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Overflow in a multiplexer

The figure below shows a 2 X 2 switch, where output links

are served at rate C' cells per second.
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To say how many virtual circuits can use this output link,
subject to a given Quality of Service constraint, requires an
estimate of the probability that the size of the queue, @,

exceeds the buffer of size B.

When Q = B there is cell loss and cell loss probability
(CLP) should be small, say 1078,

P(Q = B) should be small.



Two possible source models

A cell scale source model
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The source has on and off phases.
In the on phase it delivers one cell to the buffer every 1/h

seconds.

h cells per second is the ‘peak rate’.

A fluid socurce model
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The source has on and off phases.
In the on phase it delivers fluid to the buffer a rate of A units

per seconds.

h cells per second is the ‘peak rate’.

Large deviations

We shall estimate P(Q = B) (and CLP) using large

deviations.

® The performance of many systems is limited by events
which have a small probability of occurring, but which have

severe consequences when they occur.
® LD deals with rare events, and is asymptotic in nature.

® It can be viewed as a refinement of the law of large

numbers.

® It is useful when simulation or numerical techniques become

increasingly difficult as a parameter tends to its limit.

® |t has many applications:

queueing and communications models,
information theory,

simulation techniques,

parameter estimation,

hypothesis testing, ...



Overflow in a M /M /1/B queue

Consider a M /M /1/ B queue, with finite buffer, here being

shared by traffic sources with combined Poisson arrival rate A.
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We know
FQ = B) = || (/)
Hence

P(Q = B) ~ e B18(/Y)  for large B,
where ~ means

. 1
E}l_r)r;oglog P(Q = B) = —log(c/A).

This result is a typical large deviations result.

The ‘large N’ asymptotic: identical sources

C = Nc

N sources
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Suppose buffer and bandwidth scale with IV.
Sources share a common output buffer of size B = INb and
an output link with bandwidth C' = Ne.

Denote the log moment generating function
p(s,t) = logE {esx[o’t]] ,

where X [0, t] is the load produced by a single source in [0, t].
Sources are independent and have stationary increments.

Then [Courcoubetis and Weber, 1996]
P(QN > Nb) ~ CLP ~ e,
where

I = inf sup{s(b + ct) — p(s,t)}.
t>0 s>0



LD for i.i.d. random variables

Suppose X1, Xs,... arei.i.d. random variables. Then
P(X, + -+ Xy > aN) ~ e N@
where I(a) = inf,5o {sa — log Ees*1}.

E.g., if Xl, Xg, « .. are B(]_,p),

I(a) = inf {sa — (g + pe’)}
— alog (g) + (1 —a)log (1 :Z)

An upper bound is easy. For all s > 0,

P(X; 4 -+ 4+ Xn > aN)
<E [1{X1+...+XN>GN}eS(X1+---+XN—aN)]
<E [63(X1+---+XN—aN)}
= exp (—N {sa — log Eesxl})
Hence

P(X; 4 -+ + Xn > aN)

< exp (—N ir>1]g {sa —log Eesxl})
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Intuition for the large N aymptotic

P(QN > Nb) ~e N,

where
I = inf sup{s(b + ct) — p(s,t)}.
t>0 >0
Intuition:
N
P(QN > Nb) =supP | > X,[—t,0] > Nb+ Net
t>0 ,
1=1

The optimizing t, say t*, can be interpreted as the typical

time over which overflow occurs.

The optimizing s, say s*, reflects the multiplexing gain. If
s* is near O then there is a substantial multiplexing gain and
the ‘effective bandwidth’' of a source is close to its mean. If s*
is large then there is little multiplexing gain and the effective

bandwidth of a source is close to its peak rate.



The ‘large N’ asymptotic: heterogeneous

sources

Suppose there are n; = IN p; sources of type 7,
ZjeJ pj = 1.

All sources are independent and have stationary increments.

Let X7[0, t] be the total load produced by a source of type
J in an interval [0, t].

Then

o1
A}gnooﬁlog P(QN > Nb) = —NI(c,b)

where

— i _ . s X7 [0,t]
I(c,b) = glg 531;%) s(b + tc) ; p;log Ee
j

Some questions

P(QN > Nb) ~ e,
where

I = inf sup{s(b + ct) — p(s,t)}.
t>0 5>0

1. Does t* increase continuously with b7
2. Does s* decrease continuously with b7

3. Does a fluid model give a good approximation to I, or

must we model cell scale effects?
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A periodic source — cell scale model

Consider a periodic source, that is on for 0.20 of the time,
i.e., m = 4/20. An on burst delivers 4 cells, and is followed

by an off phase lasting four times as long.

A periodic source

0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Suppose IN such sources are input to a multiplexer that can
serve 0.22 Nt cells in time t. The beginnings of their on
phases are independent and uniformly distributed.

How large a buffer guarantees no overflow?

What is the cell loss probability when the buffer is smaller?
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The largest buffer that can be filled
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The largest buffer that can be filled is filled when all sources

are synchronized to produce the maximal difference between

inflow and outflow. This occurs when

B = (4—3c)N = (4 — 3(.22))N = 3.34N
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The fluid source model

Sources are sometimes modelled as fluids. E.g., periodic fluid

sources:
B 1 1
1 1 I
1 1 I
I e 1 I~
S — I ]
Ton  Tog

So the proportion of time that a source is on is
Ton
Ton + Toff

The mean rate of a source is m = ph.

p:

Of course we require

m=ph<c<h and p=m/e<1.
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A periodic source — fluid model

A periodic source

01 2 3 45 6 7 & 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

The fluid model of the source treats workload as a
continuous fluid.

During a burst, fluid arrives at a rate of 1.

Fluid model

012345 6 7 8 9 1011 1213141516 17 18 19 20 21 22 23 24 25 26
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Maximal cumulative inflow

Here we show the maximal cumulative inflow for the cell
scale source, the fluid source, the mean inflow mt = 0.20t

and multiplexer outflow ct = 0.22t.
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The largest buffer that can be filled by IN fluid sources has

size
B =4N — 4cN = 3.12N
Note that this is smaller than 3.34N (the size of buffer that

could be filled by IN sources modelled at the cell scale.
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A fluid source model estimate of CLP in the

bufferless case

If there is no buffer, then overflow occurs as soon as the

number of sources in the on phase exceeds ¢/h. Hence

P(QN > 0) ~ o—NIz(c/h)

where
It(a) = sup {sa —log (q + pe’)}
1—a
:alog<)+(1—a)log( )
D 1—p
Note that

IP’(QN>0)—>OasN—>oo.
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A cell scale estimate of the CLP in bufferless Cell scale effects

case
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The CLP is the probability that more than one cell arrives in | | |
an interval of length 1/C. | |
Q4

The number of cells produced by one source in an interval of B \Wﬂ \WU\ | m N m T ”ﬂ” n

length 1/C'is distributed B(1,m/C).
In case A a buffer of B = 3 cells will be needed to avoid cell
The number of cells produced by IN sources in an interval of

loss. This is despite the fact that C' > NN h. The overflow
length 1/C'is distributed B(IN,m/N¢). Thus p = m/c,

occurs because of an unfortuitous phasing of the sources.
In case B the phasing is fortuitous. Less buffering is required.

P(more than one cell produced in an interval of length 1/C)
=P(QV>0)—>1—(1+p)e”as N — oo.
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How cell scale and fluid models differ for

small buffers

Recall m = 0.20, ¢ = 0.22.

A periodic source

01 2 3 45 6 7 8 9 1011 1213141516 17 18 19 20 21 22 23 24 25 26

Fluid model

01 2 3 45 6 7 8 9 1011 1213 141516 17 18 19 20 21 22 23 24 25 26
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supg{s(b+ ct) — ¢(s,t)} against ¢ Optimizing t* does not increase with b

Higher curves correspond to higher values of b,
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b = 0.002, 0.005,0.010565, 0.15,0.2,0.3,0.4.
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Optimizing t* is not continuous in b Small buffers

Recall

Al ] I = inf sup{s(b + ct) — p(s,t)}.
t>0 550

Here t is the typical time over which the buffer content

t*x

increases from 0 to B just prior to cell loss.

If ¢ is large compared to 1/h, but small compared to Ty,

and T, then we might expect a good approximation to be

obtained from the bufferless fluid model:

0 0.61 0.62 0.63 0.64 0.05
I~ I;(c/h).

But it may be a poor approximation. Example: periodic
sources, N = 1990, C' = 622 Mbps, h = 1 Mbps,
m/h = .25, p = .8, B = 30. Then

e_NIf(C/h) ~ 10—8.6,

but

G_NI ~ 10—5.96.
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Constant bit rate sources

Suppose we have IN sources, each producing a single cell

every 1/h seconds. Let p = h/c < 1.

Theorem.

I = I,(p,b)

where

I,(p, b)

= inf sup{s(b+ ct) — log[(1 — ht) + hte’]}
0<t<1/c s>0

= 01<1;1£1 s81>1p {s(b+t) — log[(1 — pt) + pte’]}

—int, {(b+0)1og [%]

0<t1
+(1—b—1t)1 [l_b_t”
8 1—pt

The optimizing t is small and the overflow is completely due

to unfortuitous relative phasing of the sources.
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Two regimes

Suppose b is small, so that during the time that the buffer
fills most sources remain fully on or fully off. Let us make the
approximation that each source is fully on or fully off with

probabilities p and q respectively. Then I ~ I’ where

I' = inf sup |s(b + ct) — log (q + pEeSX[O’t])} (1)
t>0 >0

and X [0, t] denotes the number of cells produced by a source

that remains on continuously.
Theorem. There exists b* < ¢/h < 1, such that
(a) for b > b*,
I' = Ij(c/h)
and (1) is extremised by t — oo,
(b) for b < b*,
I'= inf [al,(ah/c,b/a) + Iy(a)

and (1) is extremised by a t less than 1/h.
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Interpretation, b > b*

I' = I;(c/h)

The typical t over which the buffer fills is very large.
In this regime there is no cell scale effect.

This happens trivially for b > 1.

In fact, the cell scale effect vanishes for rather small b < 1.

E.g., c/h = 0.3, p = 0.25, p = 0.8333,
b* = 0.01667.
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Interpretation, b < b*

I = 0<Lr%f;/h [al,(ah/c,b/a) + It(a)]

The typical t over which the buffer fills is less than 1/h.
In this regime there is a cell scale effect and an effect due to

the number of sources deviating above the mean number pIN.
The probability that a N sources are on is about e~ N1#(),

These can be viewed as aIN constant bit rate sources, with
buffer per source of b/a and bandwidth per source of ¢/a.

Hence the effective pis p = h/(c/a) and
P (QN > Nb) ~ e—aNIp(ah/c,b/a) % e—NIf(a)’

where a is chosen to maximize this probability.
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Small buffers, changing scale effects Small buffers, changing scale effects

As b increases the contribution due to an unfortuitous As b increases the contribution due to an unfortuitous
number of sources being on increases. (p = 0.25, number of sources being on increases. (p = 0.25,
c/h = 0.5.) Note a* > p. c/h = 0.5.) Note a* > p.
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Boundary between regimes Boundary between regimes
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Here p = 0.25. The solid line shows b*.
Here p = 0.25. The solid line shows b*.

The dotted lines show the b necessary to achieve a CLP of

10~ for various values of ¢/h.
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A CLP heuristic for small buffers Comparison of ‘heuristic’

and ‘exact I’
For CLP of practical interest b* turns out to be very small.

E.g., h =1 Mbps, m/h = 0.25, CLP=10"8,
b* = 0.018 cells for C = 622 Mbps, and
b* = 0.050 cells for C = 155 Mbps.

Comparison of the heuristic for small buffers with numerical
computation using direct application of the large IN
asymptotic. (C' = 155 Mbps, h = 1 Mbps,

For b small and p near 1, p = m/h = 0.25)

[Fiche, Lorcher, Veyland and Oger, 1994] give

12

Iy(p,b) = 2b” + b(1 — p — log p) .
10 |+
When b* is small, a* = p = m/h. So I1(a*) = 0, and
we have 5 T
S
I = pI,(ph/c,b/p) g °f e ]
|
~ 2b°/p + b(1 — ph/c — log(ph/c)) il
~ b(1 — p — log p)
2 -
The ‘heuristic’ % 5 10 15 20
Buffer (cells)
P (QN > Nb) — e—Nb(l—p—logp) c/h = 0.7 (p = 0.36)

does a good job of estimating CLP for very small buffers.
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Comparison of ‘heuristic’

and ‘exact I’

Comparison of the heuristic for small buffers with numerical
computation using direct application of the large IN
asymptotic. (C' = 155 Mbps, h = 1 Mbps,

p =m/h = 0.25)

12

10

Large N ——
heuristic -+--

— log,, CLP

O Il Il Il
0 5 10 15 20
Buffer (cells)

c¢/h =0.5 (p =0.5)
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Comparison of ‘heuristic’

and ‘exact I’

Comparison of the heuristic for small buffers with numerical
computation using direct application of the large IN
asymptotic. (C' = 155 Mbps, h = 1 Mbps,

p =m/h = 0.25)

12 T T T T T T T T

I' o
/,/* heuristic -+--
10

—log,,(CLP)

14 16 18 20
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Comparison of ‘heuristic’ Comparison of ‘fluid model /bufferless’

1 y [ y
and ‘exact 1 and ‘exact 1
Comparison of the heuristic for small buffers with numerical P=04N=248 | p=06N=372 | p=08N=19
Butffer (cells) | b —log,o(CLP) | b —log,o(CLP) | b —log,o(CLP)
computation using direct application of the large IN 5 0020 | 3.57 0.013 | 2.10 0010 | 097
10 0.040 | 7.25 0.027 | 4.29 0.020 | 2.02
asymptotic. (C' = 155 Mbps, h = 1 Mbps, 15 0.060 | 11.05 0.010 | 657
20 0.081 | 14.96 0.054 | 8.94
p = m/h — 0_25) | on/off fluid | | 33.69 | | 10.70 | | 214
Table 1: C = 155 Mbps
12 T T T T T T T T T
T
B N p— 0.4, N = 995 p—0.6,N = 1492 p—0.8,N = 1990
10 - 7 Buffer (cells) | b —log,o(CLP) | b —log,o(CLP) | b —logyo(CLP)
5 0.005 3.53 0.0034 | 2.07 0.0025 | 0.95
10 0.0101 | 7.09 0.0067 | 4.16 0.0050 | 1.91
™ 81 ] 15 0.0151 | 10.67 0.0101 | 6.28 0.0075 | 2.90
~ 20 0.0201 | 14.29 0.0134 | 8.41 0.0101 | 3.90
9/ 6 | B 25 0.0251 | 17.93 0.0168 | 10.57 0.0126 | 4.92
b% 30 0.0201 | 12.75 0.0151 | 5.96
= 35 0.0176 | 7.02
! 4+ . 40 0.0201 | 8.10
on/off fluid 135.2 43.0 8.6
2r T Table 2: C = 622 Mbps
0 1 1 1 1 1 1 1 1 1 . . . . .
o 2 4 6 8 10 12 14 16 18 20 The bufferless, fluid model estimate is good if the buffer is
B
c/h = 0.5 (p = 0.5) small, but not too small, — say about 100 cells —. This is

typical of switches in practice.
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