Lent Term 2001 Richard Weber
Time Series — Examples Sheet

This is the examples sheet for the M. Phil. course in Time Series. A copy can be
found at: http://www.statslab.cam.ac.uk/ rrwl/timeseries/

Throughout, unless otherwise stated, the sequence {e;} is white noise, variance o*.



1. Find the Yule-Walker equations for the AR(2) process
X = %thl + %Xt& + € .
Hence show that it has autocorrelation function
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2. Let X; = Acos(2t+U), where A is an arbitrary constant, €2 and U are independent
random variables, €2 has distribution function F' over [0, 7], and U is uniform over
[0,27]. Find the autocorrelation function and spectral density function of {X;}.
Hence show that, for any positive definite set of covariances {7}, there exists a
process with autocovariances {7} such that every realization is a sine wave.

[Use the following definition: {7;} are positive definite if there exists a nondecreasing
function F' such that v, = [ e*dF(w).]



3. Find the spectral density function of the AR(2) process
Xt =01 Xeo1+ 02Xy 0+ 6

What conditions on (¢, ¢2) are required for this process to be an indeterministic
second order stationary? Sketch in the (¢1, ¢2) plane the stationary region.



4. For a stationary process define the covariance generating function
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Suppose {X;} satisfies X = C'(B)e, that is, it has the Wold representation
Xy = Z Cr€t—r,
r=0

where {c¢,} are constants satisfying > " ¢? < oo and C(z) = Y 72 ¢,2". Show that

g(z) = C(z)C(z Ho?.

Explain how this can be used to derive autocovariances for the ARMA((p, ¢) model.

Hence show that for ARMA(1,1), p3 = p1p3. How might this fact be useful?



5. Consider the ARMA(2,1) process defined as
Xi=Xi 1+ e Xp ot + 0161,
Show that the coefficients of the Wold representation satisfy the difference equation
Ck = Q1Ck-1 + PaCr—2, k=2,

and hence that
cp = Az 4+ Bz "

where 21 and 2o are zeros of ¢(z) = 1 — ¢12 — ¢92%, and A and B are constants.
Explain how in principle one could find A and B.



6. Suppose
)/;f:Xt+€t7 Xt:Oéthl—{—nt,

where {¢;} and {n;} are independent white noise sequences with common variance
o2. Show that the spectral density function of {Y;} is

{2—2acosw+oz2}
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For what values of p, d, ¢ is the autocovariance function of {Y;} identical to that of
an ARIMA((p, d, q) process?



7. Suppose Xi,..., X are values of a time series. Prove that

where 43 is the usual estimator of the kth order autocovariance,

o= D0 (K= D)Xk — X)),

t=k+1

Hint: Consider 0 = 3./ (X; — X).
Hence deduce that not all ordinates of the correlogram can have the same sign.

Suppose f(-) is the spectral density and I(-) the periodogram. Suppose f is contin-
uous and f(0) # 0. Does EI(27/T) — f(0) as T'— o0?



8. Suppose I(-) is the periodogram of €y, ..., ep, where these are i.i.d. N(0,1) and
T =2m+ 1. Let wj, wy be two distinct Fourier frequencies, Show that /(w;) and
I(wy) are independent random variables. What are their distributions?

If it is suspected that {e} departs from white noise because of the presence of a
single harmonic component at some unknown frequency w a natural test statistic is
the maximum periodogram ordinate

T = max [(w;).
Jj=1,...m

Show that under the hypothesis that {¢;} is white noise

P(T>t)=1-{1—exp(—-nt/o?)}" .



9. Complete this sketch of the fast Fourier transform. From data X, ..., Xp, with

T =2 — 1, we want to compute the 2’~1 ordinates of the periodogram
1 |« i
H(wy) = — > X =, oM
t=0

This requires order 7" multiplications for each j and so order T2 multiplications in
all. However,

Z X, ezt27rj/2M Z Xteit27rj/2M + Z X, ezt27rj/2M

t=0,1,...2M—1 t=0,2,...2M 2 1,3,...,2M 1

M M
= E X2t612t27ﬁ7/2 + E X2t+1€ i(2t+1)2m5 /2
t=0,1,...2M~-1—1 t=0,1,....2M-1-1
27 /2M 1 27 /2M it2mj /2M—1
= ) Xy ePTREN T Xy e

t=0,1,...2M~-1—1 t=0,1,....2M-1-1

Note that the value of either sum on the right hand side at j = k is the complex
conjugate of its value at j = (27! — k); so these sums need only be computed for
j=1,...,272 Thus we have two sums, each of which is similar to the sum on
the left hand side, but for a problem half as large. Suppose the computational effort
required to work out each right hand side sum (for all 2/~2 values of j) is ©(M —1).
The sum on the left hand side is obtained (for all 2! values of j) by combining
the right hand sums, with further computational effort of order 2¥~!. Explain

O(M) =a2" 1+ 20(M —1).

Hence deduce that I(-) can be computed (by the FFT) in time T log, T
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10. Suppose we have the ARMA(1, 1) process
Xi=0Xi 1+ 6+ 061,

with |[¢p] < 1, [0] < 1, ¢ + 0 # 0, observed up to time 7', and we want to calculate
k-step ahead forecasts X7, k > 1.

Derive a recursive formula to calculate )A(Tvk for k=1 and k = 2.
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11. Consider the stationary scalar-valued process {X;} generated by the moving
average, X; = ¢, — 0e;_1.

Determine the linear least-square predictor of X;, in terms of X;_1, X;_o, ... .
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12. Consider the ARIMA(0, 2,2) model
(I — B)’X = (I —0.81B + 0.38B%)¢

where {¢;} is white noise with variance 1.

(a) With data up to time 7', calculate the k-step ahead optimal forecast of XT,k: for
all £ > 1. By giving a general formula relating X7, & > 3, to X7; and Xro,
determine the curve on which all these forecasts lie.

(b) Suppose now that 7' = 95. Calculate numerically the forecasts X957k, k=1,2,3
and their mean squared prediction errors when the last five observations are Xg; =
15.1, Xgo = 15.8, Xg3 = 15.9, X9y = 15.2, Xg5 = 15.9.

[You will need estimates for €9y and eg5. Start by assuming €9 = €99 = 0, then
calculate ég3 = €93 = X93 — Xo2.1, and so on, until €g4 and ey are obtained.|
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13. Consider the state space model,

Xt =S¢ + vy,
St = Si—1 + wy,

where X; and S; are both scalars, X; is observed, S; is unobserved, and {v;}, {w,} are
Gaussian white noise sequences with variances V' and W respectively. Write down
the Kalman filtering equations for .S; and F;.

Show that P, = P (independently of ¢) if and only if P> + PW = WV, and show

~

that in this case the Kalman filter for S; is equivalent to exponential smoothing.
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