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Abstract

Large deviation asymptotics can be used to estimate the
rate with which cell loss occurs because of overflow at
the buffer of an ATM switch. These asymptotics may be
appropriate when either the buffer is large or when a
large number of traffic sources are multiplexed through
the switch. In some cases these estimates lead to a

natural definition of effective bandwidths for the sources.

As a step towards generalising and applying these ideas
to networks in which different qualities of service are to
be guaranteed for different sources, we consider M
traffic sources, each with its own buffer of size B, which
are served by a a single deterministic server of
bandwidth ¢. The server implements a state-dependent
service discipline (for example, to share its effort fairly

amongst the buffers).

We show the frequency of buffer overflow, ®, has an
asymptotic of log ® = —I*B + g(B), where
limp_,o, g(B)/B = 0, and where I* can be
computed as the solution to an optimal control problem
posed in terms of rate functions I;, 2 = 1,... , M for

the M traffic sources.
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ATM/BISDN networks

@ Data is transmitted in cells (53 bytes).

e Traffic sources are heterogeneous:

voice, video, file transfer, email, etc.

e Traffic sources have different quality of service

requirements.
e Traffic sources are bursty.

e Cells from a single call follow a ‘virtual circuit’ (VC).

Here we have four VCs and three 2 X2 switches.
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Important issues for ATM

e Quality of Service
Cell loss (due to buffer overflow).
This should be very small.

Cell Delay.
@ Call acceptance control (CAC)
e Call routing

@ How best to use resources:
Buffers, bandwidth, alternative routes,
Statistical multiplexing,
Signalling,
Flow control.

e Charging and accounting




The problem of estimating buffer overflow frequency

We concentrate on a single buffer and the overflow

frequency of this buffer.

In order to know how many virtual circuits may be
allowed to use this output link, for a given Quality of
Service constraint, we need to estimate the probability of

buffer overflow.

P(X; > B) should be small.

A discrete time model

® Discrete time, with epochs k = 1,2,... .
e M independent sources.
® Source 7 produces Uy, cells in epoch ¢.

o U;1,U;s, ... can be seen as a dependent sequence
of random variables.

® Sources share a single buffer of size B.

e Buffer is served at the rate of ¢ cells per epoch.

M
e X;.1 = max {Xt + Z Uityr1 — ¢, 0}-

i=1

A 2 X 2 switch with 4 virtual circuits
c
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The overflow probability in a M /M /1/B queue

For a single server M[/M /1/ B queue, for example
(with finite buffer), being shared here by two VCs,

C

A  Jo] JI= Yg'y! S S

we know

1— (A/c)

PO = B) = [

| v
Hence
P(X, = B) ~ e 1°8(¢/YB o |arge B.

This is typical.

Cramer’s theorem

Theorem 1 Suppose Uy, Ua, . .. is a sequence of i.i.d.
random variables. Define the logarithmic moment

generating function
¢(0) = log E[exp(8U)]
and the rate function

I(u) = sgp[f)u — ¢(0)].

Then

1 .
P (—Z Ut - [a,b]> ~ e_mlllfue[a,b] I(u)

miz

meaning

. 1 1™ .

lim —log P |—Y U, € [a,b] | = — inf I(u).

m—oo M, m —~ welat]

Note. I(m) = 0, where m = EU;.




A typical rate function
Suppose U; = 0, 1 with probabilities g, p. Then

©(0) = log(q + pe?),

and
I(u) = ulog(%)—{—(l—u)log(%), 0<u<1
oo, otherwise.
I(u)
1
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Here p = 0.6.

e I(u) is convex.

e |I'(u)] — oo as u — boundary of the set where

I(u) is finite.
e I(pn) =0, where p = EU.

Elements of large deviation theory

We have seen:

P(X; = B) ~ e~ 18(¢/YB  for large B.

1 & .
m t=1

This is typical. The general conclusions are:

1. The frequency of occurence of rare events depends in
an exponential manner on some parameters of the

problem. E.g., B, m.

2. If a rare events occurs then it occurs in the most

likely way. E.g., inf,c[q,p-

3. Rare events occur as a Poisson process.
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Gartner-Ellis’'s theorem

The Gartner-Ellis theorem is similar to Chernoff's
theorem but applies to a sequence of vector-valued,
dependent random variables.

Theorem 2 Suppose Uy, Us, ... € RM js a sequence
of random vectors and that the asymptotic logarithmic
moment generating function

1 m
p(0) = lim —logFE |:exp <0, Z Ut>}
m—oo M, =
exists for all @ € RM . Define the rate function
I(u) = sup[< 8, u > —p(0)].
0

Then for any set G C RrRM

1 1z
lim —logP | —Y U, € G| > — inf I(u),
ml—rr?)cm o8 <m ; ¢ ) - ulélGa (u)
1 1 & .

im —log P (—> U, € G| < — inf I(u),

where G° and G are respectively the interior and
closure of G.

Note that in many cases the two infimums are equal and
so the limit exists.

The logarithmic moment generating function

@ For source 7 we define
1 m
@im(0) = —log E exp <9 Z Uik> .
m k=1

® Suppose the asymptotic logarithmic moment

generating function exists for all 6,
ei(0) = lim ¢im(6).

® Suppose the conditions of the Gartner-Ellis theorem

are satisfied. Then with
Ii(u) = SI;p[Gu — ¢i(0)]
we have,

1 m
P <;Z Ui € |a, b]) ~ exp (— uiel[laf,b] Il(u)) .

t=1




The large buffer asymptotic

Under the above assumptions, Kesidis, Walrand and
Chang (1993) show that

P(X > B) ~ e BB where
1
—H(c) = B}i_rgoglog P(X > B)

l'fBI(—i— )
= ——inf—I(c+ «
B o «

inflow at rate

~c+ «a

B/a—
1

= —inf —sup {(c+a)0 - Z‘Pz(o)}

a ]

= —sup{a : Zcpz-(a)/a < c} .

i=1

M
So e (8 < 78 provided Y :(8)/6 < c.

i=1

This motivates identifying ;(8)/6 as the effective
bandwidth for source <.

The many sources asymptotic

® Suppose there are M identical sources. The buffer
and bandwidth scale with M, so that the sources
share a common output buffer of size B = Mb and
a bandwidth M c.

e Courcoubetis and Weber (1995) and Duffield (1995)
show that,

1
— J(e,b) = A}iinooﬂlogP(X > Mb)

= —igfst;p {(nC-l- b)o — chpim(O)} .

i=1
@ This formula expresses the effect of statistical
multiplexing over sources, whereas the large buffer
asymptotic evaluates statistical multiplexing that

occurs over time.

@ |t does not lead to a simple notion of effective

bandwidths as with the large buffer asymptotic.

e However, P(X > B) ~ e 7(¢"M ygyally
provides a more accurate estimate of overflow
probabilities than does P(X > B) ~ e~ H(Mo)B,
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Comparison of the asymptotics

The following data is based on calculations of a Markov modulated

fluid model of voice sources in a channel that is 66% utilized.

peak rate [ —
= 64 kbps

0

mean 353ms mean 650ms

peak bandwidth per source = 64 kbps

mean bandwidth per source = 22.48 kbps
bandwidth per source = ¢ = 33.72kbps

buffer per source = b ranges from 0 to 100 bits

0.14

M = 50
0.1
M = 100

Many sources asymptotic J(c, b)

—(1/M)log, P(X > Mb)

Large buffer asymptotic bH (c)

0.02 0.04 0.06 0.08 0.1

buffers per source (Kbits) b

Error of the large buffer asymptotics

Choudhury, Lucantoni and Whitt (1994) hypothesise
P(X;> B) ~ Be N8,
We can give the interpretation that for large IV,

P(Xt Z B) ~ e—N.’(c,b)
— e—N[J(c,b)—bH(c)}—NbH(c))

e~ NIJ(cb)~bH(e)] ,~ BH(c)_

Son = H(c).
® For large IV, ~ has the sign of J(c,b) — bH(c).
® For a model of a Gaussian autoregressive source,
U,=aU, 1+ (1 —a)p+ €,.
J(e,b) —bH(c) >0or<0asa > 0or<0.

These correspond to greater or less burstiness of the

source.

The large buffer estimate exp(—bH (c)) can both
under- and over-estimate P(X; > B).
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A switch with dedicated output buffers

A single output buffer per output link:

>Oop| POOPP—
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Dedicated output buffers per virtual circuit:
>
DD: c
e

~— B —

State dependent service disciplines
Now consider M VCs with separate buffers. The state is
X; = (Xuty-oo s Xast) € RM,

o
S At

B‘>

Some possible service disciplines are:

1. Serve longest queue. The entire bandwidth ¢ is
allocated to serving the longest queue, or shared
equally amongst several equal longest queues.

2. Weighted round robin. A nonempty queue % is
ensured a bandwidth of at least ¢;c, where
> ¢i = 1. Any surplus bandwith that is available
because some queues are empty is allocated to the
nonempty queues, proportionally to their weights.

3. Queue length weighted service. Queue 2 is
served at rate

¢i Xt .
Z]‘ ¢ijt
4. Threshold based disciplines. Divide the

bandwidth equally amongst buffers, but if one is
more than 90% full, then it gets all the bandwidth.
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Assumptions

We let the scaled buffer process be

1

and take a state-dependent service allocation that

depends on the scaled queue lengths X P,
X1 = X4+ Uy — C(XtB)‘

Throughout the following the norm applied to € RM
is || = max; |z;|. We make the following
assumptions.

Assumptions

AL U — e (XP)| < K.

A2 ¢(-) is Lipschitz continuous with constant L. That
is, |e(x) — ¢(x)| < Lz — 2’|

Assumptions

A3. Let - - denote any past history of the process.
Then YA > 0,

v (0)
1 AB+AB
= Jim S log B, [exp<o, by Ut> ‘ }

exists and satisfies Gartner-Ellis conditions, so that with

the definition
I(u) = sup[< 6, u > —¢(0)]
and G C RM,
1 AB+AB
Bli_I,I;oEIOgP (E Z U, eG )

t=\B
< —inf I(u
> ;E, (u),

AB+AB
1imilogp — > UEG---
AB AB i

B—oo t=A\B
> —inf T
> = jnf, T(w)

where G and G are respectively the interior and

closure of G.




The large buffer scaling

First scale with respect to buffer size:
B 1
Xt :E_Xt, t:0,...,TB

Then scale with respect to time, so that for 0 < t < T,

zB(t) = (1 —tB + [tB})X[?B] + (tB — [tB])X[?BHl

KB
K
X zB(t)
0 T
0 B
KB’
K
X, zB(¢)
0 T
0 B’

Note that B (-) is piecewise linear.

Upper and Lower Bounds

Theorem 3 Suppose A is a subset of paths over [0, t]
and A1-A3 hold. Then

_— 1 B
B}l_r)r;oElogP(m ()€ A)

< inf / I(u(t)) dt,
() Ji—o

e=u—c(x)

z(-)EA

1
lim ElogP (a:B(-) € A)

B—oo

> it /tZOI(u(t))dt.

t=u—c(x)

z(-)EA°

where A and A° are the closure and interior of A

respectively.

Note. The right hand side of the lower bound is —oo if
A° is empty.

I
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Proof of the upper bound

Suppose BT = mm. Divide time into n blocks of m
epochs. Divide the vertical axis into IN increments of
width K7B/N. Any path 2B(-) € A must pass

through certain ‘gates’ Cj,,... ,C}

n-

KtB
KtB
N
X
P()eA— c,
Cj,

Cj, Cj, Cj,

0 m 2m 3m nm = 1B

Hence writing <I>B(A) = P(zB(-) € A),

< Z HP le € j,-|X07U17"' 7U(1',—1)m)

wafin i=1
where the sum is over possible 7g, ... , Jn.

For n, N large, the path cannot only move between

1 . .
Cj, ,and Cj, if — Zt (i—1)m+1 Uy, lies in some small
set, say

1
— Z UteSll, i=1,...,n.

t (t—1)m+1

Conclusion of the proof of the upper bound

So we have
2%(A)
n 1 im )
Ji
<Y IIr(E 5 ves,
J0oeeesJn t=1 t=(i—1)m+1

Applying Assumption A3, as B — oo via m — oo

— 1 1 )
: di
Jim ZlgP|— > U€S),
t=(i—1)m+1
-
< — inf —I(u).

Ji n
u; €S
i€ Ji—1

Hence
1'_ !, ®B(A)
im 1 o og

< —inf ZI(U) — inf /T I(u)dt.

Jor-Jn T =(-)u(") Jo
ULsee- 5Un T=u—c(z)
u; es’l 2(-)€A

Ji—1




The limiting dynamics

Let t; = i@m, 7, = iT/n. Note that

:EB(T,') — J_:B(Tifl)

Ti — Ti—1
_Xg X7,
- T/n
1 ti

= Z (U, — (X))

Bt /n 1

t.
1 4 _ _
B

<— > U —-cXP)+LKr/n

t=t;_;+1

w(ji-1,3i) — c(8”(7i-1)) + LK 7 /n.

The reversed inequality follows similarly, but with a
negative sign on the term LK 7 /n. So in the limit as
B — oc and N, n — oo the infimum is over paths

x(+) € A such that & = u — c(z).

Hence
T & T
—inf — I(u) = — inf I(uw)dt.
Jnt, 3 1w~ - nt, [ @)
Ulsee St 2= t=u—c(z)
wies] w(-)€A

Proof of the lower bound

Again BT = mm and divide time into n blocks of m
epochs. Let 7; = i7/n. Pick any & € A°.

Kt
e-pipe € A°
a() € A°
T T T nm
0 T T2 T2 T = 5

1 im
=Y Umam), Vi
m X
t=(i—1)m+1
= x8(.) € e-pipe C A°.

1 1
So lim Elogq)B(A) > lim ElogP(mB(-) € e-pipe)

B—oo B—oo
> lim ) Logp [ 2 f: U, a(r;)

im —lo — near u(T; ..
T BB ¢ ™ (i hm+1 t

Q

_ '/OTI(ﬁ) dt — n(e).

1 T
Hence lim — log ®%(A) > — i)nf : / I(u) dt.
J0

Booc &()su(

The control problem

Theorem 4 Suppose A1-A3 hold. Then

o1
Jim —log P(Xy > B)

= - inf / I(u(t))dt.
: t=0
E=u—c(x)
x(0)=(0,0), 21 (7)=1

Proof. Define A as the set of paths for which

2(0) = 0 and x;(7) > 1. Show that as 7 — oo the
upper and lower bounds are the same, and independent
of the starting state (0) = 0. Alternatively, use a

bounding argument (see below).

This is an optimal control problem that can be solved
using Pontryagin's maximum principle. We choose u to

maximize H (xz,u, ), where

H

N (= ¢) — I(u),
. 8

A= AT S

Ba:l-

ri:,':u—c,'.

o
=

Its solution for two buffers and fair shares

Consider the case in which there are just two buffers and
the service discipline is ‘weighted fair-shares’. That is,
buffer ¢ is guaranteed at least ¢p;c when it is not empty.
But if a buffer is empty the surplus bandwidth can be
allocated to serving the other buffer. Then assuming

m; = EUy; < ¢c,
Theorem 5

1
Aim —log P(Xy, > B)

= —min min  7[L(u1) + I2(us)]
7>0 uytus=c+1/7,
uz<¢sc

I (uq) + Ix(us)

uituz>c, y; — (¢ —u )
u2$¢26’ ! ( 2)

@1 = u; — (¢ — uz)

& = my — ¢ic
Uy = Mo Uy = 1My

Ty = my — ¢oc | /
.~ Xo = Uy — Uy = 0

*

T




Bounds

We desire the proportion of time that buffer 1 is full

where buffer 1 is of size B.

1. For an upper bound we suppose buffer 1 is of size B
and buffer 2 is infinite. Initially, the state is (B, 0).
We calculate the asymptotic for the probability that
buffer 1 is at level B at 7B and let B — oc.

2. For a lower bound we suppose buffer 1 is infinite and
buffer 2 is of size B. Initially, the state is (0, B).
We calculate the asymptotic for the probability that
buffer 1 is full at 7B and let B — oo.

These are pathwise bounds for the desired probability

and yet they have the same asymptotic.

Character of the solution

Suppose we consider the most likely way that buffer 1
can fill over time [0, 7B], when X, = (0, 0).
For a given T, the optimal choice of w1, us can take

one of two forms:
1. I (¢p2¢) < Ij(¢p1c+ 1/7): In this case
u; = p1c+ 1/7, us = ¢ac.
2. I)(¢p2c) > Ij(¢p1c+ 1/7): In this case
u; = c+ 1/7 — ug, us < ¢ac, where these are
chosen so that I} (uz) = I (uy).
This is the same asymptotic that would result if both

sources were sharing a single buffer of size B.
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Costs and risk-sensitivity

Suppose one wishes to choose a scheduling policy 7 to

minimize over time [0, BT] the cost function,

I'p=infE

S~ (XP,Uy/B, k/Bﬂ .

k=0
Following an idea of Whittle (1990), a 'risk-sensitive’

form of this would have cost

& = inf £ [exp <a§'y (X,f,Uk/B,k/B)ﬂ .

The idea is that « > 0 makes one sensitive not only to
the expected cost but also the variance of the cost.

Taking @ < 0 corresponds to ‘risk-seeking” behaviour.

Risk-sensitive control problem

ry = iEfE [exp (ai’y (X,f,U,JB,k/B))} .

k=0

By Varadhan's Lemma the large B asymptotic for T'p is
computed by multiplying the cost of a path by its
probability and finding the combination of greatest cost,
so

lim 1 log I'y

B—c B

= inf sup /T avy(z,u,t) — I(u)dt.
T z()u(-) Jt=0
d=u—c(z)

where the infimum over 7 is understood as an infimum
over a set of admissible ¢(+), e.g., a class of threshold
policies. This may lead to interesting control problems

and scheduling rules.




