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Introduction

Let X1, . . . ,Xn be iid, each taking values in X , each with unknown pdf/pmf f ,
and suppose that we have two hypotheses, H0 and H1, about f .

On the basis of data X=x, we make a choice between the two hypotheses.

Examples

(a) A coin has P(Heads) = θ, and is thrown independently n times. We could
have H0 : θ=1/2 versus H1 : θ=3/4.

(b) As in (a), with H0 : θ=1/2 as before, but with H1 : θ 6=1/2.

(c) Suppose X1, . . . ,Xn are iid discrete rv’s. We could have H0 :the distribution is
Poisson with unknown mean, and H1 :the distribution is not Poisson. This is
a goodness-of-fit test.

(d) General parametric case: X1, . . . ,Xn are iid with density f (x |θ), with
H0 :θ∈Θ0 and H1 :θ∈Θ1 where Θ0 ∩Θ1 =∅ ( we may or may not have
Θ0 ∪Θ1 =Θ).

(e) We could have H0 : f = f0 and H1 : f = f1 where f0 and f1 are densities that are
completely specified but do not come from the same parametric family.
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A simple hypothesis H specifies f completely (eg H0 :θ=1/2 in (a)).

Otherwise H is a composite hypothesis (eg H1 :θ 6=1/2 in (b)).

For testing H0 against an alternative hypothesis H1, a test procedure has to
partition X n into two disjoint and exhaustive regions C and C̄ , such that if x ∈ C
then H0 is rejected and if x ∈ C̄ then H0 is not rejected.

The critical region (or rejection region) C defines the test.

When performing a test we may (i) arrive at a correct conclusion, or (ii) make one
of two types of error:

(a) we may reject H0 when H0 is true ( a Type I error),

(b) we may not reject H0 when H0 is false (a Type II error).

NB: When Neyman and Pearson developed the theory in the 1930s, they spoke of
’accepting’ H0. Now we generally refer to ’not rejecting H0’.
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Testing a simple hypothesis against a simple alternative

When H0 and H1 are both simple, let

α = P(Type I error) = P(X∈C |H0 is true)

β = P(Type II error) = P(X 6∈C |H1 is true).

We define the size of the test to be α.

1− β is also known as the power of the test to detect H1.

Ideally we would like α=β=0, but typically it is not possible to find a test that
makes both α and β arbitrarily small.

Definition 7.1

The likelihood of a simple hypothesis H :θ=θ∗ given data x is
Lx(H) = fX(x |θ=θ∗).
The likelihood ratio of two simple hypotheses H0, H1, given data x, is
Λx(H0;H1) = Lx(H1)/Lx(H0).
A likelihood ratio test (LR test) is one where the critical region C is of the
form C = {x : Λx(H0;H1) > k} for some k . �

Lecture 7. Simple Hypotheses 4 (1–1)



7. Simple hypotheses 7.2. Testing a simple hypothesis against a simple alternative

Theorem 7.2

(The Neyman–Pearson Lemma) Suppose H0 : f = f0, H1 : f = f1, where f0 and f1
are continuous densities that are nonzero on the same regions. Then among all
tests of size less than or equal to α, the test with smallest probability of a Type II
error is given by C = {x : f1(x)/f0(x) > k} where k is chosen such that
α = P(reject H0 |H0) = P(X ∈ C |H0) =

∫
C
f0(x)dx.

Proof

The given C specifies a likelihood ratio test with size α.

Let β = P(X 6∈ C | f1) =
∫
C̄
f1(x)dx.

Let C∗ be the critical region of any other test with size less than or equal to α.

Let α∗ = P(X ∈ C∗ | f0), β∗ = P(X 6∈ C∗ | f1).

We want to show β ≤ β∗.
We know α∗ ≤ α, ie

∫
C∗ f0(x)dx ≤

∫
C
f0(x)dx.

Also, on C we have f1(x) > kf0(x), while on C̄ we have f1(x) ≤ kf0(x).

Thus∫
C̄∗∩C

f1(x)dx ≥ k

∫
C̄∗∩C

f0(x)dx,

∫
C̄∩C∗

f1(x)dx ≤ k

∫
C̄∩C∗

f0(x)dx. (1)
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Hence

β − β∗ =

∫
C̄

f1(x)dx−
∫
C̄∗

f1(x)dx

=

∫
C̄∩C∗

f1(x)dx +

∫
C̄∩C̄∗

f1(x)dx−
∫
C̄∗∩C

f1(x)dx−
∫
C̄∩C̄∗

f1(x)dx

≤ k

∫
C̄∩C∗

f0(x)dx− k

∫
C̄∗∩C

f0(x)dx by (??)

= k

{∫
C̄∩C∗

f0(x)dx +

∫
C∩C∗

f0(x)dx

}
−k
{∫

C̄∗∩C
f0(x)dx +

∫
C∩C∗

f0(x)dx

}
= k

(
α∗ − α)

≤ 0.

�
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We assume continuous densities to ensure that a LR test of exactly size α
exists.

The Neyman–Pearson Lemma shows that α and β cannot both be arbitrarily
small.

It says that the most powerful test (ie the one with the smallest Type II error
probability), among tests with size smaller than or equal to α, is the size α
likelihood ratio test.

Thus we should fix P(Type I error) at some level α and then use the
Neyman–Pearson Lemma to find the best test.

Here the hypotheses are not treated symmetrically; H0 has precedence over
H1 and a Type I error is treated as more serious than a Type II error.

H0 is called the null hypothesis and H1 is called the alternative hypothesis.

The null hypothesis is a conservative hypothesis, ie one of “no change,” “no
bias,” “no association,” and is only rejected if we have clear evidence against
it.

H1 represents the kind of departure from H0 that is of interest to us.
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Example 7.3

Suppose that X1, . . . ,Xn are iid N(µ, σ2
0), where σ2

0 is known. We want to find
the best size α test of H0 :µ=µ0 against H1 :µ=µ1, where µ0 and µ1 are known
fixed values with µ1 > µ0.

Λx(H0;H1) =
(2πσ2

0)−n/2 exp
(
− 1

2σ2
0

∑
(xi − µ1)2

)
(2πσ2

0)−n/2 exp
(
− 1

2σ2
0

∑
(xi − µ0)2

)
= exp

(
(µ1 − µ0)

σ2
0

nx̄ +
n(µ2

0 − µ2
1)

2σ2
0

)
(check).

This is an increasing function of x̄ , so for any k ,

Λx > k ⇔ x̄ > c for some c .

Hence we reject H0 if x̄ > c where c is chosen such that P(X̄ > c |H0) = α.

Under H0, X̄ ∼ N(µ0, σ
2
0/n), so Z =

√
n(X̄ − µ0)/σ0 ∼ N(0, 1).

Since x̄ > c ⇔ z > c ′ for some c ′, the size α test rejects H0 if
z =
√
n(x̄ − µ0)/σ0 > zα.
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Suppose µ0 = 5, µ1 = 6, σ0 = 1, α = 0.05, n = 4 and x = (5.1, 5.5, 4.9, 5.3),
so that x̄ = 5.2.

From tables, z0.05 = 1.645.

We have z =
√
n(x̄−µ0)
σ0

= 0.4 and this is less than 1.645, so x is not in the
rejection region.

We do not reject H0 at the 5%- level; the data are consistent with H0.

This does not mean that H0 is ’true’, just that it cannot be ruled out.

This is called a z-test. �
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P-values

In this example, LR tests reject H0 if z > k for some constant k.

The size of such a test is α = P(Z > k |H0) = 1−Φ(k), and is decreasing as
k increases.

Our observed value z will be in the rejection region
⇔ z > k ⇔ α > p∗ = P(Z > z |H0).

The quantity p∗ is called the p-value of our observed data x.

For Example 7.3, z = 0.4 and so p∗ = 1− Φ(0.4) = 0.3446.

In general, the p-value is sometimes called the ’observed significance level’ of
x and is the probability under H0 of seeing data that are ‘more extreme’ than
our observed data x.

Extreme observations are viewed as providing evidence againt H0.

* The p-value has a Uniform(0,1) pdf under the null hypothesis. To see this for a
z-test, note that

P(p∗ < p | H0) = P ([1− Φ(Z )] < p | H0) = P(Z > Φ−1(1− p) | H0)

= 1− Φ
(
Φ−1(1− p)

)
= 1− (1− p) = p.
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