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Aisle miles (2006)

NewsScientist .
Two people lose each other while

WhY Don't PenglliﬂS' wandering through the aisles of a
Feet FFEEZE? large supermarket.

AND 114 OTHER QUESTIONS

One person wishes to find the other.

The follow-up to the No.1 bestseller
Does Anything Eat Wasps?

Should that person stop moving and
remain in a single visible site while
the other person continues to move
through the aisles? Or would an
encounter or sighting occur sooner if
both were moving through the aisles?




Quo vadis? (Mosteller, 1965)

FIFTY
CHALLENGING

Frederick Mosteller

Two strangers who have a private
recognition signal agree to meet on a
certain Thursday at 12 noon in New
York City, a town familiar to neither
to discuss an important business
deal, but later they discover that
they have not chosen a meeting
place, and neither can reach the
other because both have embarked
on trips. If they try nevertheless to
meet, where should they go?



Telephone coordination game (Alpern, 1976)

In each of two rooms there is a player and n telephones.

Phones are connected pairwise in some unknown fashion.
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At attempts 1,2, ..., the players pick up phones and say “hello”.

Their common aim is to minimize the expected number of
attempts until they hear one another.



Symmetric rendezvous search on n locations

Assumptions

1. Two players are randomly placed at two distinct of n
locations.

2. There is no commonly held labelling of the locations.

3. At each of steps, 1,2,..., each player visits one of the
locations.

4. The players adopt identical (randomizing) strategies.

What should their common strategy be if they wish to meet in the
least expected number of steps?



Some possible strategies

Move-at-random If at each discrete step 1,2, ... each player were
to locate himself at a randomly chosen location, then
the expected time to meet would be n. E.g.,

_1
" BT — ET=n.

ET =1+
n



Some possible strategies

Move-at-random If at each discrete step 1,2, ... each player were
to locate himself at a randomly chosen location, then
the expected time to meet would be n. E.g.,

n—1

ET =1+ ET — FET =n.

n

Wait-for-mommy Suppose the players could break symmetry (or
had some prior agreement). Now it is best for one
player to remain stationary while the other tours all
other locations in random order. They will meet (on
average) half way through the tour. So

ET =45 (1424 +(n—1) =in.



Wait-for-mommy

E.J. Anderson and R.R. Weber. The rendezvous problem on discrete locations. J.

Appl. Prob. 27, 839-851, 1990.

Theorem 1 In the asymmetric rendezvous search game on n
locations the optimal strategy is wait-for-mommy.



The Anderson-Weber strategy

Motivated by the optimality of wait-for-mommy in the asymmetric
case, Anderson and Weber (1990) proposed the following strategy:

AW: If rendezvous has not occurred within the first (n — 1)j steps
then in the next n — 1 steps each player should either stay at his
initial location or tour the other n — 1 locations in random order,
with probabilities p and 1 — p, respectively, where p is to be chosen
optimally.



Facts about AW

n=2:

AW with p = 1/2 is optimal and equivalent to move-at-random.



Facts about AW

n=2:
AW with p = 1/2 is optimal and equivalent to move-at-random.
As n — oo:

AW (with p — 0.24749) achieves a meeting time of ~ 0.8289n
(which is better than move-at-random).



Anderson-Weber strategy on 3 locations

On 3 locations, AW specifies that in each block of two consecutive
steps, each player should, independently of the other, either stay at
his initial location or tour the other two locations in random order,
doing these with respective probabilities p = % and 1 —p= %



Anderson-Weber strategy on 3 locations

On 3 locations, AW specifies that in each block of two consecutive
steps, each player should, independently of the other, either stay at
his initial location or tour the other two locations in random order,
2

doing these with respective probabilities p = % and 1 —p = 3.

R.R. Weber, Optimal symmetric rendezvous search on three locations, Math Oper

Res., 37(1): 111-122, 2012.

Theorem 3 On 3 locations, AW minimizes ET.

Corollary. The minimal expected meeting time is w = %

AW gives ET = % whereas move-at-random gives E'T' = 3.



Formulation of the problem

Suppose the three locations are arranged around a circle.

a

I

Each player calls his home location ‘a’, chooses a ‘clockwise’
direction and labels locations clockwise of home as ‘b’ and ‘c¢'.

A sequence of a player's moves can now be described.
E.g., a player’'s first 6 moves might be ‘ababbc’.



Make the problem easier by providing the players with a common
notion of clockwise. (We'll see this does not actually help.)

Player II starts one position clockwise of Player I.

B =

_ o =
O = =
_ = O
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Matrix By has ‘1’ if after the first step they do not meet, and ‘0’ if
they do.

Rows of Bj correspond to I playing a, b or c.

Columns of Bj correspond to II playing a, b or c.



The minimum of P(T > 2)

The indicator matrix for not meeting within 2 steps is

By By 0
By :=B1® B] = 0 By Bi]| =
By 0 B
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O HFHFORFRFEFOOO
== O, FEFOOOO

Rows 1-9 (and columns 1-9) correspond respectively to Player I
(or IT) playing patterns of moves over the first two steps of
aa, ab, ac, ba, bb, be, ca, cb, cc.

ET =Y, P(T > k).



AW minimizes P(T > 2)

Let By = 1(B2 + B, ) (to account for Il starting either one or two
locations clockwise of 1).

1 1 1 1 1 1
15 5 3 3 0 5 0 3
1 1 1 1 1 1
z 1 3 0 3 5 35 3 0
1 1 1 1 1 1
3 3 1 3z 0 5 0 3 3
1 1 1 1 1 1
T5 T2 o 3 1 3 5 3 3 0
— — 1 1 1 1 1 1
P(T>2)—p Bop=p [+ & o 5 1 5 o L Lp
1 1 1 1 1 1
o 3 3z 3 3 1 3 0 3
1 1 1 1 1 1
z 2 0 5 0 3 1 3 3
1 1 1 1 1 1
o 3 3z 37 3 0 3 1 3
1 1 1 1 1 1
z 0 3 0 53 5 3 3z 1

is to be minimized over probability vectors p.

Minimizer is p' = %(1,0,0,0,0, 1,0,1,0), where ‘aa’, ‘bc’ and ‘cb’
are to be chosen equally likely, (which is AW).

Another minimizer is p" = (0,1,0,1,0,0,0,0, 1), where ‘ab’, ‘ba’
and ‘cc’ are to be chosen equally likely.



A quadratic programming problem

To prove that AW minimizes p' Bap we must solve a difficult
quadratic programming problem.

The difficulty arises because By is not positive semidefinite.
It's eigenvalues are {4,1,1,1,1,1,1, — , %}

This means that there can be local minima to p ' Bap.
(1,1,1,1,1,1,1,1,1), is a local minimum; but

This is not a global minimum.
In general, if a matrix C' is not positive semidefinite, the following

problem is NP-hard:

minimize p'Cp : p>0, 1Tp=1.



Details of proof in slides at the end of this talk
We actually prove that, for all k£, AW minimizes

k
Emin{T,k+1}] = ZP (T > j)=p" Myp.
7=0
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Conclusion

AW is optimal on 2 and 3 locations.
What about n > 3 locations?

AW is not optimal on 4 locations. Optimal AW has

p=1 (3\/@ - 77) ~ 0.321983,

BT = 45 (15 + V681) ~ 3.42466.

But there is a better strategy with ET less by 0.00014668.

The optimal strategy for 4 locations is unknown.



Conjectures

Conjecture: The minimum expected time to meet on n locations is
increasing in n.
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Conjecture: The minimum expected time to meet on n locations is
increasing in n.

Conjecture: AW is optimal on 3 locations when there is
over-looking, i.e.

By = , Bp:=DB1®B_.

—Q
QS M =
— = 0



Conjectures

Conjecture: The minimum expected time to meet on n locations is
increasing in n.

Conjecture: AW is optimal on 3 locations when there is
over-looking, i.e.

1 «
By = 1 1), Byp:=B1®By_1.
a 1

—Q

Conjecture: AW is asymptotically optimal, in the sense that one
can do no better than ET ~ 0.8289n.



Symmetric rendezvous search on the line

Two players are placed 2 units apart on a line, randomly facing left
or right. At each step each player must either move one unit
forward or backwards. Each player knows that the other player is
equally likely to be in front or behind him, and equally likely to be
facing either way. How can they meet in the least expected time?

.
. .
B —
0
. P



4.1820 < w < 4.2574 (Improve these bounds?)
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We have seen that on 3 locations it is no help for players to be
given a common notion of clockwise. Similarly, here:



4.1820 < w < 4.2574 (Improve these bounds?)
Conjecture: w = 4.25 has been made by Donglei Du.
Conjecture: The optimal strategy is not Markovian.

We have seen that on 3 locations it is no help for players to be
given a common notion of clockwise. Similarly, here:

Conjecture: it does not to help if players are told that they are
initially faced the same way.



Symmetric rendezvous search in other spaces

Alpern (1976) has also proposed the following problem.

Two astronauts land at
random spots on a
planet (which is
assumed to be a uniform
sphere, without any
known distinguishing
marks or directions)
How should they move
so as to be within 1
kilometre of one another
in the least expected
time?




Appendix

Proof that AW is optimal on 3 locations



A method for finding lower bounds

Suppose we are trying to minimize p' Cp, but C'is not positive
semidefinite.

We can obtain a lower bound on the solution as follows.

min{p'Cp : p>0, 1Tp=1}
= min{trace(Cpp') : p>0, 1'p=1}
> min{trace(CX) : X =0, X >0, trace(JX) =1},

where J = 117 is a matrix of all 1s.

This is by using the fact that if p satisfies the |.h.s. constraints,
then X = pp' satisfies the r.h.s. constraints.



Semidefinite programming problems

‘linear programming for the 21st century’.

Given symmetric matrices C, Ay, ..., A,,, consider the problem

minimize {trace(CX)
: X =0, X >0, trace(A4;X) =b;, i=1,...,m}.

This is a Semidefinite Programming Problem (SDP).

The minimization is over the components of X.
This can mean lots of decision variables.
If X is j x j and symmetric, then there are j(j — 1)/2 variables.

SDPs can be solved to any degree of numerical accuracy using
interior point algorithms (e.g., using Matlab and sedumi).



A lower bound on p' Byp

As a relaxation of the quadratic program:
minimize {pTBQp :p>0,1Tp= 1},
we consider the SDP:
minimize {trace(B2X) : X =0, X >0, trace(JoX) = 1},

where Js is the 9 x 9 matrix of 1s. There are 36 decision variables.
We find that the minimum value is 1/3.
But p' Byp =1/3 for p" = £(1,0,0,0,0,1,0,1,0).

So we may conclude that 1/3 is the minimal value of p' Bap.



Lower bounds on E[min{T, k + 1}]

Let wy be the minimal possible value of the ‘expected k—truncated
rendezvous time’,

k
Emin{T, k + 1}] :ZPT>3 p' Myp,
7=0

where
My=Jy+B1®Jy_ 1+ + Bg.

To find a lower bound on w; we consider the SDP:

minimize {trace(M; X) : X =0, X >0, trace(XJy) = 1}.



Lower bounds on wy,

Solving SDPs, we get

lower bounds when players have a common clockwise:

E 1 2 3 4
5 20 21
wy 3 2§ 0%

k 1 2 3 4
5 20 21 651
wy 3 2§ 5 97



Observations

1. These lower bounds prove that AW minimizes
E[min{T, k + 1}] as far as k = 4.

2. But it is computationally infeasible to go much further. The
number of decision variables in the SDP is 3240 when k = 4.
For k = 5 it would be 29403.



A conjecture concerning AW

ET =Y P(T > j).

AW does not minimize every term in this sum. E.g., AW gives

P(T>4) = é, but there is a strategy with P(T > 4) = %.
wy, is the minimal value of E[min{T,k + 1}] = Z?:o P(T > j).

It is found by minimizing p" M;.p, where
My=Jy+B1®Jy_ 1+ + Bg.

Empirically, the lower bounds for wy, are always achieved by AW
(and are the same whether or not the players have a common
notion of clockwise.) This leads us to conjecture the following.



The optimality of AW for 3 locations

Theorem 4 The AW strategy is optimal for the symmetric
rendezvous search game on 3 locations, minimizing
E[min{T,k + 1}] to wy, for all k =1,2,..., where

% — %3_ 2, when k is odd,
wy =

g — %3—2 , when k is even.

Consequently, the minimal achievable value of ET is w = 3

3-
{wk}go = {17 %727 %7 %7 %7 .- }



Proof that AW is optimal on 3 locations

We begin by describing how we might prove that a given strategy
minimizes E[min{7,3}| = P(T' > 0)+ P(T' > 1) + P(T > 2),
or equivalently, that a given p minimizes p' Map.
1. Suppose we are trying to minimize p' Map, but M, is not
positive semidefinite.
2. Suppose we can find a matrix Hs, which is positive
semidefinite and such that My > Hs.
3. Suppose we can minimize p' Hop. This provides a lower
bound on the minimum of p' Mop.

4. If this lower bound can be achieved, i.e., pT(Mg — H)p =0,
then p minimizes p' Mop.
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Proof that AW is optimal on 3 locations

We begin by describing how we might prove that a given strategy
minimizes E[min{7,3}| = P(T' > 0)+ P(T' > 1) + P(T > 2),
or equivalently, that a given p minimizes p' Map.
1. Suppose we are trying to minimize p' Map, but M, is not
positive semidefinite.

2. Suppose we can find a matrix Hs, which is positive
semidefinite and such that My > Hs.

3. Suppose we can minimize p' Hop. This provides a lower
bound on the minimum of p' Mop.

4. If this lower bound can be achieved, i.e., p' (My — Ha)p = 0,
then p minimizes p' Mop.



The minimum of E[min{T, 3}]

We can take p" = £(1,0,0,0,0,1,0,1,0) and




5 5

Eigenvalues of My are {19, 559

positive semidefinite.

1,1,1,1, —%,—%}, so it is not

Eigenvalues of Hy are {18,3,3, %, 3,0,0,0,0} so Hy = 0. Here
3 5 5 2 % % 2 3 3\ /1 2
3 8 5 3 2 3 3 2 §|]o 2
3 5 8 3 3 2 3§ 5 20]o 2
_ 2 3 3 3 3 3 2 3 3|0 2
Hop=|% 2 § § s 5 § 2 §|lo|=]2
25 2 3 3 3 3 § 2||3 2
2§ % 2 3 5 3 § 3[]|o 2
502 5 3 2 3§ 3 3 3|3 2
308 2 3 %3 2 3 3§ 3/\o 2

Thus p satisfies a Kuhn-Tucker condition for there to be a local
minimum of p" Hop = 2.

Since Hy = 0, a local minimum is also a global minimum.

So we = 2. This is achieved by AW.



Minimizing E[min{T k + 1}]

Similarly, consider the problem of minimizing E[min{T, k + 1}].

This is equivalent to minimizing p' Myp, where
Mk:Jk+Bl®Jk_1+---+Bk.

As we did with Hy for My, we look for Hy, such that H, < Mj
and Hy > 0. This is a semidefinite programming problem

maximize{trace(JyHy) : Hy < My, Hy = 0}.



How can we find H}.?

maximize{trace(JoHs) : Hy < My, Hy = 0}.



How can we find H}.?

maximize{trace(JoHs) : Hy < My, Hy = 0}.

3.0000 2.7951 1.8324 2.8005 2.8005 2.0000 0.8857 1.0000 0.8857
1.8324 3.0000 2.7951 2.0000 2.8005 2.8005 0.8857 0.8857 1.0000
2.7951 1.8324 3.0000 2.8005 2.0000 2.8005 1.0000 0.8857 0.8857
0.8857 1.0000 0.8857 3.0000 2.7951 1.8324 2.8005 2.8005 2.0000
H2 — | 0.8857 0.8857 1.0000 1.8324 3.0000 2.7951 2.0000 2.8005 2.8005
1.0000 0.8857 0.8857 2.7951 1.8324 3.0000 2.8005 2.0000 2.8005
2.8005 2.8005 2.0000 0.8857 1.0000 0.8857 3.0000 2.7951 1.8324
2.0000 2.8005 2.8005 0.8857 0.8857 1.0000 1.8324 3.0000 2.7951
2.8005 2.0000 2.8005 1.0000 0.8857 0.8857 2.7951 1.8324  3.0000

and min,{p" Hap} = 1.9999889.



maximize{trace(JoHz) : Ha < Moy,
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How can we find H}.?

1.8324
2.7951
3.0000
0.8857
1.0000
0.8857
2.0000
2.8005
2.8005
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3.0000 2.7951
1.8324 3.0000
2.7951 1.8324
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2.7951
3.0000

But min,{p" Hap} = 2 using
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How to construct H;
Let us search for Hj, of a special form. Fori =0,...,3" —1 we
write ipase3 = 41 - - - i (keeping k digits, including leading 0s); so
ST {O, 1, 2}. Define
Pi=P,. . =P'®.-..@ Pk,
where

P =

= o O
O = O

1
0
0

Observe that My, = >, my(i)P;, where my, is the first row of Mj,.
This motivates seeking Hj of the form

3k—1

Hy= Y z1())Pi.

1=0



Concluding steps of the proof

We want
2. H, = 0.
Since Py, ..., Pyi_; commute they have common eigenvectors.

Let w = —% + z%\/g a cube root of 1. Let V}, = Uy, + iW,.

1 1 1
Vi=Vi®@Vi_1, whereVi=[1 w w?
1 w? w

Columns of V, are eigenvectors of the P; and also of M.
Columns of Uy, are eigenvectors of the P; and also of M.

Our SDP becomes equivalent to a LP, with constraints
1. mp > x, and 2. Uz, > 0.



We show that we may take Hj, = ). x4 (i) F;, where

= (27271)T T2 = (3a372737372717170>T
and choose ay, so that for k > 3,

zp =1+ (1,0,0)" ® 24—
+ (O> ]-a O)T & (aku ag, 27 2,(Ik, 27 17 17 1)T ® 1k—3 .
Here ay, is chosen maximally such that Uiz > 0 and my > k.

All rows of Hj, have the same sum, and so p' Hyp is minimized by
p = (1/3%)1), and the minimum value is p" Hyp = 1, 2, /3".

So the theorem is true provided 17z, = 3Fwy,.



1Tz, = 3%wy, iff we can take
1 .
3—W, when & is Odd,
ap = )
3 — W s when k is even.

Note that ay increases monotonically in k, from 2 towards 3. As
k — oo we find a;, — 3 and 1] z;,/3F — 5.
Finally, we prove that with these a; we have always have

1. my > xg, (implying My, > Hy).

2. Upzr > 0, (implying Hy = 0).
Both are proved by induction. The first is easy and the second is
hard. To prove the second we use the recurrence relation for xj to
find recurrences relations for components of the vectors Uy, and
then show that all components are nonnegative. |



Proof that AW is not optimal on 4 locations



Anderson-Weber strategy on 4 locations

On 4 locations the expected rendezvous time under AW satisfies

ET =p*(3+ ET) +2p(1 —p)2+ (1 —p)* (3L + 1(3+ ET))
43— 14p + 25p?
9(1+42p—3p?)°

The minimum of ET is achieved by taking
— 1 (3v/681 - 77) ~ 0.321983,
which lead to

BT = 15 (15 + V681) ~ 3.42466.



Suppose location 1 (2) is the home location of player | (I1).
Each player independently labels his non-home locations as a, b, c.
A tour of non-home locations is one of abe, acb, bac, bca, cab, cba.
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2 X 3 X X 2
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X 3 X X 11
2 X X X 1 1
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A number shows the step at which players meet.
X indicates that they do not meet.



Suppose location 1 (2) is the home location of player | (I1).

Each player independently labels his non-home locations as a, b, c.
A tour of non-home locations is one of abe, acb, bac, bca, cab, cba.
If I has (a,b,c) = (2,3,4) and Il has (a,b,c) = (1,3,4) we find

2 X 3 X X 2
X 2 X 2 3 X
s_| 3 x 11 xx
X 2 1 1 X X
X 3 X X 11
2 X X X 1 1

Rows and columns to correspond to abc, ach, bac, beca, cab, cba.
A number shows the step at which players meet.

X indicates that they do not meet.

There are 36 such matrices, over which we must average, for each
possible pair of assignments by players | and I, of (2,3,4) and
(1,3,4), respectively, to (a,b,c).
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A new search game on 6 locations

When a player makes a tour in AW he chooses it at random.
Might something else be better?

Consider a new game, in which at each new step (of 3 old steps)
each player makes a tour of his non-home locations.

Let AAB denote three successive tours: the first tour is chosen at
random, the second is chosen to be the same as the first, and the
third is chosen randomly from amongst the 5 not yet tried.

If successive tours are chosen at random,
ET =1+ $ET

so BT = 2.



The optimal 2—Markov policy

Over two steps possible strategies are AA and AB. We find a

non-meet matrix of
Py = (
So

e (1) ) o),

and ( ) > 0. This is minimized by pT = (1/6,5/6), so in fact it
is optimal to choose tours at random.
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The optimal 3—Markov policy

Now possible strategies over 3 steps are AAA, AAB, ABA,
ABB, ABC. The not-meeting matrix is

i1 1 1 1

2 5 5 5 20

1013 2 2 11

5 50 25 25 100

Poe| 1 2 13 2 11
3= 5 25 50 25 100
102 2 13 11

5 25 25 50 100

1 11 11 1 7

20 100 100 100 50

We find P3 > 0. Again, it turns out that choosing tours at random
is optimal, p" = (1,5, 5,5, 20)/62.



A 4—Markov policy better than AW

Over 4 steps there are 15 possible strategies: AAAA, AAAB,
AABA, AABB, AABC, ABAA, ABAB, ABAC, ABBA,
ABBB, ABBC, ABCA, ABCB, ABCC, ABCD.

P =

|~

11 1 1 i1 1 1 1 1 1 1 1 g
2 5 5 5 20 5 5 20 5 5 20 20 20 20

1 913 2 2 11 2 2 11 2 2 11 1 1 1 3
5 50 25 25 100 25 25 100 25 25 100 50 50 50 100
1 2 13 2 11 2 2 1 2 2 1 11 11 1 _3_
5 25 50 25 100 25 25 50 25 25 50 100 100 50 100
192 2 13 11 2 2 1 2 2 1 1 1 11 23
5 25 25 50 100 25 75 30 75 25 30 30 30 100 450
1 11 o1 o117 1 1 7 1 1 7 7 7 1 14
20 100 100 100 50 50 30 150 30 50 150 150 150 20 225
12 2 2 1 13 2 11 2 2 1 11 1 11 _3_
5 25 25 25 50 50 25 100 25 25 50 100 50 100 100
192 2 2 1 2 13 11 2 2 1 1 11 1 23
5 25 25 75 30 25 50 100 75 25 30 30 100 30 450
1 o011 01 01 7 11 o1 o7 1 1 7 7 1 7 14
20 100 50 30 150 100 100 50 30 50 150 150 20 150 225
12 2 2 1 2 2 1 13 2 11 11 1 1 23
5 25 25 75 30 25 75 30 50 25 100 100 30 30 450
12 2 2 1 2 2 1 2 13 11 1 11 11 _3_
5 25 25 25 50 25 25 50 25 50 100 50 100 100 100
1 011 1 01 7 1 1 7 11 11 7 1 7 7 14
20 100 50 30 150 50 30 150 100 100 50 20 150 150 225
1 1 11 1 7 11 1 7 11 1 1 7 7 7 14
20 50 100 30 150 100 30 150 100 50 20 50 150 150 225
1 1 11 1 7 1 11 1 1 11 7 7 7 7 14
20 50 100 30 150 50 100 20 30 100 150 150 50 150 225
1 01 1 o111 11 1 7 1 11 7 7 7 7 14
20 50 50 100 20 100 30 150 30 100 150 150 150 50 225
0 3 3 23 14 3 23 14 23 3 14 14 14 14 T
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P4 has a negative eigenvalue. Choosing tours at random is
1
p! = @(1,5,5,5,20, 5,5,20,5,5, 20,20, 20, 20, 60) .

and this gives ET = 2. However, using

T

1
p 0,1,1,0,0,1,0,0,0,1,0,0,0,0,8)

:ﬁ(

we get BT =2 — %.
Players do AAAB, AABA, ABAA, ABBB each with probability

1/12, and ABCD with probability 2/3.



P4 has a negative eigenvalue. Choosing tours at random is
1
p! = @(1,5,5,5,20, 5,5,20,5,5, 20,20, 20, 20, 60) .

and this gives ET = 2. However, using

T

1
p 0,1,1,0,0,1,0,0,0,1,0,0,0,0,8)

:ﬁ(

we get BT =2 — ;23

Players do AAAB, AABA, ABAA, ABBB each with probability
1/12, and ABCD with probability 2/3.

This is like AW. With probability p = 1/3 a player does his home
tour A and one other tour B. With probability p = 2/3 he tours 3
other non-home tours B,C, D.



A strategy better than AW for 4 locations

Consider a 12-Markov strategy consisting of four 3-steps. In each
3-step a player remains home with probability p, or tours his
non-home locations with probability 1 — p. It is AW, except that
when a player makes tours he does so as previously described. Any
1st and 2nd tours are made at random, but then 3rd and 4th tours
are made such that AAAB, AABA, ABAA, ABBB have
probabilities 1/12, and ABCD has probability 2/3.

There are 1585 possible paths of nonzero probability. Careful
computation finds ET =

—227773p8 + 582884p7 — 1329319p% + 1737938p° — 1941235p? + 1420688p> — 998569p2 + 389834p — 217648
3 (82001p% — 218608p7 + 327728p6 — 315256p5 + 215870p* — 104656p3 + 36128p2 — 8008p — 15199)

For p = (1/4)(3v/681 — 77) (same as AW) this gives ET less than
AW by 0.00014668.
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