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4. Maximum likelihood estimation 4.1. Likelihood

Likelihood

Maximum likelihood estimation is one of the most important and widely used
methods for finding estimators. Let X1, . . . ,Xn be rv’s with joint pdf/pmf
fX(x | θ). We observe X = x.

Definition 4.1

The likelihood of θ is like(θ) = fX(x | θ), regarded as a function of θ. The
maximum likelihood estimator (mle) of θ is the value of θ that maximises
like(θ).

It is often easier to maximise the log-likelihood.

If X1, . . . ,Xn are iid, each with pdf/pmf fX (x | θ), then

like(θ) =
n∏

i=1

fX (xi | θ)

loglike(θ) =
n∑

i=1

log fX (xi | θ).
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4. Maximum likelihood estimation 4.1. Likelihood

Example 4.1

Let X1, . . . ,Xn be iid Bernoulli(p).

Then l(p) = loglike(p) = (
∑

xi ) log p + (n −
∑

xi ) log(1− p).

Thus

dl/dp =

∑
xi

p
− n −

∑
xi

(1− p)
.

This is zero when p =
∑

xi/n, and the mle of p is p̂ =
∑

xi/n.

Since
∑

Xi ∼ Bin(n, p), we have E(p̂) = p so that p̂ is unbiased.
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4. Maximum likelihood estimation 4.1. Likelihood

Example 4.2

Let X1, . . . ,Xn be iid N(µ, σ2), θ = (µ, σ2). Then

l(µ, σ2) = loglike(µ, σ2) = −n

2
log(2π)− n

2
log(σ2)− 1

2σ2

∑
(xi − µ)2.

This is maximised when ∂l
∂µ = 0 and ∂l

∂σ2 = 0. We find

∂l

∂µ
= − 1

σ2

∑
(xi − µ),

∂l

∂σ2
= − n

2σ2
+

1

2σ4

∑
(xi − µ)2,

so the solution of the simultaneous equations is (µ̂, σ̂2) = (x̄ ,Sxx/n).

(writing x̄ for 1
n

∑
xi and Sxx for

∑
(xi − x̄)2)

Hence the maximum likelihood estimators are (µ̂, σ̂2) = (X̄ ,SXX/n).
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4. Maximum likelihood estimation 4.1. Likelihood

Example 4.3 - continued

We know µ̂ ∼ N(µ, σ2/n) so µ̂ is unbiased.

We shall see later that SXX

σ2 = nσ̂2

σ2 ∼ χ2
n−1.

Now E(χ2
n−1) = n − 1, and so

E(σ̂2) = E(χ2
n−1 × σ2

n ) = (n−1)σ2

n ,

ie σ̂2 is biased.

Note that E(σ̂2 × n
n−1 ) = σ2, and so Sxx

n−1 is unbiased.

This means that the classic sample variance estimator
∑

i (xi−x)
2

n−1 with denominator
n − 1 is unbiased, MLE has denominator n is biased.]

However E(σ̂2)→ σ2 as n→∞, so σ̂2 is asymptotically unbiased.
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4. Maximum likelihood estimation 4.1. Likelihood

Example 4.3

Let X1, . . . ,Xn be iid U[0, θ]. Then

like(θ) =
1

θn
1{maxi xi≤θ}(max

i
xi ).

For θ ≥ max xi , like(θ) = 1
θn > 0 and is decreasing as θ increases, while for

θ < max xi , like(θ) = 0.

Hence the value θ̂ = max xi maximises the likelihood.

Assume x = (4, 7, 2, 10), so that n = 4,max xi = 10.
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4. Maximum likelihood estimation 4.1. Likelihood

Example 4.3 - continued

Is θ̂ unbiased? First we need to find the distribution of θ̂. For 0 ≤ t ≤ θ, the
distribution function of θ̂ is

Fθ̂(t) = P(θ̂ ≤ t) = P(Xi ≤ t, all i) = (P(Xi ≤ t))n =
( t

θ

)n
,

where we have used independence at the second step.

Differentiating with respect to t, we find the pdf fθ̂(t) = ntn−1

θn , 0 ≤ t ≤ θ. Hence

E(θ̂) =

∫ θ

0

t
ntn−1

θn
dt =

nθ

n + 1
,

so θ̂ is biased, but asymptotically unbiased.
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4. Maximum likelihood estimation 4.1. Likelihood

Properties of mle’s

(i) If T is sufficient for θ, then the likelihood is g(T (x), θ)h(x), which depends
on θ only through T (x).

To maximise this as a function of θ, we only need to maximise g , and so the
mle θ̂ is a function of the sufficient statistic.

(ii) If φ = h(θ) where h is injective (1− 1), then the mle of φ is φ̂ = h(θ̂). This
is called the invariance property of mle’s. IMPORTANT.

(iii) It can be shown that, under regularity conditions, that
√

n(θ̂ − θ) is
asymptotically multivariate normal with mean 0 and ’smallest attainable
variance’ (see Part II Principles of Statistics).

(iv) Often there is no closed form for the mle, and then we need to find θ̂
numerically.
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4. Maximum likelihood estimation 4.1. Likelihood

Example 4.4

Smarties come in k equally frequent colours, but suppose we do not know k.

[Assume there is a vast bucket of Smarties, and so the proportion of each stays
constant as you sample. Alternatively, assume you sample with replacement,
although this is rather unhygienic]

Our first four Smarties are Red, Purple, Red, Yellow.

The likelihood for k is (considered sequentially)

like(k) = Pk(1st is a new colour)Pk(2nd is a new colour)

Pk(3rd matches 1st)Pk(4th is a new colour)

= 1× k − 1

k
× 1

k
× k − 2

k

=
(k − 1)(k − 2)

k3

(Alternatively, can think of Multinomial likelihood ∝ 1
k4 , but with

(
k
3

)
ways of

choosing those 3 colours.)

Can calculate this likelihood for different values of k :
like(3) = 2/27, like(4) = 3/32, like(5) = 12/25, like(6) = 5/54, maximised at
k̂ = 5.
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4. Maximum likelihood estimation 4.1. Likelihood

Fairly flat! Not a lot of information.
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