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OUTLINE1. Bin packing, an introduction2. Discrete uniform distributions and the f8; 11g con-jecture for Best Fit3. A Markov chain model and how to deal with it4. Potential functions and the conjectures they resolve5. Average case analysis of First Fit Decreasing



BIN PACKINGGIVEN: a list of n items L, with sizesa1; : : : ; an 2 (0; 1],
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DEFINITIONSGiven a list of items L with item sizes in (0; 1] and analgorithm A,A(L) = number of unit capacity bins used when Apacks L.OPT(L) = minimum possible number of unit capacitybins into which L can be packed.s(L) = sum of sizes of items in L.(note OPT(L) � s(L))wA(L) = A(L)� s(L) is the `waste' of the packingof L by A.



HOW DIFFICULT IS BIN-PACKING?THEOREM (Karp 1972)To �nd the optimal packing (o�-line) is NP-hard.THEOREM (Karmarkar and Karp 1982)There is a O(n10) polynomial-time o�-line algorithm Asuch that for all L,A(L) � OPT(L) + log2(OPT(L))THEOREM (Brown 1980, Liang 1980)Given any on-line algorithm A and n > 0 there is a listL with jLj � n such thatA(L) � 1:536 OPT(L)(Van Vliet, 1991, 1.536!1.540.)



ALGORITHMSFIRST FIT: place next item in lowest indexed bin intowhich it �ts (FF).This is an `on-line' algorithm.
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.6BEST FIT: place next item in smallest gap into which it�ts (BF).FIRST (BEST) FIT DECREASING: �rst sort the list intononincreasing order (FFD/BFD).This is an `o�-line' algorithm.



WORST CASE RESULTSTHEOREM (Garey, Graham, Ullman, 1972)For all lists L,FF (L); BF (L) � 1710OPT(L) + 1For all lists L with sizes in (0; 1=2],FF (L); BF (L) � 32OPT(L) + 1For all lists L with sizes in (0; 1=4],FF (L); BF (L) � 54OPT(L) + 1THEOREM (Johnson, 1973)For all lists L,FFD(L); BFD(L) � 119OPT(L) + 4For all lists L with sizes in (0; 1=2],FFD(L); BFD(L) � 7160OPT(L) + CFor all lists L with sizes in (0; 1=4],FFD(L); BFD(L) � 2320OPT(L) + C



CONTINUOUS AND DISCRETEUNIFORM DISTRIBUTIONSContinuous uniform:U(0; u]; u � 1sizes uniformly drawn from(0; u]:
Discrete uniform:Ufj; kg; j � ksizes uniformly drawn fromf1=k; 2=k; : : : ; j=kg:



AVERAGE CASE PERFORMANCE OFNF UNDER U(0; u]NEXT FIT: if the current item doesn't �t in the last binstart a new bin (NF)THEOREM (Co�man, Hofri, So and Yao, 1980)E 0BB@ NF(Ln; 1)OPT(Ln; 1)1CCA ! 43 (� 1:333)THEOREM (Karmarkar, 1982)E 0BB@ NF(Ln; u)OPT(Ln; u)1CCA ! 1:359; u = 0:91:361; u = 0:81:328; u = 0:71:259; u = 0:61:195; u = 0:5Simulations indicate thatNF(Ln; u)=OPT(Ln; u) peaksaround u = 0:8.



NOTATION FOR ASYMPTOTIC GROWTH RATESf(n) = O(g(n))means 9� > 0 s.t. f(n) < �g(n) for all n:f(n) = 
(g(n))means 9� > 0 s.t. �g(n) < f(n) for all n:f(n) = �(g(n))means 9�; � > 0 s.t. �g(n) < f(n) < �g(n) forall n.



AVERAGE CASE PERFORMANCE UNDER U(0; u]List of n items, sizes � U(0; u], u < 1EwOPT = O(1)EwFFD = O(1), u � 1=2EwFFD = �(n1=3), 1=2 < u < 1�Minimal waste for an on-line algorithm = �(n1=2)yEwBF =? EwFF =?(Simulations indicate linear waste for all u < 1.)List of n items, sizes � U(0; 1]EwOPT, EwFFD = �(n1=2) zMinimal waste for an on-line algorithm= �(n1=2 log1=2n)EwBF = �(n1=2 log3=4 n)xEwFF = �(n2=3){�Bentley, et al 1984yShor, 1986, 1991zKnoder, 1981, Lueker, 1982xShor, 1986{Shor, 1986, Co�man, Johnson, Shor and Weber, 1991



AN ON-LINE PACKING THEOREMSuppose items can are chosen amongst the real-valuedsizes fa1; : : : ; ajg with probabilitiesp = (p1; : : : ; pj)respectively.A `perfect packing con�guration', can be speci�ed by thevector c = (c1; : : : ; cj), such that c1 items of size a1,plus c2 items of size a2, . . . , plus cj items of size aj, willperfectly pack into a unit size bin.Let C be the set of all vectors specifying possible perfectpacking con�gurations and let � � Rj be the convexcone spanned by the elements of C.EXAMPLESuppose item sizes are f17; 27; 37g. So packing con�gura-tion vectors are (1; 0; 2), (0; 2; 1), (7; 0; 0), (1; 3; 0),(5; 1; 0), (2; 1; 1), (3; 1; 1), (4; 0; 1).



AVERAGE CASE FOR OPTIMAL ALGORITHMUNDER DISCRETE DISTRIBUTIONLet C be the set of all vectors specifying possible perfectpacking con�gurations and let � � Rj be the convexcone spanned by the elements of C.THEOREM (Courcoubetis and Weber, 1986)For on-line packing,EwOPT = 8>>>>>>>>>>>><>>>>>>>>>>>>:O(1)�(n1=2)�(n) as p 2 8>>>>>>>>>>>><>>>>>>>>>>>>: �obdy(�)�c� The proof that EwOPT = O(1) in the �rst of thesecases involves a randomizing algorithm with this prop-erty, i.e., one that decides into which partially full binto put an item according to a probabilistic rule.� Clearly, randomization is not necessary. It is possible,but not easy, to construct a complicated deterministicalgorithm that has provably O(1) expected waste.� Can any well-known heuristic algorithms, such as BFor FF be proved to achieve O(1) waste?



THE Ufj; kg CASEIn the Ufj; kg case, sizes are 1=k; 2=k; : : : ; j=k and�p = (1=j; : : : ; 1=j).We can prove a combinatorial result about perfect pack-ings to show �p 2 �o, and henceTHEOREM Under Ufj; kg,EwOPT(L) = 8>>>>>><>>>>>>:O(1); 1 � j < k� 1�(n1=2); j 2 fk; k � 1g:The combinatorial result we need in order to show �p 2 �is that there exist integers r and m, withrj(j + 1)=2 = mk;such that rj items, r of each of the sizes 1; : : : ; j, canbe packed perfectly into m bins of size k.A slightly stronger result is needed to show �p is strictlyinside �.



AN IRRESISTIBLE DIGRESSIONTHE PERFECT PACKING THEOREMFor all r, j, k, j < k, such thatk j r(1 + 2 + � � �+ j) [ = rj(j + 1)=2]the set of rj items, comprising r each of sizes 1; 2 : : : ; j,can be packed perfectly into bins of size k.The proof of this is rather di�cult. Even the followingsimpler theorem requires some ingenuity to prove.THE SIMPLE PACKING THEOREMFor all j, k, j < k, such thatk j (1 + 2 + � � �+ j) [ = j(j + 1)=2]the set of j items, comprising one of each of the sizes1; 2 : : : ; j, can be packed perfectly into bins of size k.



AVERAGE CASE UNDER DISCRETE DISTRIBUTIONUfj; kgTHEOREM (Co�man, Courcoubetis, Garey, Johnson, McGeoch,Shor, Weber and Yannakakis, 1991)If j 2 fk; k� 1g, thenEwBF = �(n1=2 log3=4 k):EwFF = �(n1=2k1=2):and for any on-line algorithmEwA = 
(n1=2 log1=2 k):If j � p2k + 2:5� 1:5, thenEwBF = O(1):OPEN PROBLEM Ifp2k + 2:5�1:5 < j � k�2,then EwBF =?Simulations suggest waste can be both O(1) and�(n).Some results are known for small values of j and k.



OPEN PROBLEMProve that BF or FF has �(n) expected waste undersome distribution, either the continuous uniformU(0; u]; u < 1;or the discrete uniformUfj; kg; j < k � 1:For U(0; u], one suspects EwBF = �(n), for allu < 1, but this problem remains open.For Ufj; kg, the �rst likely candidate for linear expectedwaste is Uf8; 11g.



MARKOV CHAIN MODELFOR BF AND Uf8; 11gEmpirical observation of the f8; 11g case indicates thatbins with a gap of size 1 are created faster than items ofsize 1 arrive, hence items of size 1 always go in gaps ofsize 1 under the BF rule. With regard to bins with gaps2; : : : ; 9 the process seems to be ergodic.BF induces a Markov chain.STATE:(x2; x3; x4; x5; x6; x7; x8; x9) 2 Z8+,where xi = # of bins in current packing having a gap ofsize i.(Making the conjecture x1 !1)Note: x6 + x7 + x8 + x9 � 1 since at most one bincan be less than half-fullTRANSITIONS:There are 8 transitions in each state, each having proba-bility 0.125.



BEHAVIOR OF BF UNDER Uf8; 11gTRANSITIONSThere are 8 transitions in each state, each having proba-bility 0.125.Let T (x) be the set of eight possible transitions fromstate x.For t 2 T (x), let w(t) = 1 if t creates a new bin witha gap of 1. CONJECTUREIf P (x) is the equilibrium distribution of x, thenXx P (x) Xt2T (x)(0:125)w(t) > 0:125EMPIRICAL OBSERVATIONAverage rate at which excess 1{gaps are produced over a10,000,000 item packing � 0:0012, which suggests theright hand side above � 0:1262, (> 0:125).



APPROXIMATING THE INFINITE MCIn observations of 1000 runs of BF for each n, the maxi-mum component encountered in the state vector,(x2; x3; x4; x5; x6; x7; x8; x9),n ave max max max106 13:8 20107 18:4 24108 23:1 27TRUNCATING THE INFINITE CHAINt(x)i = minfM; t(x)giNUMBER OF STATES(M +1)4+(M +1)3+(M +1)2+(M +1)+1M # states10 16,10520 204,20525 475,22530 954,305Our simulation studies used M = 30.



MULTI-DIMENSIONAL MARKOV CHAINS{ WHAT'S KNOWN {THEOREMS (Malyshev, Menshikov, 1979, Fayolle, 1989)For Markov chains in Zd+,� Simple conditions for ergodicity, null-recurrence andtransience for d = 2 when the Markov chain isjump-bounded, i.e., jjXn+1 �Xnjj < C, andm-limited, i.e., x! x+� has the same probabilityas �x! �x+�, where �xi = min(xi;m).� Claims of results for d = 3, without proof.� Suggested approach for larger d.



A LEMMA ABOUT DRIFTSLEMMA (Hajek 1982)Suppose X1; X2; : : : is a random path of an irreducibleMarkov chain; U is a �nite subset of the state space S;;B are positive reals, and� is a positive-valued functionon S such that(a)j�(Xn+1)� �(Xn)j � B almost surely,and(b)E[�(Xn+1)��(Xn) j Xn = x] � �, x 2 SnU .Then lim supn!1 E[�(Xn)] <1:Note that if � is linear with positive coe�cients then thiswill imply E(jjXnjj) < 1, which will imply boundedwaste.



CAN WE USE A LINEAR POTENTIAL FUNCTION ?Let ti(x) is the transition e�ected by arrival of an itemof size i.ti(x) = x+ �i(x); i = 1; : : : ; 8;Suppose we try a potential function �(x) = y>x. Toprove ergodicity we want to show there are y;� > 0such that0:0125 8Xi=1 y>ti(x)� y>x < �� < 0for all x. Equivalently, we wanty>�(x) = y> 0B@0:0125 8Xi=1 �i(x)1CA < ��where we de�ne expected drift out of state x,�(x) = E(X1�X0 j X0 = x) = 0:0125 8Xi=1 �i(x)KEY OBSERVATIONIf xi > 1, then replacing xi by 1 does not change �(x),which depends only on the pattern of non-zeros. Thusthere are actually only 28 constraints in the above.



LINEAR PROGRAMRecall the de�nition of the expected drift out of state x,�(x) = E(X1�X0 j X0 = x) = 0:0125 8Xi=1 �i(x)Then we want to �nd a solution to the LP:Maximize �subject to y>�(x) < ��,for all x with max(xi) = 1, and y � 0, y2 = 1.SOLUTION � = �0:09959 6> 0so there is no linear potential function that works.



m-STEP, m-LIMITED, MARKOV CHAINBut now consider the expected drift over m steps:�m(x) = E(Xm�X0 j X0 = x)This can be computed recursively.NEW LINEAR PROGRAMMaximize �subject to y>�m(x) < ��,for all x with max(xi) = m, and y � 0, y2 = 1.SOLUTIONFinally get � > 0 for m = 20 (an LP with 35,784constraints and solved by CPLEX in 37 seconds).CONCLUSIONThe 20{step Markov chain is ergodic and the equilibriumvalue of E[P9i=2 xi] <1.COROLLARYSame holds for the 1{step chain.



DEALING WITH THE 1-GAPSSTATES: x1; x2; : : : ; x9,�1 < x1 <1, and x2; : : : ; x9 � 0.TRANSITIONSAs before except that creation of a 1-gap adds 1 to x1and arrival of a 1-item subtracts 1 from x1, even if thatmakes x1 go negative.NEW LINEAR PROGRAMMaximize �subject to y>�m(x) < ��,for all x, and y2; : : : ; y9 � 0, y1 = �1.If � > 0 then this means we must have x1 !1, i.e.,explosion of 1-gaps.PROBLEMThe di�cult is showing that there is negative drift for allstates, not just those with max(xi) = m. Restrictedto that �nite set of states, the LP solution works form =15.



HOW TO GET NEGATIVE DRIFT FROM ALL STATESTRANSITIONSWe look at the expected drift overM steps, where this isnow the minimum of 5,000 steps or 15 steps beyond the�rst exit from the setU = fx : xi < 15; all i � 2g:RECURSIVELY COMPUTEthe expected drift from every state, for the linear poten-tial function �(x) = y>x, wherey1 = �1:000000y2 = 1:190854 y6 = 0:003516y3 = 0:190854 y7 = 0:091374y4 = 0:376722 y8 = 0:020421y5 = 0:329896 y9 = 0(This is from the optimal solution to the LP restricted toU andm = 15.) Note that U is �nite, and for all initialx 62 U there are only �nitely many values of �15(x) tocompute.We �nd that the drift is negative from all states.



CONCLUSION OF PROOFCONCLUDE FROM THE ABOVEFor this chain the expected number of 1-gaps grows lin-early to +1.EVEN STRONGERAlmost surely there will only be a �nite number of stepswhen x1 � 0. (Proof uses supermartingale argumentbased on negative drift and fact that over 5014 steps thedrift is bounded.)COROLLARYThere exists a state, say �x, where there is positive prob-ability that x1 is never again � 0.OBSERVATIONGiven any initial state with x1 > 0 the probability thatthe true Markov chain reaches �x is positive.QED



ANOTHER DRIFT LEMMALEMMA (Co�man, Johnson, Shor, Weber, 1992)Suppose X1; X2; : : : is a random path of an irreducibleMarkov chain; ;B are positive reals, and � is a positive-valued function on S such that(a)j�(Xn+1)� �(Xn)j � B almost surely,and(b)E[�(Xn+1)� �(Xn) j Xn = x] � B for all x.Then for all 0 > lim infn!1 "�(Xn)� n+ (1 + 0)r2n log n# > 0:Note that this implies the Markov chain is transient.



USING LINEAR PROGRAMMINGTO DESIGNQUADRATIC POTENTIAL FUNCTIONSKEY OBSERVATION:Suppose f(x) = x>Ax, where A is a non-negativeand symmetric matrix. Thenf(x+�)� f(x) = 2x>A�+�>A�� 2Xi xi 2664Xj aij�j3775 + C1SoE[f(X1)� f(X0) j X0 = x]� 2Xi xi 2664Xj aij�j(x)3775+ C2Therefore we need to choose aij s.tXj aij�j(x) < �z < 0for all i such that xi � m, and all x.Actually, we take �(x) = px>Ax.



KNOWN AND CONJECTURED RESULTS FORAVERAGE WASTE UNDER BFj = 3 4 5 6 7 8 9 10 11 12k = 5 B-L26 B-L2 B-L47 B-L2 B-L3 B-L238 B-Q1 B-Q1 B-Q1 B-Q29 B-Th B-Q1 B-Q1 B-Q5 B-Q710 B-Th B-Q1 B-Q1 B-Q1 B-Q15 B-Q1311 B-Th B-Q1 B-Q1 B-Q1 B-Q2 Ln-P B-x12 B-Th B-Q1 B-Q1 B-Q1 B-Q2 B-x Ln-P B-x13 B-Th B-Q1 B-Q1 B-Q1 B-Q1 B-x Ln-x Ln-x B-x14 B-Th B-Th B-Q1 B-Q1 B-Q1 B-Q7 B-x Ln-x Ln-x B-xB= Bounded waste O(1)Ln= Linear waste �(n)x= based on experimental evidence onlyTh= proof based on theorem for j � p2k + 2:5� 1:5P= proof based on linear potential function and drift calculationLm= proof based on linear potential function, m stepsQm= proof based on quadratic potential function, m steps



SURPRISE OF Uf6; 13gTHEOREMExpected waste for BF under Uf6; 13g is O(1).THEOREMExpected waste for BFD under Uf6; 13g is �(n).This goes against one's intuition that the o�-line algo-rithm BFD does better than the on-line algorithm BF.



CONCLUSIONS� There's still a lot more to learn about expected be-havior of bin packing algorithms.| For large k and j < k � 3 not only the 1-gapsgo to in�nity.| For j = k � 2, waste might be constant, butproportional to k2 log k, or something like that.| FF is more complicated.| Markov chain technique may have reached the lim-its of its usefulness. Can these results be proved someother way, not relying on long computation?� Techniques here should be applicable to other prob-lems (e.g., queues).� This research has demonstrated the usefulness of thecomputer in the mathematics of operations research,both as an experimental tool to suggest conjectures,and as an aid in constructing the proof of theorems.



OFF-LINE BEHAVIORTHEOREM (Co�man, Johnson, Shor and Weber, 1994)Suppose D is a discrete probability distribution over a�nite set of item sizes S. Then the expected waste ofFFD and BFD under D is one ofO(1) �(n1=2) �(n)There is a polynomial-time algorithm that, given D, de-termines which case holds.



FFD FLUID ALGORITHM ANALYSISEXAMPLE OF j = 6, k = 13Size = 6 5 4 3 2 1Amount = r r r r r r
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Thus the expected waste= n6 � 113 � 18 = n624 = �(n)The idea is to show, by arguments using the Central LimitTheorem, that the average case behavior of FFD must beclose to that predicted by running the uid algorithm.



PAIRS j; k FOR WHICH FFD HAS LINEAREXPECTED WASTE UNDER Ufj; kg
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FFD RESULTSTHEOREMIf j < k1=2 then the expected waste for FFD is O(1).THEOREMThere exist pairs j; k with j arbitrarily large j < k=2,such that the expected waste is �(n).THEOREMFor all pairs j; k with j < k � 1 the expected waste isno more than min 8>><>>: n624; 0:00614npk 9>>=>>;OPEN PROBLEMExpected waste for FFD is provably �(n1=2) if the uidalgorithm terminates with just enough items of size 1 toavoid waste. Do there exist j; k for which this happens?(No. j; k < 3000.)



SUMMARY OF AVERAGE CASE RESULTS FORUNIFORM DISTRIBUTIONSU(0; u] Ufj; kgu = 1 j 2 fk � 1; kgOptimal packing �(n1=2) �(n1=2)Best poly. time alg �(n1=2) �(n1=2)Best poss on-line 
((n logn)1=2) 
(n1=2)Best known on-line �((n logn)1=2) �(n1=2)FFD �(n1=2) �(n1=2)BF �(n1=2 log3=4n) �(n1=2)FF �(n2=3) �(n1=2)u < 1 j < k � 1Optimal packing O(1) O(1)Best poly. time alg O(1) O(1)Best poss on-line 
(n1=2) O(1)Best known on-line �((n logn)1=2) O(1)FFD O(1);�(n1=3) O(1);�(n1=2)?;�(n)BF �(n)? O(1);�(n)FF �(n)? O(1);�(n)?



COMPUTER PROOFCOMPUTING RESOURCES� 128 Megabytes memory� 33 MHz MIPS processor� CPLEXTM linear programming software� ' 24 hours for largest problems� Limiting factor is memory to store the LP constraints(e.g., proof of O(1) waste for (j; k) = (8; 14)requires an LP with 415,953 constraints, (=57 Mb))VALIDITY OF THE PROOFS DOES NOT DEPEND� on correctness of the LP codeVALIDITY OF THE PROOFS DOES DEPEND� on the check that the solution to the LP satis�es allthe constraints that it should� on recursive code that generates the constraints� on maufacturer's certi�cation that computer meetsIEEE oating point standard
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