Lecture 4. Maximum Likelihood Estimation

Likelihood

Maximum likelihood estimation is one of the most important and widely used methods for finding estimators. Let X_{1}, \ldots, X_{n} be rv's with joint pdf/pmf $f_{\mathbf{X}}(\mathbf{x} \mid \theta)$. We observe $\mathbf{X}=\mathbf{x}$.

Definition 4.1

The likelihood of θ is like $(\theta)=f_{\mathbf{x}}(\mathbf{x} \mid \theta)$, regarded as a function of θ. The maximum likelihood estimator (mle) of θ is the value of θ that maximises like (θ).

It is often easier to maximise the log-likelihood.
If X_{1}, \ldots, X_{n} are iid, each with pdf/pmf $f_{X}(x \mid \theta)$, then

$$
\begin{aligned}
\operatorname{like}(\theta) & =\prod_{i=1}^{n} f_{X}\left(x_{i} \mid \theta\right) \\
\log \operatorname{like}(\theta) & =\sum_{i=1}^{n} \log f_{X}\left(x_{i} \mid \theta\right)
\end{aligned}
$$

Example 4.1

Let X_{1}, \ldots, X_{n} be iid $\operatorname{Bernoulli}(p)$.
Then $I(p)=\log \operatorname{like}(p)=\left(\sum x_{i}\right) \log p+\left(n-\sum x_{i}\right) \log (1-p)$.
Thus

$$
d l / d p=\frac{\sum x_{i}}{p}-\frac{n-\sum x_{i}}{(1-p)}
$$

This is zero when $p=\sum x_{i} / n$, and the mle of p is $\hat{p}=\sum x_{i} / n$. Since $\sum X_{i} \sim \operatorname{Bin}(n, p)$, we have $\mathbb{E}(\hat{p})=p$ so that \hat{p} is unbiased.

Example 4.2

Let X_{1}, \ldots, X_{n} be iid $N\left(\mu, \sigma^{2}\right), \theta=\left(\mu, \sigma^{2}\right)$. Then

$$
I\left(\mu, \sigma^{2}\right)=\log \operatorname{like}\left(\mu, \sigma^{2}\right)=-\frac{n}{2} \log (2 \pi)-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum\left(x_{i}-\mu\right)^{2} .
$$

This is maximised when $\frac{\partial I}{\partial \mu}=0$ and $\frac{\partial I}{\partial \sigma^{2}}=0$. We find

$$
\frac{\partial I}{\partial \mu}=-\frac{1}{\sigma^{2}} \sum\left(x_{i}-\mu\right), \quad \frac{\partial I}{\partial \sigma^{2}}=-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum\left(x_{i}-\mu\right)^{2},
$$

so the solution of the simultaneous equations is $\left(\hat{\mu}, \hat{\sigma}^{2}\right)=\left(\bar{x}, S_{x x} / n\right)$. (writing \bar{x} for $\frac{1}{n} \sum x_{i}$ and $S_{x x}$ for $\sum\left(x_{i}-\bar{x}\right)^{2}$)
Hence the maximum likelihood estimators are $\left(\hat{\mu}, \hat{\sigma}^{2}\right)=\left(\bar{X}, S_{X X} / n\right)$.

Example 4.3 - continued

We know $\hat{\mu} \sim N\left(\mu, \sigma^{2} / n\right)$ so $\hat{\mu}$ is unbiased.
We shall see later that $\frac{S_{X x}}{\sigma^{2}}=\frac{\hat{\hat{\sigma}}}{\sigma^{2}} \sim \chi_{n-1}^{2}$.
Now $\mathbb{E}\left(\chi_{n-1}^{2}\right)=n-1$, and so

$$
\mathbb{E}\left(\hat{\sigma}^{2}\right)=\mathbb{E}\left(\chi_{n-1}^{2} \times \frac{\sigma^{2}}{n}\right)=\frac{(n-1) \sigma^{2}}{n},
$$

ie $\hat{\sigma}^{2}$ is biased.
Note that $\mathbb{E}\left(\hat{\sigma}^{2} \times \frac{n}{n-1}\right)=\sigma^{2}$, and so $\frac{S_{x x}}{n-1}$ is unbiased.
This means that the classic sample variance estimator $\frac{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$ with denominator $n-1$ is unbiased, MLE has denominator n is biased.]
However $\mathbb{E}\left(\hat{\sigma}^{2}\right) \rightarrow \sigma^{2}$ as $n \rightarrow \infty$, so $\hat{\sigma}^{2}$ is asymptotically unbiased.

Example 4.3

Let X_{1}, \ldots, X_{n} be iid $U[0, \theta]$. Then

$$
\operatorname{like}(\theta)=\frac{1}{\theta^{n}} 1_{\left\{\max _{i} x_{i} \leq \theta\right\}}\left(\max _{i} x_{i}\right) .
$$

For $\theta \geq \max x_{i}$, like $(\theta)=\frac{1}{\theta^{n}}>0$ and is decreasing as θ increases, while for $\theta<\max x_{i}$, like $(\theta)=0$.
Hence the value $\hat{\theta}=\max x_{i}$ maximises the likelihood.
Assume $\mathbf{x}=(4,7,2,10)$, so that $n=4, \max x_{i}=10$.
Likelihood for $\max (x)=10, n=4$

Example 4.3 - continued

Is $\hat{\theta}$ unbiased? First we need to find the distribution of $\hat{\theta}$. For $0 \leq t \leq \theta$, the distribution function of $\hat{\theta}$ is

$$
F_{\hat{\theta}}(t)=\mathbb{P}(\hat{\theta} \leq t)=\mathbb{P}\left(X_{i} \leq t, \text { all } i\right)=\left(\mathbb{P}\left(X_{i} \leq t\right)\right)^{n}=\left(\frac{t}{\theta}\right)^{n}
$$

where we have used independence at the second step.
Differentiating with respect to t, we find the pdf $f_{\hat{\theta}}(t)=\frac{n t^{n-1}}{\theta^{n}}, 0 \leq t \leq \theta$. Hence

$$
\mathbb{E}(\hat{\theta})=\int_{0}^{\theta} t \frac{n t^{n-1}}{\theta^{n}} d t=\frac{n \theta}{n+1},
$$

so $\hat{\theta}$ is biased, but asymptotically unbiased.

Properties of mle's

(i) If T is sufficient for θ, then the likelihood is $g(T(\mathbf{x}), \theta) h(\mathbf{x})$, which depends on θ only through $T(\mathbf{x})$.
To maximise this as a function of θ, we only need to maximise g, and so the mle $\hat{\theta}$ is a function of the sufficient statistic.
(ii) If $\phi=h(\theta)$ where h is injective (1-1), then the mle of ϕ is $\hat{\phi}=h(\hat{\theta})$. This is called the invariance property of mle's. IMPORTANT.
(iii) It can be shown that, under regularity conditions, that $\sqrt{n}(\hat{\theta}-\theta)$ is asymptotically multivariate normal with mean 0 and 'smallest attainable variance' (see Part II Principles of Statistics).
(iv) Often there is no closed form for the mle, and then we need to find $\hat{\theta}$ numerically.

Example 4.4

Smarties come in k equally frequent colours, but suppose we do not know k. [Assume there is a vast bucket of Smarties, and so the proportion of each stays constant as you sample. Alternatively, assume you sample with replacement, although this is rather unhygienic]
Our first four Smarties are Red, Purple, Red, Yellow.
The likelihood for k is (considered sequentially)

$$
\begin{aligned}
\operatorname{like}(k)= & \mathbb{P}_{k}(1 \text { st is a new colour }) \mathbb{P}_{k}(2 \text { nd is a new colour }) \\
& \mathbb{P}_{k}(3 \text { rd matches } 1 \mathrm{st}) \mathbb{P}_{k}(4 \text { th is a new colour }) \\
= & 1 \times \frac{k-1}{k} \times \frac{1}{k} \times \frac{k-2}{k} \\
= & \frac{(k-1)(k-2)}{k^{3}}
\end{aligned}
$$

(Alternatively, can think of Multinomial likelihood $\propto \frac{1}{k^{4}}$, but with $\binom{k}{3}$ ways of choosing those 3 colours.)
Can calculate this likelihood for different values of k :
like $(3)=2 / 27$, like $(4)=3 / 32$, like $(5)=12 / 25$, like $(6)=5 / 54$, maximised at $\hat{k}=5$.

Likelihood after 3 different colours in 4 draws

Fairly flat! Not a lot of information.

