P(X ∈ A(θ0) |θ = θ0) = 1− α.

For (ii), since I (X) is a 100(1− α)% confidence set, we have
P(I (X) 3 θ0 |θ = θ0) = 1− α.

So P(X ∈ A(θ0) |θ = θ0) = P(I (X) 3 θ0 |θ = θ0) = 1− α. �
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In words,

(i) says that a 100(1− α)% confidence set for θ consists of all those values of θ0

for which H0 :θ = θ0 is not rejected at level α on the basis of X,

(ii) says that given a confidence set, we define the test by rejecting θ0 if it is not
in the confidence set.

Example 10.4

Suppose X1, . . . ,Xn are iid N(µ, 1) random variables and we want a 95%
confidence set for µ.

One way is to use the above theorem and find the confidence set that
belongs to the hypothesis test that we found in Example 10.1.

Using Example 8.3 (with σ2
0 = 1), we find a test of size 0.05 of H0 :µ = µ0

against H1 :µ 6= µ0 that rejects H0 when |
√

n(x̄ − µ0)| > 1.96 (1.96 is the
upper 2.5% point of N(0, 1)).

Then I (X) = {µ :X ∈ A(µ)} = {µ : |
√

n(X̄ − µ)| < 1.96} so a 95%
confidence set for µ is (X̄ − 1.96/

√
n, X̄ + 1.96/

√
n).

This is the same confidence interval we found in Example 5.2. �
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Simpson’s paradox*

For five subjects in 1996, the admission statistics for Cambridge were as follows:

Women Men
Applied Accepted % Applied Accepted %

Total 1184 274 23 % 2470 584 24%

This looks like the acceptance rate is higher for men. But by subject...

Women Men
Applied Accepted % Applied Accepted %

Computer Science 26 7 27% 228 58 25%
Economics 240 63 26% 512 112 22%
Engineering 164 52 32% 972 252 26%

Medicine 416 99 24% 578 140 24%
Veterinary medicine 338 53 16% 180 22 12%

Total 1184 274 23 % 2470 584 24%

In all subjects, the acceptance rate was higher for women!

Explanation: women tend to apply for subjects with the lowest acceptance rates.

This shows the danger of pooling (or collapsing) contingency tables.
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