
Optimal Gateway Selection in VoIP

Richard Weber

Costas Courcoubetis and Costas Kalogiros

Statistical Laboratory
29 October, 2008

Aggregators and Gateways

Voice over IP is provided by aggregators, who terminate calls to
the PSTN via gateways.

IP PSTN
A1 G1

G2

IP PSTN
A1 G1

G2

I Calls arrive a Poisson process rate λ.

IP PSTN
A1 G1

G2

I Calls arrive a Poisson process rate λ.

I As each call arrives, the aggregator attempts to place it
through some subset of the gateways, S ⊆ {G1, . . . , Gn}.

IP PSTN
A1 G1

G2

I Calls arrive a Poisson process rate λ.

I As each call arrives, the aggregator attempts to place it
through some subset of the gateways, S ⊆ {G1, . . . , Gn}.

I Each gateway Gi ∈ S, reports back (after some delay)
whether or not one of its Ci circuits is free.

I If Gi has a free circuit, then it reserves a circuit and tries to
terminate the call at its destination.
It is in a race with other gateways in S who are also trying to
terminate the call.

I If Gi has no free circuits then it cannot terminate the call.

The Aggregator’s Expected Profit

The call is successfully terminated if some gateway i ∈ S
terminates the call before a time T , at which the customer hangs
up due to impatience.
Aggregator’s reward is

ri = p0 − pi ,

where pi is the payment he makes to the gateway.

The Aggregator’s Expected Profit

The call is successfully terminated if some gateway i ∈ S
terminates the call before a time T , at which the customer hangs
up due to impatience.
Aggregator’s reward is

ri = p0 − pi ,

where pi is the payment he makes to the gateway.
His expected net profit (assuming the call is terminated before T
and all unblocked gateways are equally likely to ‘win the race’) is

g(S) = E

[
∑

i∈S Iiri
∑

i∈S Ii

]

,

where Ii = 1 if gateway i has a free-circuit when it is asked by the
aggregator to terminate the call. Otherwise Ii = 0. E[0/0] = 0.

The Aggregator’s Problem

Aggregator wishes to maximize expected reward g(S).

Which set of gateways S should the aggregator ask to

terminate the call, and in what time sequence should his

requests be sent to these gateways?

‘Forking’ is the strategy of asking more than one gateway to
terminate the call.

Trying Gateways One at a Time

Suppose we try just one gateway at a time. Depending on
assumptions, various orders are optimal. For example, we might
suppose

1. Customer gives up after time T ∼ exponential(β);

2. Blocking probability of gateway i is bi.

3. Round trip delay between aggregator and gateway i is τi.

4. Time for gateway i to terminate a call to the destination
(given it has a free circuit) is σi.

Trying Gateways One at a Time

Suppose we try just one gateway at a time. Depending on
assumptions, various orders are optimal. For example, we might
suppose

1. Customer gives up after time T ∼ exponential(β);

2. Blocking probability of gateway i is bi.

3. Round trip delay between aggregator and gateway i is τi.

4. Time for gateway i to terminate a call to the destination
(given it has a free circuit) is σi.

Then is best to try gateway i before j if

ri

(1 − bi)e
−β(τi+σi)

1 − bie−βτi
≥ rj

(1 − bj)e
−β(τj+σj)

1 − bje−βτj
.

Forking: Optimizing the Forking Set

Suppose we can try more that one gateway at a time (forking).

Suppose T = 1 and all gateways take the same time, τi = 1, to
report back whether or not they are blocked; σi are i.i.d., so each
gateway is equally likely to ‘win the race’. The aggregator has one
attempt in which to find a gateway that can terminate the call. He
forks to a set of gateways, S, seeking to maximize

g(S) = E

[
∑

i∈S Iiri
∑

i∈S Ii

]

Forking: Optimizing the Forking Set

Suppose we can try more that one gateway at a time (forking).

Suppose T = 1 and all gateways take the same time, τi = 1, to
report back whether or not they are blocked; σi are i.i.d., so each
gateway is equally likely to ‘win the race’. The aggregator has one
attempt in which to find a gateway that can terminate the call. He
forks to a set of gateways, S, seeking to maximize

g(S) = E

[
∑

i∈S Iiri
∑

i∈S Ii

]

or
gθ(S) = g(S) − θb(S) ,

where b(s) =
∏

i∈S bi is the probability no gateway has a free
circuit.

g(S) = E

[
∑

i∈S Iiri
∑

i∈S Ii

]

=
∑

U⊆S ,U 6=∅

1

|U |

∏

i6∈U

bi

∏

i∈U

(1 − bi)
∑

i∈U

ri .

g(S) = E

[
∑

i∈S Iiri
∑

i∈S Ii

]

=
∑

U⊆S ,U 6=∅

1

|U |

∏

i6∈U

bi

∏

i∈U

(1 − bi)
∑

i∈U

ri .

Conjecture. The problem of finding the optimal S is NP-hard.

A Related, but Easier Problem

A student who is applying to universities, at some cost of applying,
and can ultimately select the best offer he receives. He wishes to
maximize

`(S) = E

[

max
i∈S

{Iiri}

]

− c(|S|) .

A Related, but Easier Problem

A student who is applying to universities, at some cost of applying,
and can ultimately select the best offer he receives. He wishes to
maximize

`(S) = E

[

max
i∈S

{Iiri}

]

− c(|S|) .

This can be solved efficiently by a marginal allocation algorithm:

S = {}

while max
i6∈S

{ `(S + {i}) } > `(S)

S = S + arg max
i6∈S

{ `(S + {i}) }

endwhile

Simplifying Conditions

Let us assume the following.

(a) b1 ≥ · · · ≥ bn.

(b) (1 − b1)r1 ≥ · · · ≥ (1 − bn)rn.

(c) r1 ≥ · · · ≥ rn.

Note that (a)–(b) imply (c).

Theorem 1 Suppose (a)–(c) hold. Then gθ(S) is maximized by
choosing S amongst the collection of sets

L =
{

{1}, {1, 2}, {1, 2, 3}, . . . , {1, 2, . . . , n}
}

.

Identifying the Optimal S

Let
gi = g({1, 2, . . . , i}) .

Theorem 2 Suppose (c) holds, i.e., r1 ≥ · · · ≥ rn. Then
{g1, . . . , gn} is a quasiconcave sequence. That is,

gi ≥ max{gi−1, gi+1} for all j ∈ {2, 3, . . . , n − 1}.

This implies that {g1, . . . , gn} is unimodal, and so we can find the
optimal S easily.

The Optimal S when Allowed Repeated Attempts

Theorem 3 Suppose we may make k attempts to place the call.
Then, assuming (a)–(c) hold, we should at each successive
attempt fork to a set in L of nondecreasing size. Moreover, the
expected reward is unimodal over increasing sets in L.

Let Vk be the maximal expected revenue obtainable in k attempts.
The dynamic programming equation is

Vk = max
S

{g(S) + b(S)Vk−1} ,

with V0 = 0. Apply previous results with θ = −Vk−1.

Different Gateway Response Times

Suppose it takes a time τj ∼ exponential(µj) for gateway j to
reply that it is or is not blocked, and a further time σj = 0 to
connect the call. Reward is obtained if the call is connected by
time T ∼ exponential(β).
If we can only ask each gateway once, the expected reward is

h(S) = E

[

∑

j∈S Ijµjrj

β +
∑

j∈S Ijµj

]

.

If we may retry a gateway when it reports it is blocked, and their
blocking probabilities are stationary, then we seek S to maximize

f(S) =

∑

j∈S µj [(1 − bj) rj + bjf (S)]

β +
∑

j∈S µj

.

Theorem 4 If (c) holds then the f -maximizing set must be in L,
i.e., of the form {1, . . . , j} for some j.

Arbitrarily distributed T

Suppose all gateways are unblocked and T has p.d.f. g.

x(t) = P (call not yet terminated by time t).

Consider an optimal control problem of maximizing

∫

∞

0

∫ T

0

∑

i

µiriui(t)x(t) dt g(T) dT

where
ẋ(t) = −

∑

i

µiui(t)x(t)

and ui(t) is the proportion of its maximum possible effort that we
ask gateway i to put into trying to connect the call.

Theorem 5 If (c) holds, then at time t we should be asking a set
of gateways {1, 2, . . . , j(t)} to connect the call. If the hazard rate
of T is nondecreasing, then j(t) is nondecreasing.

The Dialing Problem

Suppose we dial a switchboard and hear,

All our operators are busy, please try again later.

Suppose it takes time τ to redial. We could redial at times
τ, 2τ, 3τ, . . ., until we get through. Or we could try at times
t, 2t, 3t, . . ., for some t > τ . Suppose we wish to minimize the
expected time until we get through, say W .

Should we redial as fast as possible?

The Dialing Problem

Suppose we dial a switchboard and hear,

All our operators are busy, please try again later.

Suppose it takes time τ to redial. We could redial at times
τ, 2τ, 3τ, . . ., until we get through. Or we could try at times
t, 2t, 3t, . . ., for some t > τ . Suppose we wish to minimize the
expected time until we get through, say W .

Should we redial as fast as possible?

p0,0(t) = P (0 operators free at time t | 0 operators free at time 0).

W = t + p0,0(t)W =
t

1 − p0,0(t)
.

So we should redial as fast as possible if dW/dt ≥ 0, i.e., if

(1 − p0,0(t)) + t
d

dt
p0,0(t) ≥ 0 .

Suppose the switchboard operates as an Erlang loss system with c
circuits. In principle, we can solve

d

dt
p0,0(t) = λp0,1(t)

d

dt
p0,i(t) = (c − i + 1)µp0,i−1(t) + λp0,i+1(t) , 0 < i < c

d

dt
p0,c(t) = µp0,c−1(t)

with p0,0(0) = 1 and p0,i(0) = 0, i 6= 0.

More generally, suppose we have a continuous time Markov process
which is found to be in state 0 at time 0. We wish to reinspect at
times t, 2t, 3t, . . ., and minimize the expected time until we first
find it not in state 0, subject to choosing t ≥ τ .
In general, it can be optimal to take t > τ . Now

p0,0(t) =
∑

k

αke
−νit .

More generally, suppose we have a continuous time Markov process
which is found to be in state 0 at time 0. We wish to reinspect at
times t, 2t, 3t, . . ., and minimize the expected time until we first
find it not in state 0, subject to choosing t ≥ τ .
In general, it can be optimal to take t > τ . Now

p0,0(t) =
∑

k

αke
−νit .

Suppose all αk and νk are real, all αk > 0 and
∑

k αk = 1. Then

(1 − p0,0(t)) + t
d

dt
p0,0(t) =

∑

k

αk

(

1 − (1 + νkt)e
−νkt

)

≥ 0 ,

and so fast dialing is optimal.

Theorem 6 Suppose a continuous time Markov process is
reversible. Then for any state 0, we can write

p0,0(t) =
∑

k

αke
−νkt ,

where all αk and νk are real, all αk > 0 and
∑

k αk = 1.

Corollary. Fast dialing is optimal for the Erlang loss model of a
switchboard.
(as this is a reversible Markov process.)

Is Forking Desirable?

An individual call setup may benefit by forking, but it creates a
negative externality to the rest of the system because it increases
the blocking probability for other call setups.

Is forking desirable? How do we avoid the inefficient equilibrium
resulting from this ‘Tragedy of the commons’?

A Numerical Example

Consider a case of one aggregator and two gateways.

I Calls arrive Poisson with rate λ.

I A rate λf of calls are forked, and λnf = λ − λf are unforked.

I Two phases: (i) a signalling phase (∼ exponential(µ1)) and
(ii), if signalling is successful, a conversation phase
(∼ exponential(µ2)).

I During each phase one circuit is reserved in the gateway
involved.

I A forked call is not blocked if at least one of the two gateways
has a free circuit. If both gateways have a free circuit then
signalling phase is distributed exponential(2µ1).
(The gateway who is the winner notifies the aggregator who
in turn notifies the other gateway to stop trying to complete
the signalling phase.)

A Numerical Example

0 1 2 3 4 5 6

0.05

0.10

0.15

0.20

average calls

unforked calls

forked calls

Figure: Blocking probabilities of forked, unforked and average calls as λf

varies from 0 to 6, with λf + λnf = 6, and µ1 = 4, µ2 = 2 (solid lines),
and µ1 = 20, µ2 = 2 (dashed lines).

Incentivizing an optimal amount of forking

Consider 6 gateways, each with just 1 circuit.
This can be represented as a Markov process with 75 states.

I Calls arrive at rate λ = 1.

I If a call setup phase is attempted simultaneously by j
gateways it lasts time ∼ exponential(jµ1).

I Conversation phase is equally likely to begin in each of these j
gateways, and lasts a time ∼ exponential(µ2).

I µ1 = 4, µ2 = 2.

bk = blocking probability when all arriving calls are forked to k
randomly chosen gateways.

Incentivizing an optimal amount of forking

Consider 6 gateways, each with just 1 circuit.
This can be represented as a Markov process with 75 states.

I Calls arrive at rate λ = 1.

I If a call setup phase is attempted simultaneously by j
gateways it lasts time ∼ exponential(jµ1).

I Conversation phase is equally likely to begin in each of these j
gateways, and lasts a time ∼ exponential(µ2).

I µ1 = 4, µ2 = 2.

bk = blocking probability when all arriving calls are forked to k
randomly chosen gateways.

bk is minimized for k = 4.
It is interesting that the minimum is achieved when all arriving
calls are forked to the same number of gateways, rather than, say,
some proportion using k = 3 and the remainder using k = 4.

A Game of Many Aggregators

Suppose there are many aggregators. Both gateways and
aggregators are better off when the throughput is maximized.

However, there is a ‘tragedy of the commons’ because no individual
aggregator has no incentive to restrict his forking to k = 4.

A Game of Many Aggregators

Suppose there are many aggregators. Both gateways and
aggregators are better off when the throughput is maximized.

However, there is a ‘tragedy of the commons’ because no individual
aggregator has no incentive to restrict his forking to k = 4.

Suppose we require an aggregator to pay γ0 to each unblocked
gateway to which he forks a call. So if he forks a call to k
gateways, and j of these are unblocked, then he has revenue
r − jγ0 if j ≥ 1, and 0 if j = 0.

Revenue per call is Rk = (1 − bk)r − mkγ0, where bk is the
blocking probability when all calls are forked to k gateways.

Taking γ0 ∈ [0.0059, 0.0109]r then we induce an optimal amount
of forking since R4 > max{R1, R2, R3, R5, R6}.

Equilibrium of the Game

Let Rij be the revenue obtained by forking a single call to j
gateways when all other calls are being forked to to i gateways.
The greatest entry in each row is shown in bold.

R =

8.827 9.752 9.800 9.750 9.689 9.627
8.717 9.653 9.772 9.744 9.690 9.631
8.701 9.576 9.718 9.724 9.682 9.627
8.678 9.489 9.624 9.658 9.649 9.604
8.751 9.459 9.537 9.561 9.578 9.594
8.743 9.380 9.381 9.329 9.272 9.214

Equilibrium of the Game

Let Rij be the revenue obtained by forking a single call to j
gateways when all other calls are being forked to to i gateways.
The greatest entry in each row is shown in bold.

R =

8.827 9.752 9.800 9.750 9.689 9.627
8.717 9.653 9.772 9.744 9.690 9.631
8.701 9.576 9.718 9.724 9.682 9.627
8.678 9.489 9.624 9.658 9.649 9.604
8.751 9.459 9.537 9.561 9.578 9.594
8.743 9.380 9.381 9.329 9.272 9.214

k = 4 is the (unique) Nash equilibrium in the game that results as
each aggregator attempts to optimize his forking strategy in
response to the forking strategy adopted by others.

Summary

I We have analyzed some optimal gateway selection and forking
strategies in simple models.

Summary

I We have analyzed some optimal gateway selection and forking
strategies in simple models.

I We have found a solution to the ‘dialing problem’.

Summary

I We have analyzed some optimal gateway selection and forking
strategies in simple models.

I We have found a solution to the ‘dialing problem’.

I We have observed that a ‘tragedy of the commons’ problem
can arise because individual VoIP providers may choose to
fork more than is optimal for the system taken as a whole.

It can be advantageous for both aggregators and gateways if
there is the imposition of a small signalling charge.

