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Syllabus

Time series analysis refers to problems in which observations are collected at regular
time intervals and there are correlations among successive observations. Applications
cover virtually all areas of Statistics but some of the most important include economic
and financial time series, and many areas of environmental or ecological data.

In this course, I shall cover some of the most important methods for dealing with
these problems. In the case of time series, these include the basic definitions of
autocorrelations etc., then time-domain model fitting including autoregressive and
moving average processes, spectral methods, and some discussion of the effect of time
series correlations on other kinds of statistical inference, such as the estimation of
means and regression coefficients.

Books

1. P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods, Springer
Series in Statistics (1986).

2. C. Chatfield, The Analysis of Time Series: Theory and Practice, Chapman and
Hall (1975). Good general introduction, especially for those completely new to
time series.

3. P.J. Diggle, Time Series: A Biostatistical Introduction, Oxford University Press
(1990).

4. M. Kendall, Time Series, Charles Griffin (1976).
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1 Models for time series

1.1 Time series data

A time series is a set of statistics, usually collected at regular intervals. Time series
data occur naturally in many application areas.

e economics - e.g., monthly data for unemployment, hospital admissions, etc.

e finance - e.g., daily exchange rate, a share price, etc.

e cnvironmental - e.g., daily rainfall, air quality readings.

e medicine - e.g., ECG brain wave activity every 278 secs.
The methods of time series analysis pre-date those for general stochastic processes
and Markov Chains. The aims of time series analysis are to describe and summarise
time series data, fit low-dimensional models, and make forecasts.

We write our real-valued series of observations as ..., X o, X 1, Xy, X1, Xo,..., a
doubly infinite sequence of real-valued random variables indexed by Z.

1.2 Trend, seasonality, cycles and residuals

One simple method of describing a series is that of classical decomposition. The
notion is that the series can be decomposed into four elements:

Trend (7;) — long term movements in the mean;
Seasonal effects (I;) — cyclical fluctuations related to the calendar;
Cycles (C}) — other cyclical fluctuations (such as a business cycles);

Residuals (FE;) — other random or systematic fluctuations.

The idea is to create separate models for these four elements and then combine
them, either additively
Xe =T+ 1+ Ci + £

or multiplicatively
Xt:Tt']t'Ct'Et-

1.3 Stationary processes
1. A sequence {X;,t € Z} is strongly stationary or strictly stationary if
D
(Xﬁ? ey th> :(th_;’_h, ey th+h)
for all sets of time points ¢y, ..., t; and integer h.
2. A sequence is weakly stationary, or second order stationary if

1



(a) E(X}) = u, and
(b) cov(Xt, Xivk) = T,

where 1 is constant and 44 is independent of £.
3. The sequence {vx, k € Z} is called the autocovariance function.

4. We also define
Pk = i/ Yo = corr(Xy, Xy i)
and call {py, k € Z} the autocorrelation function (ACF).

Remarks.
1. A strictly stationary process is weakly stationary.

2. If the process is Gaussian, that is (X3, ..., X}, ) is multivariate normal, for all
t1,...,1%, then weak stationarity implies strong stationarity.

3. v = var(X;) > 0, assuming X; is genuinely random.

4. By symmetry, v = v_y, for all k.

1.4 Autoregressive processes

The autoregressive process of order p is denoted AR(p), and defined by

p
Xt = Z ngXt*T + €t (11)
r=1
where ¢1, ..., ¢, are fixed constants and {¢ } is a sequence of independent (or uncor-

related) random variables with mean 0 and variance .

The AR(1) process is defined by
Xi =01 X1+ €. (1.2)
To find its autocovariance function we make successive substitutions, to get
Xi=e+dile1+ dileo+-)) =&+ dre1+ drero+ - -

The fact that {X;} is second order stationary follows from the observation that
E(X;) = 0 and that the autocovariance function can be calculated as follows:

02

1

2
w=E(c+ o1+ e at-) =1+ +¢i+---) 0
- T - S 0-2¢k
f)/k - E (Z ¢1€trz¢1€t+k8) = 1_ q;% .
r=0 s=0
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There is an easier way to obtain these results. Multiply equation (1.2) by X; &
and take the expected value, to give

E(X; X)) = E(01 Xi1 Xo—p) + E(e,Xi—) -

Thus v« = o171, E=1,2,...
Similarly, squaring (1.2) and taking the expected value gives

E(X}) = 0iE(Xi ) + 201 E(Xe1e) + E(6) = SE(X;L) + 0+ 0

and so vy = 02 /(1 — ¢?).
More generally, the AR(p) process is defined as

Xe =01 Xi g+ P Xy o+ -+ 0 Xy + €. (1.3)

Again, the autocorrelation function can be found by multiplying (1.3) by X;_x, taking
the expected value and dividing by vy, thus producing the Yule-Walker equations

Pk = O1pk—1+ Gapp—o+ -+ Gppr—p, k=1,2,...
These are linear recurrence relations, with general solution of the form
pr = Crwp 4 -+ Gyl
where wy, ..., w, are the roots of
WP — ¢1wp—1 _ ¢2wp—2 — =, =0

and C1,...,C, are determined by py = 1 and the equations for k =1,...,p— 1. It
is natural to require v, — 0 as k — o0, in which case the roots must lie inside the
unit circle, that is, |w;| < 1. Thus there is a restriction on the values of ¢y,..., ¢,
that can be chosen.

1.5 Moving average processes

The moving average process of order ¢ is denoted MA(q) and defined by

q
Xt = Zesﬁt_s (14)
5=0

where 64, ...,0, are fixed constants, ) = 1, and {¢;} is a sequence of independent
(or uncorrelated) random variables with mean 0 and variance o

It is clear from the definition that this is second order stationary and that

[0, k| >q
=L 2S00, 1Kl < g
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We remark that two moving average processes can have the same autocorrelation
function. For example,

Xt =€ + 6613_1 and Xt =€ + (1/9)6t_1
both have p; = 0/(1 + 6?), pr = 0, |k| > 1. However, the first gives
€ — Xt — 6615*1 = Xt — Q(Xt—l — QEth) = Xt — Qthl + 62th2 —

This is only valid for |#| < 1, a so-called invertible process. No two invertible
processes have the same autocorrelation function.

1.6 White noise

The sequence {¢ }, consisting of independent (or uncorrelated) random variables with
mean 0 and variance o2 is called white noise (for reasons that will become clear

later.) Tt is a second order stationary series with v = 02 and v, = 0, k # 0.

1.7 The turning point test

We may wish to test whether a series can be considered to be white noise, or whether
a more complicated model is required. In later chapters we shall consider various
ways to do this, for example, we might estimate the autocovariance function, say
{4%}, and observe whether or not 4; is near zero for all k£ > 0.

However, a very simple diagnostic is the turning point test, which examines a
series { X} to test whether it is purely random. The idea is that if {X;} is purely
random then three successive values are equally likely to occur in any of the six

A

In four cases there is a turning point in the middle. Thus in a series of n points
we might expect (2/3)(n — 2) turning points.

In fact, it can be shown that for large n, the number of turning points should
be distributed as about N(2n/3,8n/45). We reject (at the 5% level) the hypothesis
that the series is unsystematic if the number of turning points lies outside the range

2n/3 + 1.961/3n/45.



2 Models of stationary processes

2.1 Purely indeterministic processes

Suppose { X;} is a second order stationary process, with mean 0. Its autocovariance
function is
Ye = E(XtXt+k) = COV(Xt, Xt+k)7 ke Z.

1. As {X}} is stationary, ~y, does not depend on t.

2. A process is said to be purely-indeterministic if the regression of X; on
Xi—qy Xt—¢-1, ... has explanatory power tending to 0 as ¢ — oo. That is, the
residual variance tends to var(X;).

An important theorem due to Wold (1938) states that every purely-
indeterministic second order stationary process {X;} can be written in the form

Xt = U + GOZt -+ 91Z1§_1 —+ 82Zt—2 —+ ..
where {Z;} is a sequence of uncorrelated random variables.

3. A Gaussian process is one for which X;,,..., X; has a joint normal distri-
bution for all ¢1,...,t,. No two distinct Gaussian processes have the same
autocovariance function.

2.2 ARMA processes

The autoregressive moving average process, ARMA(p, q), is defined by

p q
Xt - Z qbrthr — Z (9561575
r=1 s=0

where again {¢;} is white noise. This process is stationary for appropriate ¢, 6.

EXAMPLE 2.1
Consider the state space model

X=X 1 + e,
Y = Xi + 1.

Suppose {X;} is unobserved, {Y;} is observed and {¢} and {n;} are independent
white noise sequences. Note that {X;} is AR(1). We can write

§ =Y, — oY
= (Xi +m) — ¢(Xe—1 + M-1)
= (Xy — 0 X)) + (e — pm—1)
=€+ — PN—1



Now &; is stationary and cov(&, &vx) = 0, kK > 2. As such, & can be modelled as a
MA(1) process and {Y;} as ARMA(1,1).

2.3 ARIMA processes

If the original process {Y;} is not stationary, we can look at the first order difference

process
=VYi =YY

or the second order differences
= VY, = V(VY), = Y, — 2% 4 + Vi s

and so on. If we ever find that the differenced process is a stationary process we can
look for a ARMA model of that.

The process {Y;} is said to be an autoregressive integrated moving average
process, ARIMA(p, d, q), if X; = V9Y; is an ARMA (p, q) process.

AR, MA, ARMA and ARIMA processes can be used to model many time series.
A key tool in identifying a model is an estimate of the autocovariance function.

2.4 Estimation of the autocovariance function

Suppose we have data (X1, ..., Xr) from a stationary time series. We can estimate
e the mean by X = (1/7) 21 X,
e the autocovariance by ¢ = 4, = (1/7) ZtT:kH(Xt — X)(X; — X), and
e the autocorrelation by 7, = pr = Y1/J0-

The plot of r; against £k is known as the correlogram. If it is known that p is 0
there is no need to correct for the mean and v, can be estimated by

- (1/T) ZtT:kJrl X Xip-

Notice that in defining 45 we divide by T rather than by (T — k). When T is
large relative to k£ it does not much matter which divisor we use. However, for
mathematical simplicity and other reasons there are advantages in dividing by T

Suppose the stationary process { X;} has autocovariance function {v;}. Then

T
var (Z a/ﬁXﬁ> Z Z azas cov( X, X Z Z apasy|i—s) = 0.

t=1 t=1 s=1 t=1 s=1

A sequence {7} for which this holds for every 7" > 1 and set of constants (ay, ..., ar)
is called a nonnegative definite sequence. The following theorem states that {~;}
is a valid autocovariance function if and only if it is nonnegative definite.

6



THEOREM 2.2 (Blochner) The following are equivalent.

1. There exists a stationary sequence with autocovariance function {~;}.
2. {7} is nonnegative definite.

3. The spectral density function,

(@]

1 . 1 2
flw) = p Z et = gl + . Z% cos(wk) ,

k=—00 k=1
is positive if it exists.
Dividing by T rather than by (7" — k) in the definition of 4

e ensures that {9} is nonnegative definite (and thus that it could be the autoco-
variance function of a stationary process), and

e can reduce the L*-error of ry.

2.5 Identifying a M A(q) process

In a later lecture we consider the problem of identifying an ARMA or ARIMA model
for a given time series. A key tool in doing this is the correlogram.

The MA(q) process X; has p, = 0 for all k, |k| > ¢. So a diagnostic for MA(q) is
that |ri| drops to near zero beyond some threshold.

2.6 Identifying an AR(p) process

The AR(p) process has py decaying exponentially. This can be difficult to recognise
in the correlogram. Suppose we have a process X; which we believe is AR(k) with

k
X = Z OipXi—j + €
j=1

with ¢; independent of Xi,..., X, 1.
Given the data X, ..., Xr, the least squares estimates of (¢1x, ..., ¢kx) are ob-
tained by minimizing

| 7 k 2
P Y ()
t=k+1 J=1

This is approximately equivalent to solving equations similar to the Yule-Walker
equations,

k
6/] :qug,k:ﬂj—ﬂa j: 17"'7k
(=1
These can be solved by the Levinson-Durbin recursion:
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Step 0. 0§ =40, 611 ="/, k=0
Step 1. Repeat until gﬁkk near 0:

k=k+1

k—1
Phk = (%—Z%,kl%y‘) / 01
j=1

(/53',1@ = ng,k—1 — (;k,k(/gk—j,k—l, forj=1,...,k—1
o =051 (1 — ¢ 1)

We test whether the order k£ fit is an improvement over the order k£ — 1 fit by looking
to see if gﬁkk is far from zero.

The statistic ggkk is called the kth sample partial autocorrelation coefficient
(PACF). If the process X; is genuinely AR(p) then the population PACF, ¢y, is
exactly zero for all k > p. Thus a diagnostic for AR(p) is that the sample PACFs
are close to zero for k > p.

2.7 Distributions of the ACF and PACF

Both the sample ACF and PACF are approximately normally distributed about
their population values, and have standard deviation of about 1/ VT, where T is the
length of the series. A rule of thumb it that p; is negligible (and similarly ¢y ) if
ry, (similarly ¢y ) lies between £2/+/T. (2 is an approximation to 1.96. Recall that
it Z1,...,7Z, ~ N(u,1), a test of size 0.05 of the hypothesis Hy : p = 0 against
Hy : i # 0 rejects Hy if and only if Z lies outside 41.96//n).

Care is needed in applying this rule of thumb. It is important to realize
that the sample autocorrelations, r1,79,..., (and sample partial autocorrelations,
¢21,1, &272, ...) are not independently distributed. The probability that any one ry
should lie outside +2/v/T depends on the values of the other 7.

A ‘portmanteau’ test of white noise (due to Box & Pierce and Ljung & Box) can
be based on the fact that approximately

m
Qn=T(T+2) )y (T—k) "1~ xpn-
k=1
The sensitivity of the test to departure from white noise depends on the choice of

m. If the true model is ARMA (p, q) then greatest power is obtained (rejection of the
white noise hypothesis is most probable) when m is about p + g.



3 Spectral methods

3.1 The discrete Fourier transform

If h(t) is defined for integers ¢, the discrete Fourier transform of h is

Hw)= Y _ ht)e™, —r<w<m

t=—00
The inverse transform is

ht) = — / " e () d

If h(t) is real-valued, and an even function such that h(t) = h(—t), then

H(w) =h(0)+2 Z h(t) cos(wt)

t=1

and

3.2 The spectral density

The Wiener-Khintchine theorem states that for any real-valued stationary process
there exists a spectral distribution function, F'(-), which is nondecreasing and
right continuous on [0, 7] such that F'(0) =0, F(7) =~ and

Ve = /OW cos(wk) dF(w) .

The integral is a Lebesgue-Stieltges integral and is defined even if F' has disconti-
nuities. Informally, F'(wy) — F'(wy) is the contribution to the variance of the series
made by frequencies in the range (wy, ws).

F(+) can have jump discontinuities, but always can be decomposed as

Fw) = FAi(w) + Fa(w)

where Fi(-) is a nondecreasing continuous function and F5(-) is a nondecreasing
step function. This is a decomposition of the series into a purely indeterministic
component and a deterministic component.

Suppose the process is purely indeterministic, (which happens if and only if
> 1 lvk| < 00). In this case F(-) is a nondecreasing continuous function, and dif-
ferentiable at all points (except possibly on a set of measure zero). Its derivative
f(w) = F'(w) exists, and is called the spectral density function. Apart from a
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multiplication by 1/ it is simply the discrete Fourier transform of the autocovariance
function and is given by

1 & w1 2 —
— — —iRwW — — — k
f(w) - kEOO Vi€ 7T70 + - ,;1 i cos(wk) ,

with inverse i
fyk:/ cos(wk) f(w) dw .
0

Note. Some authors define the spectral distribution function on [—m, 7]; the use of
negative frequencies makes the interpretation of the spectral distribution less intuitive
and leads to a difference of a factor of 2 in the definition of the spectra density.
Notice, however, that if f is defined as above and extended to negative frequencies,
f(—w) = f(w), then we can write

’VkZ/ %ei‘*’kf(w)dw.

—T
EXAMPLE 3.1
(a) Suppose {X;} is i.i.d., 79 = var(X;) = 0> > 0 and 9 = 0, k > 1. Then
f(w) = 0?/m. The fact that the spectral density is flat means that all frequencies
are equally present accounts for our calling this sequence white noise.

(b) As an example of a process which is not purely indeterministic, consider X; =
cos(wot + U) where wy is a value in [0, 7] and U ~ U[—mn,w]. The process has
7€ro mean, since

1 ™
E(X;) = 2—/ cos(wot + u) du =0

T —T

and autocovariance

Ve = E(Xt7 Xt+k)

1 ’/T
=5 cos(wot + u) cos(wot + wok + w)du
™ —T
1 ’/T
=5 3 [cos(wok) + cos(2wot 4+ wok + 2u)] du
™ —T
1

= %%[27{' cos(wok) + 0]
=3 cos(wok) .

Hence X; is second order stationary and we have

1 1 !
Vi = 5 COS(WOk)a F(w) - il[wz(ﬂ(}] and f(w) - §5W0(w) :

10



Note that F'is a nondecreasing step function.
More generally, the spectral density
"1

flw) =37 Sas0, @)

j=1

corresponds to the process X; = )77, ajcos(w;t + U;) where w; € [0,7] and

Uy, ..., U, areiid. Ul—m7, 7.

(¢c) The MA(1) process, X; = 6161 + €, where {¢} is white noise. Recall vy =
(1+60%)0?, v1 = 6102, and vy, = 0, k > 1. Thus

o2(1 4 2604 cosw + H?
fluw) = TOHZhcoso tB),

s

(d) The AR(1) process, X; = ¢1X;—1 + €, where {¢} is white noise. Recall
var(X;) = ¢y var(Xy 1) + 07 = o =din+od = y=0"/(1-¢)
where we need |¢1| < 1 for X; stationary. Also,
Vi = cov( Xy, Xi—k) = cov(d1 Xi—1 + €, Xi—k) = d17k-1-

So v = |1k|707 k € Z. Thus

flw) = % + %Z Cb]f’YO cos(kw) = % {1 + Z ¢11€ [eiwk + e—iwk] }
k=1 k—1

(N pre™ N ¢re™ 1 _ 1— ¢
0 1 —grew 1 — e w1 —2¢cosw + ¢?

02

T (1 — 261 cosw + ¢2)

Note that ¢ > 0 has power at low frequency, whereas ¢ < 0 has power at high
frequency.

1
¢1:% ¢1:—§

F@) | e
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Plots above are the spectral densities for AR(1) processes in which {¢;} is Gaussian
white noise, with o?/7 = 1. Samples for 200 data points are shown below.

50 100 150 200
_ 1
¢1 =3
T T T
WMWWMWWMWMW
50 100 150 200

3.3 Analysing the effects of smoothing

Let {as} be a sequence of real numbers. A linear filter of {X;} is

oo

Y, = Z asXi .

S§=—00

In Chapter 5 we show that the spectral density of {Y;} is given by
fr(w) = la(w)] fx(w),

where a(z) is the transfer function
o0
a(w) = Z ae™? .
$=—00

This result can be used to explore the effect of smoothing a series.

EXAMPLE 3.2
Suppose the AR(1) series above, with ¢; = —0.5, is smoothed by a moving average
on three points, so that smoothed series is

Y = %[Xtﬂ + X + Xi1].
Then |a(w)]* = |ze™ + 5 + 3¢™|* = §(1 + 2 cosw)?.
Notice that vx(0) = 47/3, 7y (0) = 27/9, so {Y;} has 1/6 the variance of {X;}.

Moreover, all components of frequency w = 27 /3 (i.e., period 3) are eliminated in
the smoothed series.

1 | ] fr(w)

ja(w)[? al 1
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4 Estimation of the spectrum

4.1 The periodogram

Suppose we have T' = 2m + 1 observations of a time series, y1,...,yr. Define the
Fourier frequencies, w; = 27j/T, j =1,...,m, and consider the regression model

m m
Y = o + Z a; cos(wjt) + Z Bjsin(w;t),
j=1 j=1

which can be written as a general linear model, Y = X6 + ¢, where

[@0)

07]
Y1 1 c1 st - cm1 Sm 3 €1
1
Y: y X: . . ; 9: X y 6: !
yr 1 ar sir - ¢mr SmT €T
(07°%

\ 5

cjt = cos(wjt), st = sin(w;t) .
The least squares estimates in this model are given by

0=(X"X)'XTY.

Note that
ET: eiwjt 6“"](1 eiij> O
1 — el
t=1
T T T T
— ZCﬁ—FZZS]‘t:O — ZCﬁ:ZS]t:O
t=1 t=1 t=1 t=1
and
T T
Z CitSjt = %Z sin(2w;t) =0,
t=1 t=1
T T
Zc?t = %Z{l + cos(2w;t)} =T/2,
t=1 t=1
T T
Z sHh= %Z{l —cos(2w;t)} =T/2,
t=1 t=1
T T T
D cisie=Y i =Y spsu =0, j#k
t=1 t=1 t=1



Using these, we have

-1

& T 0 --- 0 T iy
b a1 _ 0o 7/2 --- 0 Zt C11Y _ (2/T) Zt CLels
B 0 0 - T)/2 S, St (2/T) S, Smive

and the regression sum of squares is

m T 2 T 2
. ) ] 2
YV =YX X)XTY =T9 + ) 2 {Z cjtyt} - {Z sjtyt}

j=1 t=1 t=1

Since we are fitting 7" unknown parameters to 7" data points, the model fits with no
residual error, i.e., Y =Y. Hence

T

Socor- S (o) 0]

t=1 t=1 t=1

This motivates definition of the periodogram as

{Zytcos wit } {Zytsm wit }

A factor of (1/27) has been introduced into this definition so that the sample variance,

= (1/T) ZtT:l(yt — 7)?, equates to the sum of the areas of m rectangles, whose
heights are I(w1),...,I(wn), whose widths are 27 /7T, and whose bases are centred
at wi, ..., wn. Le., 5o = (21/T) 7L I(w;). These rectangles approximate the area
under the curve I(w), 0 <w < 7.

\

I(w) N
N ) _
0 — Ws T

2 /T
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Using the fact that Zthl Cjt = Zthl st = 0, we can write
T 2 T 2
{Z Yt cos(wjt)} + {Z Yt sin(wjt)}
t=1 t=1
T 2 T 2
= { (e —9) COS(W)} + {Z(fyt —9) SiD(WJt)}

WT[(wj') =

t=1 t=1
T 2
— Z(?/t . y)ezw]t
t=1
T T
_ Z(yt y)ezwjt Z(ys . y)e—zsz
t=1 s=1
T T-1 T
= Z(yt —y) +2 Z Z (Yt — ) (Ye—r — ) cos(w;k) .
t=1 k=1 t=k+1
Hence
1 9 T-1
I(wj) = ;’3/0 + ; ;ﬁ% COS(LUjk‘) .

I(w) is therefore a sample version of the spectral density f(w).

4.2 Distribution of spectral estimates

If the process is stationary and the spectral density exists then [(w) is an almost
unbiased estimator of f(w), but it is a rather poor estimator without some smoothing.

Suppose {y:} is Gaussian white noise, i.e., y1,...,yr are iid N(0,0?). Then for
any Fourier frequency w = 275 /T,

1) = = [AW) + B@)] (4.1)

where
Aw) = gcos(wt),  B(w)=) ysin(wt). (4.2)

Clearly A(w) and B(w) have zero means, and

var[A(w)] = o* Z cos*(wt) = To? /2,

t=1

sin?(wt) = To?/2,

E

var[B(w)] = o*

t=1

15



T T T

cov[A(w), B(w)]=E Z Z Yy cos(wt) sin(ws) | = o Z cos(wt) sin(wt) = 0.

t=1 s=1 t=1

Hence A(w)+/2/To? and B(w)+/2/To? are independently distributed as N (0, 1), and
2 [A(w)? + B(w)?] /(T'o?) is distributed as x3. This gives I(w) ~ (0?/m)x3/2. Thus
we see that I(w) is an unbiased estimator of the spectrum, f(w) = o2/, but it is not
consistent, since var[l(w)] = o*/7? does not tend to 0 as T — oo. This is perhaps
surprising, but is explained by the fact that as T increases we are attempting to
estimate I(w) for an increasing number of Fourier frequencies, with the consequence
that the precision of each estimate does not change.

By a similar argument, we can show that for any two Fourier frequencies, w; and
wi the estimates I(w;) and I(wy) are statistically independent. These conclusions
hold more generally.

THEOREM 4.1 Let {Y;} be a stationary Gaussian process with spectrum f(w). Let
I(-) be the periodogram based on samples Y,..., Yy, and let w; = 27j/T, j < T/2,
be a Fourier frequency. Then in the limit as T" — o0,

(a) I(w;) ~ flwi)x3/2.
(b) I(w;) and I(wy) are independent for j # k.

Assuming that the underlying spectrum is smooth, f(w) is nearly constant over a
small range of w. This motivates use of an estimator for the spectrum of

. 1 b
flwy) = 1 EZ I(wjte) -

Then f(w;) ~ f(wj)xg(2p+1)/[2(2p+ 1)], which has variance f(w)?/(2p+1). The idea
istolet p— o0 as T — oo.

4.3 The fast Fourier transform

I(wj) can be calculated from (4.1)—(4.2), or from

T
E ’ ytezwjt
t=1

Either way, this requires of order T" multiplications. Hence to calculate the complete
periodogram, i.e., I(wi),...,I(w,), requires of order 7% multiplications. Computa-
tion effort can be reduced significantly by use of the fast Fourier transform, which

2

1
I(%‘)Zﬁ

computes I(wy), ..., (wy) using only order T log, T" multiplications.
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5 Linear filters

5.1 The Filter Theorem

A linear filter of one random sequence {X;} into another sequence {Y;} is

oo

Y% - Z athfs . (51)

S=—00

THEOREM 5.1 (the filter theorem) Suppose X; is a stationary time series with spec-
tral density fx(w). Let {a:} be a sequence of real numbers such that > ,° _ |a;| < oc.
Then the process Y; = Z;if ~ @sX¢_s is a stationary time series with spectral density
function

iwy |2
fr(w) = [A()] fx(w) = la()]® fx(w).
where A(z) is the filter generating function

oo

Alz) = ) a2, |z| <1

and a(w) = A(e™) is the transfer function of the linear filter.

Proof.

cov }/%7 Y;erk: E E Qg COV Xt T Xt+k s)

reZ. s€Z
= Z ArQs Y k4r—s
r,sEZ
T
= Z aras/ 5 (+7=9) £ (w)dw
r.SEL -

Thus fy(w) is the spectral density for Y and Y is stationary. m

5.2 Application to autoregressive processes

Let us use the notation B for the backshift operator
B'=1, (B"X)i=X:, (BX)i=Xi1, (B’X)=X o,

17



Then the AR(p) process can be written as
(=57 6B X = ¢
or ¢(B)X = ¢, where ¢ is the function

P(z) =1 =20 02"
By the filter theorem, f(w) = [¢ (¢)|*fx(w), so since f(w) = o?/m,

0.2

fx(w) = ——F—. (5.2)

mlp(e)]?
As fx(w) = (1/m) 300 ke ™k we can calculate the autocovariances by ex-
panding fx(w) as a power series in ™. For this to work, the zeros of ¢(z) must lie

outside the unit circle in C. This is the stationarity condition for the AR(p) process.

EXAMPLE 5.2
For the AR(1) process, X; — ¢1X;1 = €, we have ¢(z) = 1 — ¢12z, with its zero at
z = 1/¢;1. The stationarity condition is |¢1] < 1. Using (5.2) we find

o? o?

fx(w) = 7l — ¢e2  m(l - 2¢cosw + ¢2)

which is what we found by other another method in Example 3.1(c). To find the
autocovariances we can write, taking z = e,

1 1 1 T - $ =8
[1(2)F o1(2)d(1/2) (1= d2)(1—o1/2) 2. ;¢1

r=0
22(1(+¢1+¢1+ ) Zl—gb%
=—00 k=—00
1 o0 0.2¢|k| "
:fX(W):;kzool_;%e k

and so v, = 02¢|1k|/(1 — ¢?) as we saw before,

In general, it is often easier to calculate the spectral density function first, using
filters, and then deduce the autocovariance function from it.
5.3 Application to moving average processes
The MA(q) process X; =€ + Y 7_, 05,5 can be written as
X =0(B)e
where 0(z) = > 6,B%. By the filter theorem, fx(w) = |0(e™)[*(c?/m).
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EXAMPLE 5.3
For the MA(1), X; = € + 01641, 0(2) = 1 + 01z and

2

fx(w) = % (14 26 cosw + 67) .

As above, we can obtain the autocovariance function by expressing fx(w) as a power

series in . We have
2 2

Fx(w) = % (0167 + (14 62) + 6,6) = %e(ew)e(ew)
SO Yo = 0'2(1 +(9%), Y1 = 610'2, Yo = 0, ‘k‘ > 1.

As we remarked in Section 1.5, the autocovariance function of a MA(1) process
with parameters (02, 6;) is identical to one with parameters (6702, 6;'). That is,

Vo =070 (1+1/67) = 0* (14 67) =
pi=07"/(1+67)=0/(1+6)=p.

In general, the MA(q) process can be written as X = 6(B)e, where

0(z) = Z@kzk = H(wk —2).
k=0

k=1
So the autocovariance generating function is
q q

9(2) =Y ' =0%0(2)0(z") = o [ [(wr — 2)(wr — 271). (5.3)
k=—q k=1

Note that (wg — 2)(w, —271) = wWi(w, ' — 2)(w; ' —271). So g(2) is unchanged in (5.3)
if (for any k such that wy is real) we replace wy by wk_l and multiply o2 by w?. Thus
(if all roots of O(z) = 0 are real) there can be 29 different M A(q) processes with the
same autocovariance function. For identifiability, we assume that all the roots of
6(z) lie outside the unit circle in C. This is equivalent to the invertibility condition,
that €, can be written as a convergent power series in {X;, X; 1,...}.

5.4 The general linear process

A special case of (5.1) is the general linear process,

oo

Y, =) aXiy,

5=0
where {X;} is white noise. This has

o0 oo

2 2 2

cov(Yy, Yipr) =0 E astsi < O E a;
5:0 S:O
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where the inequality is an equality when k& = 0. Thus {Y;} is stationary if and
only if > 27 a? < co. In practice the general linear model is useful when the a, are
expressible in terms of a finite number of parameters which can be estimated. A rich

class of such models are the ARMA models.

5.5 Filters and ARMA processes

The ARMA (p, ¢) model can be written as ¢(B)X = 0(B)e. Thus
2 (9(€iw)

p(e™)

2
0_2

[p(e™)* fx(w) = 10(e™)

This is subject to the conditions that

— fX(w) = | —.
T

e the zeros of ¢ lie outside the unit circle in C for stationarity:.

e the zeros of 6 lie outside the unit circle in C for identifiability.

e ¢(z) and #(z) have no common roots.

If there were a common root, say 1/«, so that (I — aB)¢1(B)X = (I — aB)01(B)e,
then we could multiply both sides by Y 2, a"B" and deduce ¢;(B)X = 6;(B)e, and
thus that a more economical ARMA(p — 1,¢ — 1) model suffices.

5.6 Calculating autocovariances in ARMA models

As above, the filter theorem can assist in calculating the autocovariances of a model.

These can be compared with autocovariances estimated from the data. For example,
an ARMA(1,2) has

d(2) =1— ¢z, 0(z) =1+01z+ 02", where |¢| < 1.
Then X = C(B)e, where

() = 0()/8(z) = (L+ 012+ 0p22) 302" = 32",
n=0 n=0

with ¢ =1, ¢; = ¢ + 61, and
= @'+ "0+ "0y = 9" (P + 90+ 07), n>2.

So X; = > €t and we can compute covariances as

(0.¢] (0.¢]

2

Y = cov( Xy, Xpyp) = E CrnCm COV (€t —p, €4 k) = E CnCnik0” .
n,m=0 n=0

For example, v, = ¢yk—1, £ > 3. As a test of whether the model is ARMA(1, 2)
we might look to see if the sample autocovariances decay geometrically, for k > 2,
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6 Estimation of trend and seasonality

6.1 Moving averages

Consider a decomposition into trend, seasonal, cyclic and residual components.
Xt:E‘i_It‘i_Ct‘}_Et-

Thus far we have been concerned with modelling {£;}. We have also seen that the
periodogram can be useful for recognising the presence of {C;}.
We can estimate trend using a symmetric moving average,

k

E — § athJrs s
s=—k

where a;, = a_,. In this case the transfer function is real-valued.
The choice of moving averages requires care. For example, we might try to esti-
mate the trend with A
Ty=3 (Xio1 + Xo + Xip1) -

But suppose X; = T} + ¢, where trend is the quadratic T} = a + bt + ct>. Then
Tt =T+ %C-i- %(Et_1 + & +€et1)

SO ]Ej} =EX; + %c and thus 7" is a biased estimator of the trend.
This problem is avoided if we estimate trend by fitting a polynomial of sufficient
degree, e.g., to find a cubic that best fits seven successive points we minimize

3
ST (X — by — bat — bat® — bst®)”

t=—3
So A A
S X, = Th + 28D,
StX, = 28, +  196bs
S 12X, = 28 + 196b,
SBX, = 1960, + 15883
Then

bo = 2= (T X, — S £2X;)
= L (~2X 3 +3X 5+ 6X_; + 7Xp +6X; +3Xs — 2X;3) .

We estimate the trend at time 0 by Ty = by, and similarly,
T, = 51 (—2Xy 5+ 3Xy_0 + 6X,1 + 7TX; + 6Xp1 + 3Xp0 — 2X43)
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A notation for this moving average is 21—1[—2, 3,6,7,6,3,—2]. Note that the weights
sum to 1. In general, we can fit a polynomial of degree q to 2¢-+1 points by applying a
symmetric moving average. (We fit to an odd number of points so that the midpoint
of fitted range coincides with a point in time at which data is measured.)

A value for ¢ can be identified using the variate difference method: if {X;} is
indeed a polynomial of degree ¢, plus residual error {¢;}, then the trend in A"X; is
a polynomial of degree ¢ — r and

A?X,; = constant + A%,; = constant + ¢; — ((i) €1+ ((2]) 62—+ (1),
The variance of A2X; is therefore

a\°  (q\’ 2q
1+ + +oo+ 1ot = o,
1 2 q

where the simplification in the final line comes from looking at the coefficient of 2¢
in expansions of both sides of

(14 2)11+2)7 = (14 2)%.

Define V, = var(A"X})/ (2[). The fact that the plot of V;. against r should flatten out
at r > ¢ can be used to identify gq.

var(Afle;) =

6.2 Centred moving averages

If there is a seasonal component then a centred-moving average is useful. Sup-
pose data is measured quarterly, then applying twice the moving average i[l, 1,1,1]
is equivalent to applying once the moving average %[1, 2,2,2,1]. Notice that this so-
called centred average of fours weights each quarter equally. Thus if X; = I; + ¢,
where I; has period 4, and I) + I, + I3 + I, = 0, then Tt has no seasonal com-
ponent. Similarly, if data were monthly we use a centred average of 12s, that is,
5[1,2,2,2,2,2,2,2,2,2,2,1].

6.3 The Slutzky-Yule effect

To remove both trend and seasonal components we might successively apply a number
of moving averages, one or more to remove trend and another to remove seasonal
effects. This is the procedure followed by some standard forecasting packages.
However, there is a danger that application of successive moving averages can
introduce spurious effects. The Slutzky-Yule effect is concerned with the fact that
a moving average repeatedly applied to a purely random series can introduce artificial
cycles. Slutzky (1927) showed that some trade cycles of the nineteenth century were
no more than artifacts of moving averages that had been used to smooth the data.
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To illustrate this idea, suppose the moving average %[—1, 2,4,2,—1] is applied k
times to a white noise series. This moving average has transfer function, a(w) = %(44—
4 cosw — 2 cos 2w), which is maximal at w = 7/3. The smoothed series has a spectral
density, say fi(w), proportional to a(w)?, and hence for w # /3, fi.(w)/fi(7/3) — 0
as k — oo. Thus in the limit the smoothed series is a periodic wave with period 6.

6.4 Exponential smoothing

Single exponential smoothing

Suppose the mean level of a series drifts slowly over time. A naive one-step-ahead
forecast is X;(1) = X;. However, we might let all past observations play a part in

the forecast, but give greater weights to those that are more recent. Choose weights
to decrease exponentially and let

Xt(l) = m (Xt + (.Uthl + CL)QXt,Q + -+ wﬁ_le) ,

where 0 < w < 1. Define S; as the right hand side of the above as t — oo, i.e.,
Si=(1-w)) X, ,.
5=0

S; can serve as a one-step-ahead forecast, X;(1). S; is known as simple exponential
smoothing. Let « =1 — w. Simple algebra gives

Sy = aX; + (1 — Oé)St_l
Xt(l) = Xt—l(l) + Oé[Xt - Xﬁ_l(l)] .
This shows that the one-step-ahead forecast at time ¢ is the one-step-ahead forecast
at time t — 1, modified by « times the forecasting error incurred at time ¢ — 1.
To get things started we might set Sy equal to the average of the first few data

points. We can play around with «, choosing it to minimize the mean square fore-
casting error. In practice,  in the range 0.25-0.5 usually works well.

Double exponential smoothing

Suppose the series is approximately linear, but with a slowly varying trend. If it
were true that X; = by + bt + ¢, then

Sy =(1 —w)iws (bo + b1(t — s) + &)

= by + b1t — b1(1 — w) Zwss +b01(1 —w) ZwseH,

s=0 s=0
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and hence
ESt = b0+b1t - blbU/(l —W) = EXt+1 - bl/(l _C(.)) .

Thus the forecast has a bias of —b; /(1 —w). To eliminate this bias let S} = S; be the
first smoothing, and S? = S} + (1 — a)S? | be the simple exponential smoothing of
S}. Then

ES? = ES} — bw/(1 —w) =EX; — 2bjw/(1 — w),
E(2S} —S?) =by+bit,  E(S} —S?) =b(l -a)/a.

This suggests the estimates by + byt = 25} — S2 and b, = a(S} — 52)/(1 — a). The
forecasting equation is then

Xi(s) = by + by(t +5) = (25} — S?) + sa(S! — S?)/(1—a).

As with single exponential smoothing we can experiment with choices of a and find
S} and S? by fitting a regression line, X; = 3y + (1t, to the first few points of the
series and solving

St =06y— (1 —a)bi/a, S2=fy—2(1—a)bi/o.

6.5 Calculation of seasonal indices

Suppose data is quarterly and we want to fit an additive model. Let I, be the
average of X1, X5, Xy, ..., let I be the average of Xo, X¢, Xq0,..., and so on for fg
and I;. The cumulative seasonal effects over the course of year should cancel, so that
if X; =a+ I;, then X; + X1 + Xyi0 + Xy 3 = 4a. To ensure this we take our final
estimates of the seasonal indices as I} = I, — i(fl 4 L),

If the model is multiplicative and X; = al;, we again wish to see the cumulative
effects over a year cancel, so that X; + X;.1 + X; 19+ X;13 = 4a. This means that we
should take I = I, — i(fl + .-+ 1) + 1, adjusting so the mean of I}, I3, I3, 17 is 1.

When both trend and seasonality are to be extracted a two-stage procedure is
recommended:

(a) Make a first estimate of trend, say T}

Subtract this from {X;} and calculate first estimates of the seasonal indices, say
I}, from X; — T}

The first estimate of the deseasonalized series is Y,! = X; — I}

(b) Make a second estimate of the trend by smoothing Y;!, say T7.

Subtract this from {X;} and calculate second estimates of the seasonal indices,
say I?2, from X; — T7.

The second estimate of the deseasonalized series is Y,? = X; — I7.
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7 Fitting ARIMA models

7.1 The Box-Jenkins procedure

A general ARIMA(p, d, q) model is ¢(B)V(B)X = 0(B)e, where V(B) = I — B.
The Box-Jenkins procedure is concerned with fitting an ARIMA model to data.
It has three parts: identification, estimation, and verification.

7.2 Identification

The data may require pre-processing to make it stationary. To achieve stationarity
we may do any of the following.

e Look at it.
e Re-scale it (for instance, by a logarithmic or exponential transform.)
e Remove deterministic components.

e Difference it. That is, take V(B)?X until stationary. In practice d = 1,2 should
suffice.

We recognise stationarity by the observation that the autocorrelations decay to
zero exponentially fast.

Once the series is stationary, we can try to fit an ARMA(p, ¢) model. We consider
the correlogram r, = 4;/40 and the partial autocorrelations qgkk We have already
made the following observations.

e An MA(q) process has negligible ACF after the gth term.
e An AR(p) process has negligible PACF after the pth term.

As we have noted, very approximately, both the sample ACF and PACF have stan-
dard deviation of around 1/+/T, where T is the length of the series. A rule of thumb
is that ACF and PACF values are negligible when they lie between +2/+/T. An
ARMA(p, q) process has kth order sample ACF and PACF decaying geometrically
for k > max(p, q).

7.3 Estimation

AR processes

To fit a pure AR(p), ie., Xy = D7 ¢, X, + ¢ we can use the Yule-Walker

equations v, = > ", ¢ y—p. We fit ¢ by solving 44 = >V & p—r, & = 1,...,p.
These can be solved by a Levinson-Durbin recursion, (similar to that used to solve
for partial autocorrelations in Section 2.6). This recursion also gives the estimated
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residual variance 6%, and helps in choice of p through the approximate log likelihood
—2log L ~ T'log(67).

Another popular way to choose p is by minimizing Akaike’s AIC (an information
criterion), defined as AIC = —2log L + 2k, where k is the number of parameters
estimated, (in the above case p). As motivation, suppose that in a general modelling
context we attempt to fit a model with parameterised likelihood function f(X | 6),
¢ € O, and this includes the true model for some 6, € ©. Let X = (Xy,...,X,,) be a
vector of n independent samples and let é(X ) be the maximum likelihood estimator
of 6. Suppose Y is a further independent sample. Then

OBy Ex log f (Y | é(X)) — Eylog f (X | é(X)) +2k+0 (1/vn) |

where k = |©|. The left hand side is 2n times the conditional entropy of ¥ given
G(X ), i.e., the average number of bits required to specify Y given (9( ). The right
hand 81de is approximately the AIC and this is to be minimized over a set of models,

say (fl, @1), cey (fm, @m)

ARMA processes

Generally, we use the maximum likelihood estimators, or at least squares numerical
approximations to the MLEs. The essential idea is prediction error decomposition.
We can factorize the joint density of (X,..., Xr) as

T
F(Xa, o Xp) = F(X) A | X, X)
t=2

Suppose the conditional distribution of X given (X7, ..., X; 1) is normal with mean
Xt and variance P,_;, and suppose also that X is normal N (Xl, P,). Here X; and
P,_; are functions of the unknown parameters ¢y, ..., ¢,, 01,...,0, and the data.

The log likelihood is

(X; — X;)?

T
—2logL = —2log f = Z log(2m) + log P,—1 + 2
t—1

t=1
We can minimize this with respect to ¢1,...,¢p, 01,...,0, to fit ARMA(p, q).
Additionally, the second derivative matrix of —log L (at the MLE) is the observed
information matrix, whose inverse is an approximation to the variance-covariance
matrix of the estimators.
In practice, fitting ARMA(p, ¢) the log likelihood (—2log L) is modified to sum
only over the range {m + 1,..., T}, where m is small.

EXAMPLE 7.1
For AR(p), take m =pso Xy =Y 0 ¢ Xpp, t >m+1, Py =02
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Note. When using this approximation to compare models with different numbers
of parameters we should always use the same m.

Again we might choose p and ¢ by minimizing the AIC of —2log L 4+ 2k, where
k = p + q is the total number of parameters in the model.

7.4 Verification

The third stage in the Box-Jenkins algorithm is to check whether the model fits the
data. There are several tools we may use.

e Overfitting. Add extra parameters to the model and use likelihood ratio test or
t-test to check that they are not significant.

e Residuals analysis. Calculate the residuals from the model and plot them. The
autocorrelation functions, ACFs, PACFs, spectral densities, estimates, etc., and
confirm that they are consistent with white noise.

7.5 Tests for white noise

Tests for white noise include the following.

(a) The turning point test (explained in Lecture 1) compares the number of peaks
and troughs to the number that would be expected for a white noise series.

(b) The Box—Pierce test is based on the statistic

m
. 2
=T E T
k=1

where 7. is the kth sample autocorrelation coefficient of the residual series, and
p+qg<m<KLT. It is called a ‘portmanteau test’, because it is based on the
all-inclusive statistic. If the model is correct then @Q,, ~ X?n—p—q approximately.

In fact, r; has variance (T — k) /(T(T + 2)), and a somewhat more powerful test
uses the Ljung-Box statistic quoted in Section 2.7,

m
Q, =T(T+2)Y (T—k) "},
k=1
where again, Q) ~ Xim—p—q @pproximately.

(¢) Another test for white noise can be constructed from the periodogram. Recall
that I(w;) ~ (0?/m)x3/2 and that I(w1), ..., I(wy,) are mutually independent.

Define C; = °7_, I(wg) and U; = C;/C,,. Recall that x3 is the same as the expo-
nential distribution and that if Y;,...,Y,, arei.i.d. exponential random variables,
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then (Y1 +---+Y)/(Yi+---+Y,),j=1,...,m—1, have the distribution of
an ordered sample of m — 1 uniform random variables drawn from [0, 1]. Hence
under the hypothesis that {X;} is Gaussian white noise U;, j = 1,...,m — 1
have the distribution of an ordered sample of m — 1 uniform random variables
on [0, 1]. The standard test for this is the Kolomogorov-Smirnov test, which uses
as a test statistic, D, defined as the maximum difference between the theoret-
ical distribution function for U]0,1], F(u) = u, and the empirical distribution
Fu) = {#(U; <u)}/(m —1). Percentage points for D can be found in tables.

7.6 Forecasting with ARMA models

Recall that ¢(B)X = 0(B)e, so the power series coefficients of C(z) = 0(2)/¢(z) =
Z;ﬁo c-z" give an expression for X; as X; = Z;ﬁo Cr€i_r.

But also, ¢ = D(B)X, where D(z) = ¢(2)/0(z) = >~ ,d,z" — as long as the
zeros of @ lie strictly outside the unit circle and thus ¢, = Z:io d X .

The advantage of the representation above is that given (..., X; 1, X;) we can
calculate values for (..., e 1,€) and so can forecast X;.1.

In general, if we want to forecast Xy from (..., Xp_1, X7) we use

o0 o0

XT,k; - § Cr€T+k—r = § Ck+r€T—r ,

r=k r=0
which has the least mean squared error over all linear combinations of (..., er_1, e7).

In fact,
k—1

E ((XT,k - XT+k)2> =02) .
r=0
In practice, there is an alternative recursive approach. Define

o X1k, —(T'-1)<k<0,
Tk = optimal predictor of X7 given Xq,..., Xy, 1 < k .

We have the recursive relation

p q
X7 = E Or X7 =y + €71 + E Os€rik—s
r=1 s=1

For k = —(T —1),—(T — 2),...,0 this gives estimates of ¢ for t =1,...,T.

For k£ > 0, this gives a forecast X’T’k for Xp, . We take ¢, =0 fort > T.

But this needs to be started off. We need to know (X;, t < 0) and ¢, t < 0.
There are two standard approaches.

1. Conditional approach: take X; = ¢ =0, t <0.

2. Backcasting: we forecast the series in the reverse direction to determine estima-
tors of Xy, X_1,...and €y, €e_q,....

28



8 State space models

8.1 Models with unobserved states

State space models are an alternative formulation of time series with a number of
advantages for forecasting.

1. All ARMA models can be written as state space models.

2. Nonstationary models (e.g., ARMA with time varying coefficients) are also state
space models.

3. Multivariate time series can be handled more easily.

4. State space models are consistent with Bayesian methods.

In general, the model consists of

observed data: X = F.S; + v
unobserved state: S; = G¢S;_1 + wy
observation noise: v; ~ N(0, V)
state noise: wy ~ N(0, Wy)

where vy, w; are independent and Fy, G; are known matrices — often time dependent
(e.g., because of seasonality).

EXAMPLE 8.1

Xt = S+ v, Sp = ¢Si—1 +wy. Define Yy = Xy — ¢ Xy 1 = (Se +v) — ¢(Spm1 +v4-1) =
wy + vy — ¢vi_1. The autocorrelations of {y;} are zero at all lags greater than 1. So
{V;} is MA(1) and thus {X;} is ARMA(L,1).

EXAMPLE 8.2
The general ARMA(p, q) model X; = >F_ ¢, X, + > 1 0565 is a state space
model. We write X; = F}S;, where

( Xfl\

X,

€t

\ Et:q )

c Rerqul

Ft:(¢17¢27'”7¢p717917'”79(])7 Sﬁ:
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Withvt:O,%:O. St:GtSt_1+wt.
X 1 P2 - @y 1 01 Oy - 0,1 0 X; 0
[ /10... 0 e ) ) o)

X; o 0 0 O 0 0 X, 3 0
X3 o1 ¢ 0000 - 0 0 :
: S S A P Xt p1
S, = Xep1| _ 10 0 0 1 00 0 0 0 e | |0
€ O 0 0 0 0O0 O 0 O €t—2 €
€t—1 0 0 0 0010 0 0 €3 0
€t—2 0 0 0 0001 0 0 : :
: : : : : o Do : : €t—q :
\etq) \0 0 0 0000 - 1 0/ \ g1/ \0/

8.2 The Kalman filter

Given observed data Xi,...,X; we want to find the conditional distribution of S;
and a forecast of X;,1.
Recall the following multivariate normal fact: If

v= ()~ () (i ) &1
v

(Y1 | Y2) ~ N (1 + A12A5 (Yo — p12), A11 — A12Asy As) (8.2)
Conversely, if (Y] | Ys) satisfies (8.2), and Y3 ~ N (9, Ags) then the joint distribution
is as in (8.1).
Now let F; 1 = (Xi,...,X;-1) and suppose we know that (S;_q|Fi1) ~
N (S*H,PH). Then

then

St = G1Si—1 + wy,

SO

(Si | Fiz1) ~ N (Gtgt—laGtPt—thT + Wt) )

and also (X; | S¢, Fio1) ~ N(F;St, Vi),

Put Y1 = X; and Yo = S;. Let Ry = GiP,_ 1G] + W;. Taking all variables
conditional on F;_; we can use the converse of the multivariate normal fact and
identify

M2 = Gtgt—l and  Agp = R;.
Since S; is a random variable,

1+ AAy (Si— o) = FSy = Aip = FyR;, and g = Fys.

30



Also
Ay — ApAy Ay =V, = Ay =V, + FRR 'R/ F,' =V, + F,R,F, .

What this says is that

X, N FGiSi1\ (Vi+ FRF FR,
St Fis GSi—1 7 RtTFtT Ry .

Now apply the multivariate normal fact directly to get (S; | X¢, Fi1) = (St | Fr) ~
N(S;, P;), where

Sy = GiS1 + RiF, (Vt + FthFtT)_l (Xt — EGtStl)
P, =R, — RF) (Vi+ FERF) " FR

These are the Kalman filter updating equations.
Note the form of the right hand side of the expression for S;. If contains the term
G¢S;_1, which is simply what we would predict if it were known that S; 1 = S;_1, plus

a term that depends on the observed error in forecasting X;, i.e., (Xt — EGt§t1)-

This is similar to the forecast updating expression for simple exponential smoothing
in Section 6.4.

All we need to start updating the estimates are the initial values SO and Fy. Three
ways are commonly used.

1. Use a Bayesian prior distribution.

2. It F,G,V,W are independent of ¢ the process is stationary. We could use the
stationary distribution of S to start.

3. Choosing Sy =0, Py = kI (k large) reflects prior ignorance.

8.3 Prediction

Suppose we want to predict the Xry given (X1, ..., X7). We already have
(X7 | X1, .., Xp) ~ N (FraaGri Sy, Ve + FroaRria Fryy)
which solves the problem for the case k = 1. By induction we can show that

Stk | X1y, X7) ~ N <§T+k7 PT+k>
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where

Sto = St
Pro= Pr

Stk = GriST -1
.
Pri = GrPri—1Gryy, + Wryy,

and hence that (Xpyx | X1,..., X)) ~ N (FTJrkgT,k, Vo + FT—i—k;PT,k;FjT_,_k)-

8.4 Parameter estimation revisited

In practice, of course, we may not know the matrices F}, Gy, Vi, W;. For example, in
ARMA (p, ¢) they will depend on the parameters ¢1, ..., d,, 01,...,0,, o which we
may not know.

We saw that when performing prediction error decomposition that we needed to
calculate the distribution of (X; | X1, ..., X;_1). This we have now done.

EXAMPLE 8.3
Consider the state space model

observed data X =5+ v,
unobserved state S; = S;_1 + w;,

where vy, wy are independent errors, v ~ N(0,V) and w; ~ N(0, W).
Then we have F;, = 1, G, = 1, V, =V, W, =W. R = P_1+W. Soif
(St1 | Xppoo o, Xp) ~ N (St—bf)zf—l) then (S | X1,...,X;) ~ N (gtapt)7 where

Sy =81+ R(V + R) " N(X, — gt—l)
R; VR V(B +W)
V4R V4R V4P +W
Asymptotical}y, P, — P, where P is the positive root of P2+ WP —WV =0 and S,

behaves like S; = (1 —a) Y 2 a"X;_,, where a = V/(V + W + P). Note that this
is simple exponential smoothing.

b =R —

Equally, we can predict Sy, given (Xi,..., Xr) as N (S’T,k, PT,k) where

Sto =S¢,
Proy= Pr,
Stk = ST,

So (XT+k|X1,...,XT)~N(ST,V+PT+kW).
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