Lecture 5. Confidence Intervals

We now consider interval estimation for θ.

Definition 5.1

A $100 \gamma \%(0<\gamma<1)$ confidence interval (CI) for θ is a random interval $(A(\mathbf{X}), B(\mathbf{X}))$ such that $\mathbb{P}(A(\mathbf{X})<\theta<B(\mathbf{X}))=\gamma$, no matter what the true value of θ may be.

Notice that it is the endpoints of the interval that are random quantities (not θ). We can interpret this in terms of repeat sampling: if we calculate $(A(\mathbf{x}), B(\mathbf{x}))$ for a large number of samples \mathbf{x}, then approximately $100 \gamma \%$ of them will cover the true value of θ.
IMPORTANT: having observed some data \mathbf{x} and calculated a 95% interval $(A(\mathbf{x}), B(\mathbf{x}))$ we cannot say there is now a 95% probability that θ lies in this interval.

Example 5.2

Suppose X_{1}, \ldots, X_{n} are iid $N(\theta, 1)$. Find a 95% confidence interval for θ.

- We know $\bar{X} \sim N\left(\theta, \frac{1}{n} \sigma^{2}\right)$, so that $\sqrt{n}(\bar{X}-\theta) \sim N(0,1)$, no matter what θ is.
- Let z_{1}, z_{2} be such that $\Phi\left(z_{2}\right)-\Phi\left(z_{1}\right)=0.95$, where Φ is the standard normal distribution function.
- We have $\mathbb{P}\left[z_{1}<\sqrt{n}(\bar{X}-\theta)<z_{2}\right]=0.95$, which can be rearranged to give

$$
\mathbb{P}\left[\bar{X}-\frac{z_{2}}{\sqrt{n}}<\theta<\bar{X}-\frac{z_{1}}{\sqrt{n}}\right]=0.95 .
$$

so that

$$
\left(\bar{X}-\frac{z_{2}}{\sqrt{n}}, \bar{X}-\frac{z_{1}}{\sqrt{n}}\right)
$$

is a 95% confidence interval for θ.

- There are many possible choices for z_{1} and z_{2}. Since the $N(0,1)$ density is symmetric, the shortest such interval is obtained by $z_{2}=z_{0.025}=-z_{1}$ (where recall that z_{α} is the upper $100 \alpha \%$ point of $\left.N(0,1)\right)$.
- From tables, $z_{0.025}=1.96$ so a 95% confidence interval is $\left(\bar{X}-\frac{1.96}{\sqrt{n}}, \bar{X}+\frac{1.96}{\sqrt{n}}\right)$.

The above example illustrates a common procedure for findings Cl .
(1) Find a quantity $R(\mathbf{X}, \theta)$ such that the \mathbb{P}_{θ} - distribution of $R(\mathbf{X}, \theta)$ does not depend on θ. This is called a pivot.
In Example 5.2, $R(\mathbf{X}, \theta)=\sqrt{n}(\bar{X}-\theta)$.
(2) Write down a probability statement of the form $\mathbb{P}_{\theta}\left(c_{1}<R(\mathbf{X}, \theta)<c_{2}\right)=\gamma$.
(3) Rearrange the inequalities inside $\mathbb{P}(\ldots)$ to find the interval.

Notes:

- Usually c_{1}, c_{2} are percentage points from a known standardised distribution, often equitailed so that use, say, 2.5% and 97.5% points for a $95 \% \mathrm{Cl}$. Could use 0% and 95%, but interval would generally be wider.
- Can have confidence intervals for vector parameters
- If $(A(\mathbf{x}), B(\mathbf{x}))$ is a $100 \% \mathrm{Cl}$ for θ, and $T(\theta)$ is a monotone increasing function of θ, then $(T(A(\mathbf{x})), T(B(\mathbf{x})))$ is a $100 \% \mathrm{Cl}$ for $T(\theta)$.
If T is monotone decreasing, then $(T(B(\mathbf{x})), T(A(\mathbf{x})))$ is a $100 \gamma \% \mathrm{Cl}$ for $T(\theta)$.

Example 5.3

Suppose X_{1}, \ldots, X_{50} are iid $N\left(0, \sigma^{2}\right)$. Find a 99% confidence interval for σ^{2}.

- Thus $X_{i} / \sigma \sim \mathrm{N}(0,1)$. So, from the Probability review, $\frac{1}{\sigma^{2}} \sum_{i=1}^{n} X_{i}^{2} \sim \chi_{50}^{2}$.
- So $R\left(\mathbf{X}, \sigma^{2}\right)=\sum_{i=1}^{n} X_{i}^{2} / \sigma^{2}$ is a pivot.
- Recall that $\chi_{n}^{2}(\alpha)$ is the upper $100 \alpha \%$ point of χ_{n}^{2}, i.e. $\mathbb{P}\left(\chi_{n}^{2} \leq \chi_{n}^{2}(\alpha)\right)=1-\alpha$.
- From χ^{2}-tables, we can find c_{1}, c_{2} such that $F_{\chi_{50}^{2}}\left(c_{2}\right)-F_{\chi_{50}^{2}}\left(c_{1}\right)=0.99$.
- An equi-tailed region is given by $c_{1}=\chi_{50}^{2}(0.995)=27.99$ and $c_{2}=\chi_{50}^{2}(0.005)=79.49$.
- In R, qchisq(0.005,50) $=27.99075$, qchisq $(0.995,50)=79.48998$
- Then $\mathbb{P}_{\sigma^{2}}\left(c_{1}<\frac{\sum X_{i}^{2}}{\sigma^{2}}<c_{2}\right)=0.99$, and so $\mathbb{P}_{\sigma^{2}}\left(\frac{\sum X_{i}^{2}}{c_{2}}<\sigma^{2}<\frac{\sum X_{i}^{2}}{c_{1}}\right)=0.99$ which gives a confidence interval $\left(\frac{\sum X_{i}^{2}}{79.49}, \frac{\sum X_{i}^{2}}{27.99}\right)$.
- Further, a 99% confidence interval for σ is then $\left(\sqrt{\frac{\sum X_{i}^{2}}{79.49}}, \sqrt{\frac{\sum X_{i}^{2}}{27.99}}\right)$. \square

Example 5.4

Suppose X_{1}, \ldots, X_{n} are iid $\operatorname{Bernoulli}(p)$. Find an approximate confidence interval for p.

- The mle of p is $\hat{p}=\sum X_{i} / n$.
- By the Central Limit Theorem, \hat{p} is approximately $N(p, p(1-p) / n)$ for large n.
- So $\sqrt{n}(\hat{p}-p) / \sqrt{p(1-p)}$ is approximately $N(0,1)$ for large n.
- So we have

$$
\mathbb{P}\left(\hat{p}-z_{(1-\gamma) / 2} \sqrt{\frac{p(1-p)}{n}}<p<\hat{p}+z_{(1-\gamma) / 2} \sqrt{\frac{p(1-p)}{n}}\right) \approx \gamma .
$$

- But p is unknown, so we approximate it by \hat{p}, to get an approximate $100 \gamma \%$ confidence interval for p when n is large:

$$
\left(\hat{p}-z_{(1-\gamma) / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+z_{(1-\gamma) / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)
$$

NB. There are many possible approximate confidence intervals for a Bernoulli/Binomial parameter.

Example 5.5

Suppose an opinion poll says 20% are going to vote UKIP, based on a random sample of 1,000 people. What might the true proportion be?

- We assume we have an observation of $x=200$ from a $\operatorname{Binomial}(n, p)$ distribution with $n=1,000$.
- Then $\hat{p}=x / n=0.2$ is an unbiased estimate, also the mle.
- Now $\operatorname{var}\left(\frac{X}{n}\right)=\frac{p(1-p)}{n} \approx \frac{\hat{\rho}(1-\hat{\rho})}{n}=\frac{0.2 \times 0.8}{1000}=0.00016$.
- So a $95 \% \mathrm{Cl}$ is
$\left(\hat{p}-1.96 \sqrt{\frac{\hat{\rho}(1-\hat{\rho})}{n}}, \hat{p}+1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)=0.20 \pm 1.96 \times 0.013=(0.175,0.225)$, or around 17% to 23%.
- Special case of common procedure for an unbiased estimator T : $95 \% \mathrm{Cl} \approx T \pm 2 \sqrt{\operatorname{var} T}=T \pm 2 \mathrm{SE}$, where $\mathrm{SE}=$ 'standard error' $=\sqrt{\operatorname{var} T}$
- NB: Since $p(1-p) \leq 1 / 4$ for all $0 \leq p \leq 1$, then a conservative 95% interval (i.e. might be a bit wide) is $\hat{p} \pm 1.96 \sqrt{\frac{1}{4 n}} \approx \hat{p} \pm \sqrt{\frac{1}{n}}$.
- So whatever proportion is reported, it will be 'accurate' to $\pm 1 / \sqrt{n}$.
- Opinion polls almost invariably use $n=1000$, so they are assured of $\pm 3 \%$ 'accuracy'

(Slightly contrived) confidence interval problem*

Example 5.6

Suppose X_{1} and X_{2} are iid from $\operatorname{Uniform}\left(\theta-\frac{1}{2}, \theta+\frac{1}{2}\right)$. What is a sensible $50 \% \mathrm{Cl}$ for θ ?

- Consider the probability of getting one observation each side of θ,

$$
\begin{aligned}
\mathbb{P}_{\theta}\left(\min \left(X_{1}, X_{2}\right) \leq \theta \leq \max \left(X_{1}, X_{2}\right)\right) & =\mathbb{P}_{\theta}\left(X_{1} \leq \theta \leq X_{2}\right)+\mathbb{P}_{\theta}\left(X_{2} \leq \theta \leq X_{1}\right) \\
& =\left(\frac{1}{2} \times \frac{1}{2}\right)+\left(\frac{1}{2} \times \frac{1}{2}\right)=\frac{1}{2} .
\end{aligned}
$$

So $\left(\min \left(X_{1}, X_{2}\right), \max \left(X_{1}, X_{2}\right)\right)$ is a $50 \% \mathrm{Cl}$ for θ.

- But suppose $\left|X_{1}-X_{2}\right| \geq \frac{1}{2}$, e.g. $x_{1}=0.2, x_{2}=0.9$. Then we know that, in this particular case, θ must lie in $\left(\min \left(X_{1}, X_{2}\right), \max \left(X_{1}, X_{2}\right)\right)$.
- So guaranteed sampling properties does not necessarily mean a sensible conclusion in all cases.

