STATISTICS Correction

A note on the existence of LR tests of exact size α

There is an error in the notes by Prof. Spiegelhalter, which was repeated in lecture. If X_1, \ldots, X_n are i.i.d. with probability density function f, and $H_0: f = f_0, H_1: f = f_1$ are two simple hypotheses, the continuity of f_0 and f_1 does **not** imply that there exists a likelihood ratio test of exact size α , for any $\alpha \in (0, 1)$.

However, one can check that there always exists a randomised likelihood ratio test with exact size α . If f_0 and f_1 are nonzero on the same sets, then the ratio $\Lambda_x(H_0; H_1) = f_1(x)/f_0(x)$ is a well defined random variable with distribution function F under H_0 . Then, given some $\alpha \in (0, 1)$, we can define $k = \inf\{u \in \mathbb{R}; 1 - F(u) \leq \alpha\}$, Define a test which rejects H_0 if $\Lambda_x(H_0; H_1) > k$, fails to reject H_0 if $\Lambda_x(H_0; H_1) < k$, and if $\Lambda_x(H_0; H_1) = k$, it has a fixed probability C of rejecting H_0 . Then, we can always choose a C such that the test has Type I error probability exactly α .