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The Disputed Garment Problem

The Babylonian Talmud is the compilation of ancient law and
tradition set down during the first five centuries A.D. which serves
as the basis of Jewish religious, criminal and civil law. One
problem discussed in the Talmud is the disputed garment problem.

“Two hold a garment; one claims it all, the other claims
half. Then one is awarded 3

4
and the other 1

4
.”

The idea is that half of the garment is not in dispute and can be
awarded to the one who claims the whole garment. The other half
of the garment is in dispute and should be split equally.
Thus one gets 1

2
+ 1

4
and the other gets 1

4
.



Sharing the Cost of a Runway

Suppose three airplanes share a runway.

• Plane 1 requires 1 km to land.

• Plane 2 requires 2 km to land.

• Plane 3 requires 3 km to land.

So a runway of 3 km must be built.



Sharing the Cost of a Runway

Suppose three airplanes share a runway.

• Plane 1 requires 1 km to land.

• Plane 2 requires 2 km to land.

• Plane 3 requires 3 km to land.

So a runway of 3 km must be built.

What proportion of the building cost should each plane pay?



Sharing Files

A file sharing system Peers contribute files to a shared library of
files which they can access over the Internet.

Q1

Q2

Q3

Q4

Q5

Peer i shares Qi files.
The benefit to peer j is θju(Q1 + · · ·+ Q5).



Sharing WLANS

A sharing of wireless LANS system Peers share their wireless
Local Area Networks so that they can enjoy Internet
access via one another’s networks whenever they
wander away from their home locations.

Q1

Q2 Q3

Q4

Q5

Peer i makes his WLAN available for a fraction Qi of the time.
The benefit to peer j is θju(Q1 + · · ·+ Q5).
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Example: A Bridge

A bridge may or may not be built. There are 2 potential users.

Mathematical Bridge, Queens’ College, Cambridge

If built (at cost $1) then user i benefits by $θi . Knowing θ1 and
θ2, we should build the bridge if θ1 + θ2 > 1.

We must charge for the cost. Suppose we charge user i a fee of
θi/(θ1 + θ2). The problem is that user i will have an incentive to
under-report his true value of θi .

What is the best fee mechanism, p1(θ1, θ2) and p2(θ1, θ2)?



Tractate Kethuboth

The Baylonian Talmud also gives instructions about dividing
estates.

MISHNAH 93. IF A MAN WHO WAS MARRIED TO THREE WIVES
DIED, AND THE KETHUBAH OF ONE WAS A MANEH, OF THE
OTHER TWO HUNDRED ZUZ, AND OF THE THIRD THREE
HUNDRED ZUZ AND THE ESTATE [WAS WORTH] ONLY ONE
MANEH [THE SUM] IS DIVIDED EQUALLY. IF THE ESTATE [WAS
WORTH] TWO HUNDRED ZUZ [THE CLAIMANT] OF THE MANEH
RECEIVES FIFTY ZUZ [AND THE CLAIMANTS RESPECTIVELY] OF
THE TWO HUNDRED AND THE THREE HUNDRED ZUZ [RECEIVE
EACH] THREE GOLD DENARII. IF THE ESTATE [WAS WORTH]
THREE HUNDRED ZUZ, [THE CLAIMANT] OF THE MANEH
RECEIVES FIFTY ZUZ AND [THE CLAIMANT] OF THE TWO
HUNDRED ZUZ [RECEIVES] A MANEH WHILE [THE CLAIMANT] OF
THE THREE HUNDRED ZUZ [RECEIVES] SIX GOLD DENARII.



The Marriage Contract Problem

A man has three wives whose marriage contracts specify that in the
case of this death they receive 100, 200 and 300 zuz respectively.



The Marriage Contract Problem

A man has three wives whose marriage contracts specify that in the
case of this death they receive 100, 200 and 300 zuz respectively.

What happens when the man dies with less than 600 zuz?
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The Marriage Contract Problem

The Talmud gives recommendations.

Debt
Estate 100 200 300

100 33.33 33.33 33.33

200 50 75 75

300 50 100 200

100: equal division
300: proportional division
200: ?



The Bankruptcy Game

Two creditors have claims for $30 million and $70 million against
a bankrupt company. The company only has $60 million.

The players must reach an agreement about how to divide the
money between them, i.e., to choose a1, a2, such that

Creditor 1 gets a1;
Creditor 2 gets a2;
with a1 + a2 ≤ 60.

Players are equally powerful and have equally good lawyers.
Once all the arguments have been made and ‘the dust has settled’
how much money should each get?



The Bankruptcy Game

Two creditors have claims for $30 million and $70 million against
a bankrupt company. The company only has $60 million.

The players must reach an agreement about how to divide the
money between them, i.e., to choose a1, a2, such that

Creditor 1 gets a1;
Creditor 2 gets a2;
with a1 + a2 ≤ 60.

Players are equally powerful and have equally good lawyers.
Once all the arguments have been made and ‘the dust has settled’
how much money should each get?

What would be a ‘fair’ division of the money?
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only 60 to divide. Some possibilities:
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Possible Lawyer’s Arguments

Creditors 1 and 2 have valid claims for 30 and 70. But there is
only 60 to divide. Some possibilities:

(a) Equal division: (30, 30).

(b) A 30 : 70 split, proportional to the debts: (18, 42).

(c) A 30 : 60 split, proportional to the amounts they could get if
the other was not a creditor: (20, 40).

(d) The disputed garment principle. Creditor 2 should be awarded
at least 30, since this is what would be left for him if he first
paid Creditor 1’s entire claim,

30 = 60− 30 (Creditor 1’s entire claim).

30 is in dispute, and is split equally, giving (15, 45).
Each suffers the same loss compared to what he would get if he
were the only creditor, i.e., (30, 60) − (15, 45) = (15, 15).



John Nash, 1928–

Equilibrium Points in N-person
Games, Proceedings of the National

Academy of Sciences 36 (1950).

‘The Bargaining Problem’,
Econometrica 18 (1950).

‘Two-person Cooperative Games’,
Econometrica 21 (1953).

Nobel Prize in Economics (1994)



Nash’s Bargaining Game

We can represent the bargaining game in the following picture.

30

60

d du1 u1

u2 u2
S

S

Two players attempt to agree on a point u = (u1, u2), in the set S .
If they agree on u = (u1, u2) their ‘happinesses’ are u1 and u2
respectively.
If cannot agree they get d = (d1, d2) (the ‘disagreement point’).
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Some Reasonable Requirements

Some reasonable ‘axioms’ upon which the creditors might agree.

1. Efficiency. The whole 60 should be split between them. No
money should be thrown away.

2. Symmetry. If their claims are exactly the same then they
should split the money in half.

3. Independence of Irrelevant Alternatives.
You and I are deciding upon a pizza to order and share. We
decide on a pepperoni pizza, with no anchovies. Just as we
are about to order, the waiter tells us that the restaurant is
out of anchovies. Knowing this, it would now be silly to
decide to switch to having a mushroom pizza.
The fact that anchovies are not available is irrelevant, since
we did not want them anyway.



4. Scale invariance. If we rescale units then the solution should
not change.



4. Scale invariance. If we rescale units then the solution should
not change. If

u′1 = a1 + b1u1

u′2 = a2 + b2u2

and (ū1, ū2) is the solution to the game played in bargaining
set S and with disagreement point d = (d1, d2), then
(a1 + b1ū1, a2 + b2ū2) is the solution to that game played in
bargaining set S ′ = {(v1, v2) : vi = ai + biui , (u1, u2) ∈ S}
and with disagreement point d ′ = (a1 + b1d1, a2 + b2d2).



Nash Solution of the Bargaining Game

Theorem 1 There is one and only one way to satisfy the Nash

bargaining axioms. It is to choose the point in S which maximizes

(u1 − d1)(u2 − d2).

Creditors 1 and 2 have valid claims for 30 and 70. But there is
only 60 to share. The Nash bargaining solution is u = (30, 30).

30

60

u1u2 = 900

u = (30, 30)

u1

u2

d

S



S

S

′



S



Objections and Counterobjections
Player 1 has an objection to (u1, u2) if there is probability p1 that
he can force Player 2 to accept some (v1, v2) (otherwise
negotiations breakdown) and

p1v1 + (1− p1)d1 ≥ u1 ⇐⇒ p1 ≥
u1 − d1

v1 − d1
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Objections and Counterobjections
Player 1 has an objection to (u1, u2) if there is probability p1 that
he can force Player 2 to accept some (v1, v2) (otherwise
negotiations breakdown) and

p1v1 + (1− p1)d1 ≥ u1 ⇐⇒ p1 ≥
u1 − d1

v1 − d1

Player 2 has a valid counterobjection if for some p2 < p1,

p2u2 + (1− p2)d2 ≥ v2 ⇐⇒ p2 ≥
v2 − d2

u2 − d2

Suppose every objection to u has a valid counterobjection.
This requires that for all (v1, v2),

u1 − d1

v1 − d1
≥ p2 ≥

v2 − d2

u2 − d2

=⇒ (u1 − d1)(u2 − d2) ≥ (v1 − d1)(v2 − d2)



Back to the Marriage Contract Problem

Recall that the Talmud recommends:

Debt
Estate 100 200 300

100 33.33 33.33 33.33

200 50 75 75

300 50 100 150

This baffled scholars for two millennia. In 1985, it was recognised
that the Talmud anticipates the modern game theory.

The Talmud’s solution is equivalent to the nucelolus of an
appropriately defined cooperative game. The nucleolus is defined
in terms of objections and counterobjections.



Robert Aumann and Michael Maschler

Game-Theoretic Analysis of a Bankruptcy Problem from the
Talmud, Journal of Economic Theory (1985).



Consistency

The consistency principle. If the division amongst n players gives
players i and j amounts ai and aj , then these are the same
amounts they would get in the solution to a problem in which
ai + aj is to be divided between i and j .
Recall the disputed garment principle:

“Two hold a garment; one claims it all, the other claims half.
Then one is awarded 3

4
and the other 1

4
.”



Consistency

Suppose the man leaves 200 zuz. Wives 1 and 2 claim 100 and
200, respectively, and Talmud awards them 50 and 75 zuz.

If they were dividing their total of 50+75=125 zuz, they would say
that 25 in not in dispute (since wife 1 is only claiming 100). So
that 25 should go to wife 2 and the remaining 100 should be
shared equally, giving the allocation (50, 75).



Consistency

Theorem 2 The Talmud solution is the unique solution that is

consistent with the disputed garment principle.

So if everyone likes the disputed garment principle, then the
Talmud solution avoids the possibility that any two wives will
disagree about how what they have has been split between them.

Debt
Estate 100 200 300

100 33.33 33.33 33.33

200 50 75 75

300 50 100 150



Good Aspects of the Nash solution

The Nash bargaining solution extends to n > 2 players.
The solution is to maximize (u1 − d1) · · · (un − dn) over u ∈ S .

This has two good properties:

• Consistency.
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Good Aspects of the Nash solution

The Nash bargaining solution extends to n > 2 players.
The solution is to maximize (u1 − d1) · · · (un − dn) over u ∈ S .

This has two good properties:

• Consistency.

• Proportional fairness.
Suppose ū is the Nash solution and u is any other solution.
Then

n
∑

i=1

ui − ūi

ūi
≤ 0.

That is, for any move away from the Nash solution the sum of
the percentage changes in the utilities is negative.



A Problem with the Nash solution
The Nash bargaining solution does not have the property of
Monotonicity.
I.e., if ū and ū′ are the solutions for bargaining sets S and S ′

respectively, and S is contained in S ′, then it is not necessarily the
case that ū′i ≥ ūi for both i = 1 and i = 2.

d

u

S

S
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u

S

S

d

u

S

S

′



Arrow’s Impossibility Theorem

Each voter has a preference rank amongst candidates. We would like to
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preference rank, ≻, should satisfy properties of

1. Existence. ≻ is defined for every profile of individual preferences.
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Arrow’s Impossibility Theorem

Each voter has a preference rank amongst candidates. We would like to
compute a preference ranking for society, taken as a whole. This
preference rank, ≻, should satisfy properties of

1. Existence. ≻ is defined for every profile of individual preferences.

2. Monotonicity. If x ≻ y and then some individual preferences
between x and other candidates are altered in favour of x then we
still have x ≻ y .

3. Independence of irrelevant alternatives. If x ≻ y and then some
individual preferences between candidates other than x and y are
altered, then we still have x ≻ y .

4. Citizen sovereignty. For each pair x , y there is some profile of
individual preferences which would give x ≻ y .

5. Non-dictatorship. There is no individual such that society’s
preferences are always the same as hers.

Impossibility Theorem. It is not possible to satisfy all the above.



Coalitions in Provision of Telecommunications Links
The savings in the costs of providing links for Australia, Canada,
France, Japan, UK and USA can be defined as

v(T ) = (cost separate)− (cost in coalition T ).

subset S separate coalition v(T ) saving (%)
J UK USA 13895 11134 2761 20
A UK USA 12610 10406 2204 17
F J USA 6904 5609 1295 19
A F USA 5600 4801 799 14
C J UK 3995 3199 796 20
A C UK 3869 3127 742 19

A J UK USA 18558 13573 4985 27
F J UK USA 20248 16733 3515 17
A F J USA 18847 15982 2865 15
C J UK USA 15860 13044 2816 18
A F J UK USA 24990 19188 5802 23
A C J UK USA 20667 15570 5097 25



Arbitration

Consider a set of n players, N = {1, 2, . . . , n}. The value they
obtain by cooperation in some activity is v(N). If a subset, T ,
cooperate as a coalition they get v(T ).
E.g., in a bankruptcy, in which creditor i is owed ci and the estate
has value E , we could have:

v(T ) = max







E −
∑

i 6∈T

ci , 0







.

This is the amount left for those in coalition T to share after they
have paid off everyone not in T .
For disjoint sets T and U,

v(T ∪ U) ≥ v(T ) + v(U).



The Job of an Arbitrator

The job of an arbitrator is to ‘divide the spoils’ of the grand
coalition, e.g., to make an award x1, . . . , xn, (called an
imputation), to players 1, . . . , n, such that

x1 + · · · + xn = v(N),

and no one can object.

Arbitration is accomplished by a function φ such that

(x1, . . . , xn) =
(

φ1(N), . . . , φn(N)
)

.

φ(·) also encapsulates the way the arbitrator would divide v(T )
amongst the members of any subset T ⊂ N.
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(N − {i}), then player i might threaten player j ,
“give me more or I will leave the coalition and you will lose.”
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Objections and Counterobjections

If φ
j

(N) > φ
j

(N − {i}), then player i might threaten player j ,
“give me more or I will leave the coalition and you will lose.”

Player j has a valid counterobjection if he can point out that if he
leaves the coalition then i loses just as much.

φ
i

(N) − φ
i

(N − {j}) ≥ φ
j

(N) − φ
j

(N − {i})



Objections and Counterobjections

If φ
j

(N) < φ
j

(N − {i}), player j might threaten player i , “give
me more or I will convince the others to exclude you and I will be

better off.”

Player i has a valid counterobjection if he can point out that if he
gets the others to exclude j then i will be better off by at least as
much.
If the arbitrator is to make sure that every such objection has a
counterobjection, he must ensure

φ
i

(N) − φ
i

(N − {j}) = φ
j

(N) − φ
j

(N − {i}).



Shapley Value

So if each objection has a counterobjection, we require

φ
i

(N) − φ
i

(N − {j}) = φ
j

(N) − φ
j

(N − {i}).

Only one function φ(·) does this: the Shapley value function. Its
value for player i is the expected amount he brings to the coalition
when the coalition is formed in random order.



Shapley Values for the Bankruptcy Game

v(T ) = max







E −
∑

i 6∈T

ci , 0







.

c1 = 30, c2 = 70, E = 60.

v({1}) = 0, v({2}) = 30, v({1, 2}) = 60.

Player 1 brings 0 if he comes first and 30 if he comes second.

φ1(N) = 1
2
( 0 + 30) = 15

Player 2 brings 30 if he comes first and 60 if he comes second.

φ2(N) = 1
2
(30 + 60) = 45



Sharing the Cost of a Runway

The Shapley value has been used for cost sharing.
Suppose three airplanes share a runway. The planes require 1, 2
and 3 km to land, respectively. So a runway of 3km must be built.
What should each pay?

adds cost
order 1 2 3

1,2,3 1 1 1
1,3,2 1 0 2
2,1,3 0 2 1
2,3,1 0 2 1
3,1,2 0 0 3
3,2,1 0 0 3

Total 2 5 11

So they should pay for 2/6, 5/6 and 11/6 km, respectively.



Shapley Value

The Shapley value computes each player’s bargaining power in
terms of the value he contributes. Persons who contribute more
should receive a higher percentage of the benefits.
The Shapley value is also the only value which satisfies four
axioms, namely,

• treatment of all players is symmetric.

• non-contributors receive nothing. We say i is a
non-contributor if v(T + {i}) = v(T ) for all subsets T .

• there is no division that makes everyone better off.

• φv+v ′

i (N) = φv
i (N) + φv ′

i (N). E.g., participant i ’s cost-share
of a runway and terminal is his cost-share of the runway, plus
his cost-share of the terminal.



Political Power

The Shapley value has also been used to assess political power.
In 1964 the Board of Supervisor of Nassau County operated by
weighted voting. There were six members, with weights of
{31, 31, 28, 21, 2, 2}.
Majority voting operates, so for T ⊆ {1, 2, 3, 4, 5, 6}, let

v(T ) =

{

1 if T has a total weight 58 or more;

0 otherwise.

The Shapley values are
(

.33, .33, .33, 0, 0, 0
)

.

This shows that 3 members are totally without influence!



The Nucleolus

A final characterization of the Talmud solution is the following.
x is called an imputation (a ‘division of the spoils’) if

(a)
∑

i∈N

xi = v(N) , and (b) xi ≥ v({i}) for all i .



The Nucleolus

A final characterization of the Talmud solution is the following.
x is called an imputation (a ‘division of the spoils’) if

(a)
∑

i∈N

xi = v(N) , and (b) xi ≥ v({i}) for all i .

Let
U(x ,T ) = v(T )−

∑

i∈T

xi

This is the ‘unhappiness’ felt by a subset of players T .
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The Nucleolus

Suppose a subset of players, T , has an objection to imputation x

because T would be less unhappy if the imputation were changed
to y .

U(x ,T ) > U(y ,T )

However, there can be a counter-objection from some other subset
of players S of the form

U(y ,S) > U(x ,S) and U(y ,S) ≥ U(x ,T ).

Suppose that all possible objections to x have counterobjections.

There is only one such x and it is called the nucleolus.



The Nucleolus of the Estate Division Problem

Recall, we have an estate of value E and claims c1, . . . , cn. Let T
be a subset of the set of numbers {1, 2, . . . , n}.
Suppose we again take

v(T ) = max







E −
∑

i 6∈T

ci , 0







i.e., the participants in T get to share the amount of money left (if
any) once everyone not in T has had their claims paid in full.

Theorem 3 The Talmud’s solution is the nucleolus of the

‘coalitional game’ with the above v(·).



Nucleolus for Estate of 200

Estate is 200. Wives claim 100, 200, 300. Nucleolus is x∗ = (50, 75, 75).

T v(T ) U(x ,T ) U(x∗,T )
{1} 0 0− x1 −50
{2} 0 0− x2 −75
{3} 0 0− x3 −75
{1, 2} 0 0− x1 − x2 −125
{1, 3} 0 0− x1 − x3 −125
{2, 3} 100 100− x2 − x3 −50
{1, 2, 3} 200 200− x1 − x2 − x3 0

The nucleolus ‘lexicographically’ minimizes the ordered unhappinesses.
E.g. (0,−50,−50,−75,−75,−125,−125).
The unhappiness of the ‘most unhappy’ subset of players is minimized.
Subject to not reducing that subset’s happiness, the unhappiness of the
next most unhappy subset of players in minimized. And so on. This is
also called ‘max-min fairness’.



Nucleolus for Estate of 400

Estate is 400. Wives claim 100, 200, 300. Nucleolus is
x∗ = (50, 125, 225).

T v(T ) U(x ,T ) U(x∗,T )
{1} 0 0− x1 −50
{2} 0 0− x2 −125
{3} 100 100− x3 −125
{1, 2} 100 100− x1 − x2 −75
{1, 3} 200 200− x1 − x3 −75
{2, 3} 300 300− x2 − x3 −50
{1, 2, 3} 400 400− x1 − x2 − x3 0

The nucleolus ‘lexicographically’ minimizes the ordered unhappinesses.
E.g. (0,−50,−50,−75,−75,−125,−125).
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Optimal fees for the bridge

The bridge costs 1 to build and θ1, θ2 ∼ U[0, 1].
Best possible create social welfare of 1/6 = 0.1666̇.

A ‘second-best’ builds the bridge only if θ1 + θ2 ≥ 1.25 and has
social welfare 9/64 = 0.140625.

Agent 1 pays fee of

p1(θ1, θ2) =
(

1
3
(θ1 − θ2) +

1
2

)

1{θ1+θ2≥1.25} .
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Conclusions

• There are many ‘solution concepts’. E.g., Nash,
Kalai-Smorodinski, Shapley, Talmud, consistency, proportional
fairness, max-min fairness, etc.

• Any one solution concept will usually violate the axioms
associated with some other solution concept.
If axioms are meant to represent intuition, then
counter-intuitive examples are inevitable.

• A ‘perfect’ solution to a bargaining, arbitration or voting
problem is unattainable.
One must choose a solution concept on the basis of what
properties one likes and what counter-intuitive examples one
wishes to avoid.


