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2. Estimation and bias 2.1. Estimators

Estimators

Suppose that X1, . . . ,Xn are iid, each with pdf/pmf fX (x | θ), θ unknown.

We aim to estimate θ by a statistic, ie by a function T of the data.

If X = x = (x1, . . . , xn) then our estimate is θ̂ = T (x) (does not involve θ).

Then T (X) is our estimator of θ, and is a rv since it inherits random
fluctuations from those of X.

The distribution of T = T (X) is called its sampling distribution.

Example

Let X1, . . . ,Xn be iid N(µ, 1).

A possible estimator for µ is T (X) = 1
n

∑
Xi .

For any particular observed sample x, our estimate is T (x) = 1
n

∑
xi .

We have T (X) ∼ N(µ, 1/n). �
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2. Estimation and bias 2.2. Bias

Bias

If θ̂ = T (X) is an estimator of θ, then the bias of θ̂ is the difference between its
expectation and the ’true’ value: i.e.

bias(θ̂) = Eθ(θ̂)− θ.

An estimator T (X) is unbiased for θ if EθT (X) = θ for all θ, otherwise it is
biased.

In the above example, Eµ(T ) = µ so T is unbiased for µ.

[Notation note: when a parameter subscript is used with an expectation or
variance, it refers to the parameter that is being conditioned on. i.e. the
expectation or variance will be a function of the subscript]
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2. Estimation and bias 2.3. Mean squared error

Mean squared error

Recall that an estimator T is a function of the data, and hence is a random
quantity. Roughly, we prefer estimators whose sampling distributions “cluster
more closely” around the true value of θ, whatever that value might be.

Definition 2.1

The mean squared error (mse) of an estimator θ̂ is Eθ

[
(θ̂ − θ)2

]
.

For an unbiased estimator, the mse is just the variance.

In general

Eθ

[
(θ̂ − θ)2

]
= Eθ

[
(θ̂ − Eθ θ̂ + Eθ θ̂ − θ)2

]
= Eθ

[
(θ̂ − Eθ θ̂)2

]
+
[
Eθ(θ̂)− θ

]2
+ 2
[
Eθ(θ̂)− θ

]
Eθ

[
θ̂ − Eθ θ̂

]
= varθ(θ̂) + bias2(θ̂),

where bias(θ̂) = Eθ(θ̂)− θ.

[NB: sometimes it can be preferable to have a biased estimator with a low
variance - this is sometimes known as the ’bias-variance tradeoff’.]
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2. Estimation and bias 2.4. Example: Alternative estimators for Binomial mean

Example: Alternative estimators for Binomial mean

Suppose X ∼ Binomial(n, θ), and we want to estimate θ.

The standard estimator is TU = X/n, which is Unbiassed since
Eθ(TU) = nθ/n = θ.

TU has variance varθ(TU) = varθ(X )/n2 = θ(1− θ)/n.

Consider an alternative estimator TB = X+1
n+2 = w X

n + (1− w) 1
2 , where

w = n/(n + 2).

(Note: TB is a weighted average of X/n and 1
2 . )

e.g. if X is 8 successes out of 10 trials, we would estimate the underlying
success probability as T (8) = 9/12 = 0.75, rather than 0.8.

Then Eθ(TB)− θ = nθ+1
n+2 − θ = (1− w)

(
1
2 − θ

)
, and so it is biased.

varθ(TB) = varθ(X )
(n+2)2 = w2θ(1− θ)/n.

Now mse(TU) = varθ(TU) + bias2(TU) = θ(1− θ)/n.

mse(TB) = varθ(TB) + bias2(TB) = w2θ(1− θ)/n + (1− w)2
(
1
2 − θ

)2
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2. Estimation and bias 2.4. Example: Alternative estimators for Binomial mean

So the biased estimator has smaller MSE in much of the range of θ

TB may be preferable if we do not think θ is near 0 or 1.

So our prior judgement about θ might affect our choice of estimator.

Will see more of this when we come to Bayesian methods,.
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2. Estimation and bias 2.5. Why unbiasedness is not necessarily so great

Why unbiasedness is not necessarily so great

Suppose X ∼ Poisson(λ), and for some reason (which escapes me for the

moment), you want to estimate θ = [P(X = 0)]2 = e−2λ.

Then any unbiassed estimator T (X ) must satisfy Eθ(T (X )) = θ, or equivalently

Eλ(T (X )) = e−λ
∞∑
x=0

T (x)
λx

x!
= e−2λ.

The only function T that can satisfy this equation is T (X ) = (−1)X [coefficients
of polynomial must match].

Thus the only unbiassed estimator estimates e−2λ to be 1 if X is even, -1 if X is
odd.

This is not sensible.
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