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3. Su�ciency 3.1. Su�cient statistics

Su�cient statistics

The concept of su�ciency addresses the question

“Is there a statistic T (X) that in some sense contains all the information about ✓
that is in the sample?”

Example 3.1

X

1

, . . . ,X
n

iid Bernoulli(✓), so that P(X
i

=1) = 1� P(X
i

=0) = ✓ for some
0 < ✓ < 1.

So f

X

(x | ✓) =
Q

n

i=1

✓xi (1� ✓)1�x

i = ✓
P

x

i (1� ✓)n�
P

x

i .

This depends on the data only through T (x) =
P

x

i

, the total number of ones.
Note that T (X) ⇠ Bin(n, ✓).

If T (x) = t, then

f

X|T=t

(x | T = t) =
P✓(X=x,T = t)

P✓(T = t)
=

P✓(X=x

P✓(T = t)
=

✓
P

x

i (1� ✓)n�
P

x

i

�
n

t

�
✓t(1� ✓)n�t

=

✓
n

t

◆�1

,

ie the conditional distribution of X given T = t does not depend on ✓.

Thus if we know T , then additional knowledge of x (knowing the exact sequence
of 0’s and 1’s) does not give extra information about ✓. ⇤
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3. Su�ciency 3.1. Su�cient statistics

Definition 3.1

A statistic T is su�cient for ✓ if the conditional distribution of X given T does
not depend on ✓.

Note that T and/or ✓ may be vectors. In practice, the following theorem is used
to find su�cient statistics.
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3. Su�ciency 3.1. Su�cient statistics

Theorem 3.2

(The Factorisation criterion) T is su�cient for ✓ i↵ f

X

(x | ✓) = g(T (x), ✓)h(x) for
suitable functions g and h.

Proof (Discrete case only)

Suppose f

X

(x | ✓) = g(T (x), ✓)h(x).

If T (x)= t then

f

X|T=t

(x | T = t) =
P✓(X=x,T (X)= t)

P✓(T = t)
=

g(T (x), ✓)h(x)P
{x0:T (x

0
)=t} g(t, ✓)h(x

0)

=
g(t, ✓)h(x)

g(t, ✓)
P

{x0:T (x

0
)=t} h(x

0)
=

h(x)P
{x0:T (x

0
)=t} h(x

0)
,

which does not depend on ✓, so T is su�cient.

Now suppose that T is su�cient so that the conditional distribution of X | T = t

does not depend on ✓. Then

P✓(X = x) = P✓(X = x,T (X) = t(x)) = P✓(X = x | T = t)P✓(T = t).

The first factor does not depend on ✓ by assumption; call it h(x). Let the second
factor be g(t, ✓), and so we have the required factorisation. ⇤
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3. Su�ciency 3.1. Su�cient statistics

Example 3.1 continued

For Bernoulli trials, f
X

(x | ✓) = ✓
P

x

i (1� ✓)n�
P

x

i .

Take g(t, ✓) = ✓t(1� ✓)n�t and h(x) = 1 to see that T (X) =
P

X

i

is su�cient
for ✓. ⇤

Example 3.2

Let X
1

, . . . ,X
n

be iid U[0, ✓].

Write 1
A

(x) for the indicator function, = 1 if x 2 A, = 0 otherwise.

We have

f

X

(x | ✓) =
nY

i=1

1

✓
1
[0,✓](xi ) =

1

✓n
1{max

i

x

i

✓}(max
i

x

i

) 1{0min

i

x

i

}(min
i

x

i

).

Then T (X) = max
i

X

i

is su�cient for ✓. ⇤
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3. Su�ciency 3.2. Minimal su�cient statistics

Minimal su�cient statistics

Su�cient statistics are not unique. If T is su�cient for ✓, then so is any (1-1)
function of T .

X itself is always su�cient for ✓; take T(X) = X, g(t, ✓) = f

X

(t | ✓) and h(x) = 1.
But this is not much use.

The sample space X n is partitioned by T into sets {x 2 X n : T (x) = t}.
If T is su�cient, then this data reduction does not lose any information on ✓.

We seek a su�cient statistic that achieves the maximum-possible reduction.

Definition 3.3

A su�cient statistic T (X) is minimal su�cient if it is a function of every other
su�cient statistic:
i.e. if T 0(X) is also su�cient, then T

0(X) = T

0(Y) ! T (X) = T (Y)
i.e. the partition for T is coarser than that for T 0.
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3. Su�ciency 3.2. Minimal su�cient statistics

Minimal su�cient statistics can be found using the following theorem.

Theorem 3.4

Suppose T = T (X) is a statistic such that f

X

(x; ✓)/f
X

(y; ✓) is constant as a
function of ✓ if and only if T (x) = T (y). Then T is minimal su�cient for ✓.

Sketch of proof : Non-examinable

First, we aim to use the Factorisation Criterion to show su�ciency. Define an
equivalence relation ⇠ on X n by setting x ⇠ y when T (x) = T (y). (Check that this is
indeed an equivalence relation.) Let U = {T (x) : x 2 X n}, and for each u in U , choose a
representative x

u

from the equivalence class {x : T (x) = u}. Let x be in X n and suppose
that T (x) = t. Then x is in the equivalence class {x0 : T (x0) = t}, which has
representative x

t

, and this representative may also be written x

T (x)

. We have x ⇠ x

t

, so

that T (x) = T (x
t

), ie T (x) = T (x
T (x)

). Hence, by hypothesis, the ratio f

X

(x;✓)
f

X

(x

T (x)

;✓) does

not depend on ✓, so let this be h(x). Let g(t, ✓) = f
X

(x
t

, ✓). Then

f
X

(x; ✓) = f
X

(x
T (x)

; ✓)
f
X

(x; ✓)
f
X

(x
T (x)

; ✓)
= g(T (x), ✓)h(x),

and so T = T (X) is su�cient for ✓ by the Factorisation Criterion.
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3. Su�ciency 3.2. Minimal su�cient statistics

Next we aim to show that T (X) is a function of every other su�cient statistic.

Suppose that S(X) is also su�cient for ✓, so that, by the Factorisation Criterion, there
exist functions g

S

and h
S

(we call them g
S

and h
S

to show that they belong to S and to
distinguish them from g and h above) such that

f
X

(x; ✓) = g
S

(S(x), ✓)h
S

(x).

Suppose that S(x) = S(y). Then

f
X

(x; ✓)
f
X

(y; ✓)
=

g
S

(S(x), ✓)h
S

(x)

g
S

(S(y), ✓)h
S

(y)
=

h
S

(x)

h
S

(y)
,

because S(x) = S(y). This means that the ratio f

X

(x;✓)
f

X

(y;✓) does not depend on ✓, and this

implies that T (x) = T (y) by hypothesis. So we have shown that S(x) = S(y) implies

that T (x) = T (y), i.e T is a function of S . Hence T is minimal su�cient. ⇤
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3. Su�ciency 3.2. Minimal su�cient statistics

Example 3.3

Suppose X

1

, . . . ,X
n

are iid N(µ,�2).

Then

f

X

(x | µ,�2)

f

X

(y | µ,�2)
=

(2⇡�2)�n/2 exp
�
� 1

2�2

P
i

(x
i

� µ)2
 

(2⇡�2)�n/2 exp
�
� 1

2�2

P
i

(y
i

� µ)2
 

= exp

(
� 1

2�2

 
X

i

x

2

i

�
X

i

y

2

i

!
+

µ

�2

 
X

i

x

i

�
X

i

y

i

!)
.

This is constant as a function of (µ,�2) i↵
P

i

x

2

i

=
P

i

y

2

i

and
P

i

x

i

=
P

i

y

i

.

So T (X) =
�P

i

X

2

i

,
P

i

X

i

�
is minimal su�cient for (µ,�2). ⇤

1-1 functions of minimal su�cient statistics are also minimal su�cient.

So T

0(X) = (X̄ ,
P

(X
i

� X̄ )2) is also su�cient for (µ,�2), where X̄ =
P

i

X

i

/n.

We write S

XX

for
P

(X
i

� X̄ )2.
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3. Su�ciency 3.2. Minimal su�cient statistics

Notes

Example 3.3 has a vector T su�cient for a vector ✓. Dimensions do not have
to the same: e.g. for N(µ, µ2), T (X) =

�P
i

X

2

i

,
P

i

X

i

�
is minimal su�cient

for µ [check]

If the range of X depends on ✓, then ”f
X

(x; ✓)/f
X

(y; ✓) is constant in ✓”
means ”f

X

(x; ✓) = c(x, y) f
X

(y; ✓)”
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3. Su�ciency 3.3. The Rao–Blackwell Theorem

The Rao–Blackwell Theorem

The Rao–Blackwell theorem gives a way to improve estimators in the mse sense.

Theorem 3.5

(The Rao–Blackwell theorem)

Let T be a su�cient statistic for ✓ and let ✓̃ be an estimator for ✓ with

E(✓̃2) < 1 for all ✓. Let ✓̂ = E
⇥
✓̃ |T

⇤
. Then for all ✓,

E
⇥
(✓̂ � ✓)2

⇤
 E

⇥
(✓̃ � ✓)2

⇤
.

The inequality is strict unless ✓̃ is a function of T .

Proof By the conditional expectation formula we have E✓̂ = E
⇥
E(✓̃ |T )

⇤
= E✓̃, so

✓̂ and ✓̃ have the same bias. By the conditional variance formula,

var(✓̃) = E
⇥
var(✓̃ |T )

⇤
+ var

⇥
E(✓̃ |T )

⇤
= E

⇥
var(✓̃ |T )

⇤
+ var(✓̂).

Hence var(✓̃) � var(✓̂), and so mse(✓̃) � mse(✓̂), with equality only if
var(✓̃ |T ) = 0. ⇤
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3. Su�ciency 3.3. The Rao–Blackwell Theorem

Notes

(i) Since T is su�cient for ✓, the conditional distribution of X given T = t does
not depend on ✓. Hence ✓̂ = E

⇥
✓̃(X) |T

⇤
does not depend on ✓, and so is a

bona fide estimator.

(ii) The theorem says that given any estimator, we can find one that is a function
of a su�cient statistic that is at least as good in terms of mean squared error
of estimation.

(iii) If ✓̃ is unbiased, then so is ✓̂.

(iv) If ✓̃ is already a function of T , then ✓̂ = ✓̃.

Lecture 3. Su�ciency 12 (1–14)



3. Su�ciency 3.3. The Rao–Blackwell Theorem

Example 3.4

Suppose X

1

, . . . ,X
n

are iid Poisson(�), and let ✓ = e

�� ( = P(X
1

=0)).

Then p

X

(x |�) =
�
e

�n��
P

x

i

�
/
Q

x

i

!, so that p
X

(x |✓) =
�
✓n(� log ✓)

P
x

i

�
/
Q

x

i

!.

We see that T =
P

X

i

is su�cient for ✓, and
P

X

i

⇠ Poisson(n�).

An easy estimator of ✓ is ✓̃ = 1
[X

1

=0]

(unbiased) [i.e. if do not observe any events
in first observation period, assume the event is impossible!]

Then

E
⇥
✓̃ |T = t

⇤
= P

�
X

1

=0 |
nX

1

X

i

= t

�

=
P(X

1

=0)P
�P

n

2

X

i

= t

�

P
�P

n

1

X

i

= t

�
✓
n � 1

n

◆
t

(check).

So ✓̂ = (1� 1

n

)
P

X

i . ⇤
[Common sense check: ✓̂ = (1� 1

n

)nX ⇡ e

�X = e

�ˆ�]
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3. Su�ciency 3.3. The Rao–Blackwell Theorem

Example 3.5

Let X
1

, . . . ,X
n

be iid U[0, ✓], and suppose that we want to estimate ✓. From
Example 3.2, T = maxX

i

is su�cient for ✓. Let ✓̃ = 2X
1

, an unbiased estimator
for ✓ [check].

Then

E
⇥
✓̃ |T = t

⇤
= 2E

⇥
X

1

| maxX
i

= t

⇤

= 2
�
E
⇥
X

1

| maxX
i

= t,X
1

=maxX
i

⇤
P(X

1

=maxX
i

)

+E
⇥
X

1

| maxX
i

= t,X
1

6=maxX
i

⇤
P(X

1

6=maxX
i

)
�

= 2
�
t ⇥ 1

n

+
t

2

n � 1

n

�
=

n + 1

n

t,

so that ✓̂ = n+1

n

maxX
i

. ⇤
In Lecture 4 we show directly that this is unbiased.

N.B. Why is E
⇥
X

1

| maxX
i

= t,X
1

6=maxX
i

⇤
= t/2?

Because
f

X

1

(x
1

| X
1

< t) =
f

X

1

(x

1

,X
1

<t)

P(X
1

<t)

=
f

X

1

(x

1

)1

[0X

1

<t]

t/✓ =
1/✓⇥1

[0X

1

<t]

t/✓ = 1

t

1
[0X

1

<t]

, and so

X

1

| X
1

< t ⇠ U[0, t].
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