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Abstract

The first part of the talk is focused on the validity of the following two upper bounds:
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d[S](p0, p̂n)  Y (p0) P� a.s. (2)

Here: S denotes some topologically nice metric space (e.g., Polish); [S] and d[S] stand for the

space of all probability measures (p.m.’s) on S and a suitable distance on [S], respectively;

p0 is a fixed p.m. on S; p̂
n

is a random p.m. on S, depending the first n-segment (⇠1, . . . , ⇠n)

of an i.i.d. sequence {⇠
i

}
i�1 from p0 (like in the original Glivenko-Cantelli setting, where

p̂
n

= 1
n

P
n

i=1 �⇠i); {b
n

}
n�1 is a non-random diverging sequence, which quantifies the rate

of convergence; C
p

(p0) and Y (p0) are two non-random numbers, explicitly depending on p0.

The bound (1)—which is what we call a uniform (mean) Glivenko-Cantelli bound—is the first

example in which sup
n�1 figures inside the expectation, the literature having investigated, till

now, only non-uniform bounds. See, e.g., [4, 5]. Detailed statements with explicit C(p0) and

Y (p0) are given in the following cases of current interest:

S d[S] p0 p̂
n

Rd

p-Wasserstein any p.m. on Rd with moment restriction 1
n

P
n

i=1 �⇠i

N Aly-Silvey index any p.m. on N with regularity restriction 1
n

P
n

i=1 �⇠i

Rd Kullback-Leibler Gaussian p.m. on Rd

Gaussian with estimated

(MLE) mean and covariance

Rd Kullback-Leibler exponential family on Rd

exponential with estimated

(MLE) parameter

1



S d[S] p0 p̂
n

any separable metric space

with Lipschitz embedding

in L

p(⌦,F , µ)

1-Wasserstein
any p.m. on S

with regularity restriction

1
n

P
n

i=1 �⇠i

In the second part, of more statistical flavor, we assume that {⇠
i

}
i�1 is an exchangeable

sequence (of observations) and we study the approximation of basic elements of the Bayesian

inference, such as the posterior distribution ⇡(· | ⇠1, . . . , ⇠n) := P[p̃ 2 · | ⇠1, . . . , ⇠n] and the

predictive distribution, here written as q

m

(· | ⇠1, . . . , ⇠n) := P[ 1
m

P
m

i=1 �⇠i+n 2 · | ⇠1, . . . , ⇠n],

where p̃ stands for the random probability measure satisfying the de Finetti representation

P[{⇠
i

}
i�1 2 · | p̃] = p̃1(·). Then, we show that, if E[C

p

(p̃)] < +1 with the same C

p

as in (1),

a martingale argument due to Blackwell and Dubins [1] yields, with probability one,
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with b

n

and Y as in (1)-(2), d
(Wp)

[[S]] denoting the p-Wasserstein distance on the space of all p.m.’s

on ([S], d[S]) and p̂1
n

� ẽ�1
n,m

(·) standing for p̂1
n

�
{(x1, x2, . . . ) 2 S1 | 1

m

P
m

i=1 �xi 2 ·}
�
. We

conclude by showing how such abstract results constitute the basis for a “Bayesian theory of

consistency”, meaning that frequentist procedures are now seen as approximations of orthodox

ones “with the glasses of the prior”. See [2, 3]. In particular, we obtain a rate of approximation

of orthodox Bayesian inferences by means of some empirical Bayes procedures.

References

[1] Blackwell, D. and Dubins, L.E. (1962). Merging of opinions with increasing informa-

tion. Ann. Math. Statist. 33, 882-886.

[2] Cifarelli, D.M., Dolera, E. and Regazzini, E. (2016). Frequentistic approximations

to Bayesian prevision of exchangeable random elements. Internat. J. Approx. Reason.

78, 138-152.

[3] Dolera, E. and Regazzini, E. (2018). Uniform rates of the Glivenko-Cantelli conver-

gence and their use in approximating Bayesian inferences. Arxiv :1712.07361v2

[4] Dudley, R.M. (1969). The speed of mean Glivenko-Cantelli convergence. Ann. Math.

Statist. 40, 40-50.

[5] Fournier, N. and Guillin, A. (2015). On the rate of convergence in Wasserstein dis-

tance of the empirical measure. Probab. Theory Related Fields 162, 707-738.

2


