Lecture 9. Tests of goodness-of-fit and independence

Goodness-of-fit of a fully-specified null distribution

Suppose the observation space \mathcal{X} is partitioned into k sets, and let p_{i} be the probability that an observation is in set $i, i=1, \ldots, k$.
Consider testing H_{0} : the p_{i} 's arise from a fully specified model against H_{1} : the p_{i} 's are unrestricted (but we must still have $p_{i} \geq 0, \sum p_{i}=1$).
This is a goodness-of-fit test.

Example 9.1

Birth month of admissions to Oxford and Cambridge in 2012

Month	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
n_{i}	470	515	470	457	473	381	466	457	437	396	384	394

Are these compatible with a uniform distribution over the year? \square

- Out of n independent observations let N_{i} be the number of observations in the i th set.
- So $\left(N_{1}, \ldots, N_{k}\right) \sim \operatorname{Multinomial}\left(n ; p_{1}, \ldots, p_{k}\right)$.
- For a generalised likelihood ratio test of H_{0}, we need to find the maximised likelihood under H_{0} and H_{1}.
- Under \mathbf{H}_{1} : like $\left(p_{1}, \ldots, p_{k}\right) \propto p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}$ so the loglikelihood is $I=$ constant $+\sum n_{i} \log p_{i}$.
We want to maximise this subject to $\sum p_{i}=1$.
By considering the Lagrangian $\mathcal{L}=\sum n_{i} \log p_{i}-\lambda\left(\sum p_{i}-1\right)$, we find mle's $\hat{p}_{i}=n_{i} / n$. Also $\left|\Theta_{1}\right|=k-1$.
- Under \mathbf{H}_{0} : H_{0} specifies the values of the p_{i} 's completely, $p_{i}=\tilde{p}_{i}$ say, so $\left|\Theta_{0}\right|=0$.
- Putting these two together, we find

$$
\begin{equation*}
2 \log \Lambda=2 \log \left(\frac{\hat{p}_{1}^{n_{1}} \ldots \hat{p}_{k}^{n_{k}}}{\tilde{p}_{1}^{n_{1}} \ldots \tilde{p}_{k}^{n_{k}}}\right)=2 \sum n_{i} \log \left(\frac{n_{i}}{n \tilde{p}_{i}}\right) . \tag{1}
\end{equation*}
$$

- Here $\left|\Theta_{1}\right|-\left|\Theta_{0}\right|=k-1$, so we reject H_{0} if $2 \log \Lambda>\chi_{k-1}^{2}(\alpha)$ for an approximate size α test.

Example 9.1 continued:

Under H_{0} (no effect of month of birth), \tilde{p}_{i} is the proportion of births in month i in 1993/1994 - this is not simply proportional to number of days in month, as there is for example an excess of September births (the 'Christmas effect').

| Month | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Aug

- $2 \log \Lambda=2 \sum n_{i} \log \left(\frac{n_{i}}{n \tilde{p}_{i}}\right)=44.9$
- $\mathbb{P}\left(\chi_{11}^{2}>44.86\right)=3 \times 10^{-9}$, which is our p-value.
- Since this is certainly less than 0.001 , we can reject H_{0} at the 0.1% level, or can say 'significant at the 0.1% level'.
- NB The traditional levels for comparison are $\alpha=0.05,0.01,0.001$, roughly corresponding to 'evidence', 'strong evidence', and 'very strong evidence'.

Likelihood ratio tests

A similar common situation has $H_{0}: p_{i}=p_{i}(\theta)$ for some parameter θ and H_{1} as before. Now $\left|\Theta_{0}\right|$ is the number of independent parameters to be estimated under H_{0}.
Under \mathbf{H}_{0} : we find mle $\hat{\theta}$ by maximising $\sum n_{i} \log p_{i}(\theta)$, and then

$$
\begin{equation*}
2 \log \Lambda=2 \log \left(\frac{\hat{p}_{1}^{n_{1}} \ldots \hat{p}_{k}^{n_{k}}}{p_{1}(\hat{\theta})^{n_{1}} \ldots p_{k}(\hat{\theta})^{n_{k}}}\right)=2 \sum n_{i} \log \left(\frac{n_{i}}{n p_{i}(\hat{\theta})}\right) . \tag{2}
\end{equation*}
$$

Now the degrees of freedom are $k-1-\left|\Theta_{0}\right|$, and we reject H_{0} if $2 \log \Lambda>\chi_{k-1-\left|\Theta_{0}\right|}^{2}(\alpha)$.

Pearson's Chi-squared tests

Notice that (1) and (2) are of the same form.
Let $o_{i}=n_{i}$ (the observed number in ith set) and let e_{i} be $n \tilde{p}_{i}$ in (1) or $n p_{i}(\hat{\theta})$ in (2). Let $\delta_{i}=o_{i}-e_{i}$. Then

$$
\begin{aligned}
2 \log \Lambda & =2 \sum o_{i} \log \left(\frac{o_{i}}{e_{i}}\right) \\
& =2 \sum\left(e_{i}+\delta_{i}\right) \log \left(1+\frac{\delta_{i}}{e_{i}}\right) \\
& \approx 2 \sum\left(\delta_{i}+\frac{\delta_{i}^{2}}{e_{i}}-\frac{\delta_{i}^{2}}{2 e_{i}}\right) \\
& =\sum \frac{\delta_{i}^{2}}{e_{i}}=\sum \frac{\left(o_{i}-e_{i}\right)^{2}}{e_{i}},
\end{aligned}
$$

where we have assumed $\log \left(1+\frac{\delta_{i}}{e_{i}}\right) \approx \frac{\delta_{i}}{e_{i}}-\frac{\delta_{i}^{2}}{2 e_{i}^{2}}$, ignored terms in δ_{i}^{3}, and used that $\sum \delta_{i}=0$ (check).
This is Pearson's chi-squared statistic; we refer it to $\chi_{k-1-\left|\Theta_{0}\right|}^{2}$.

Example 9.1 continued using R:

chisq.test($n, p=p t i l d e$)
data: n
X-squared $=44.6912, \mathrm{df}=11, \mathrm{p}$-value $=5.498 \mathrm{e}-06$

Example 9.2

Mendel crossed 556 smooth yellow male peas with wrinkled green female peas.
From the progeny let

- N_{1} be the number of smooth yellow peas,
- N_{2} be the number of smooth green peas,
- N_{3} be the number of wrinkled yellow peas,
- N_{4} be the number of wrinkled green peas.

We wish to test the goodness of fit of the model $H_{0}:\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=(9 / 16,3 / 16,3 / 16,1 / 16)$, the proportions predicted by Mendel's theory.

Suppose we observe $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(315,108,102,31)$.
We find $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=(312.75,104.25,104.25,34.75), 2 \log \Lambda=0.618$ and $\sum \frac{\left(o_{i}-e_{i}\right)^{2}}{e_{i}}=0.604$.
Here $\left|\Theta_{0}\right|=0$ and $\left|\Theta_{1}\right|=4-1=3$, so we refer our test statistics to χ_{3}^{2}.
Since $\chi_{3}^{2}(0.05)=7.815$ we see that neither value is significant at 5% level, so there is no evidence against Mendel's theory.
In fact the p-value is approximately $\mathbb{P}\left(\chi_{3}^{2}>0.6\right) \approx 0.96 . \square$
NB So in fact could be considered as a suspiciously good fit

Example 9.3

In a genetics problem, each individual has one of three possible genotypes, with probabilities p_{1}, p_{2}, p_{3}. Suppose that we wish to test $H_{0}: p_{i}=p_{i}(\theta) i=1,2,3$, where $p_{1}(\theta)=\theta^{2}, p_{2}(\theta)=2 \theta(1-\theta), p_{3}(\theta)=(1-\theta)^{2}$, for some $\theta \in(0,1)$.

We observe $N_{i}=n_{i}, i=1,2,3\left(\sum N_{i}=n\right)$.
Under H_{0}, the mle $\hat{\theta}$ is found by maximising

$$
\sum n_{i} \log p_{i}(\theta)=2 n_{1} \log \theta+n_{2} \log (2 \theta(1-\theta))+2 n_{3} \log (1-\theta) .
$$

We find that $\hat{\theta}=\left(2 n_{1}+n_{2}\right) /(2 n)$ (check).
Also $\left|\Theta_{0}\right|=1$ and $\left|\Theta_{1}\right|=2$.
Now substitute $p_{i}(\hat{\theta})$ into (2), or find the corresponding Pearson's chi-squared statistic, and refer to χ_{1}^{2}. \square

Testing independence in contingency tables

A table in which observations or individuals are classified according to two or more criteria is called a contingency table.

Example 9.4

500 people with recent car changes were asked about their previous and new cars. New car

		New car		
		Large	Medium	Small
Previous	Large	56	52	42
car	Medium	50	83	67
	Small	18	51	81

This is a two-way contingency table: each person is classified according to previous car size and new car size.

- Consider a two-way contingency table with r rows and c columns.
- For $i=1, \ldots, r$ and $j=1, \ldots, c$ let $p_{i j}$ be the probability that an individual selected at random from the population under consideration is classified in row i and column j (ie in the (i, j) cell of the table).
- Let $p_{i+}=\sum_{j} p_{i j}=\mathbb{P}($ in row $i)$, and $p_{+j}=\sum_{i} p_{i j}=\mathbb{P}($ in column $j)$.
- We must have $p_{++}=\sum_{i} \sum_{j} p_{i j}=1$, ie $\sum_{i} p_{i+}=\sum_{j} p_{+j}=1$.
- Suppose a random sample of n individuals is taken, and let $n_{i j}$ be the number of these classified in the (i, j) cell of the table.
- Let $n_{i+}=\sum_{j} n_{i j}$ and $n_{+j}=\sum_{i} n_{i j}$, so $n_{++}=n$.
- We have
$\left(N_{11}, N_{12}, \ldots, N_{1 c}, N_{21}, \ldots, N_{r c}\right) \sim \operatorname{Multinomial}\left(n ; p_{11}, p_{12}, \ldots, p_{1 c}, p_{21}, \ldots, p_{r c}\right)$
- We may be interested in testing the null hypothesis that the two classifications are independent, so test
- $H_{0}: p_{i j}=p_{i+} p_{+j}, i=1, \ldots, r, j=1, \ldots, c$ (with $\sum_{i} p_{i+}=1=\sum_{j} p_{+j}$, $\left.p_{i+}, p_{+j} \geq 0\right)$,
- $H_{1}: p_{i j}$'s unrestricted (but as usual need $p_{++}=1, p_{i j} \geq 0$).
- Under H_{1} the mle's are $\hat{p}_{i j}=n_{i j} / n$.
- Under H_{0}, using Lagrangian methods, the mle's are $\hat{p}_{i+}=n_{i+} / n$ and $\hat{p}_{+j}=n_{+j} / n$.
- Write $o_{i j}$ for $n_{i j}$ and let $e_{i j}=n \hat{p}_{i+} \hat{p}_{+j}=n_{i+} n_{+j} / n$.
- Then

$$
2 \log \Lambda=2 \sum_{i=1}^{r} \sum_{j=1}^{c} o_{i j} \log \left(\frac{o_{i j}}{e_{i j}}\right) \approx \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(o_{i j}-e_{i j}\right)^{2}}{e_{i j}}
$$

using the same approximating steps as for Pearson's Chi-squared test.

- We have $\left|\Theta_{1}\right|=r c-1$, because under H_{1} the $p_{i j}$'s sum to one.
- Further, $\left|\Theta_{0}\right|=(r-1)+(c-1)$, because p_{1+}, \ldots, p_{r+} must satisfy $\sum_{i} p_{i+}=1$ and p_{+1}, \ldots, p_{+c} must satisfy $\sum_{j} p_{+j}=1$.
- So $\left|\Theta_{1}\right|-\left|\Theta_{0}\right|=r c-1-(r-1)-(c-1)=(r-1)(c-1)$.

Example 9.5

In Example 9.4, suppose we wish to test H_{0} : the new and previous car sizes are independent.

We obtain:

		New car			
	o ij	Large	Medium	Small	
Previous	Large	56	52	42	150
car	Medium	50	83	67	200
	Small	18	51	81	150
		124	186	190	500

		New car			
	$e_{i j}$	Large	Medium	Small	
Previous	Large	37.2	55.8	57.0	150
car	Medium	49.6	74.4	76.0	200
	Small	37.2	55.8	57.0	150
		124	186	190	500

Note the margins are the same.

Then $\sum \sum \frac{\left(o_{i j}-e_{j}\right)^{2}}{e_{i j}}=36.20$, and $\mathrm{df}=(3-1)(3-1)=4$.
From tables, $\chi_{4}^{2}(0.05)=9.488$ and $\chi_{4}^{2}(0.01)=13.28$.
So our observed value of 36.20 is significant at the 1% level, ie there is strong evidence against H_{0}, so we conclude that the new and present car sizes are not independent.
It may be informative to look at the contributions of each cell to Pearson's chi-squared:

		New car		
		Large	Medium	Small
Previous	Large	9.50	0.26	3.95
car	Medium	0.00	0.99	1.07
	Small	9.91	0.41	10.11

It seems that more owners of large cars than expected under H_{0} bought another large car, and more owners of small cars than expected under H_{0} bought another small car.
Fewer than expected changed from a small to a large car.

