Observations on the Bomber Problem

Richard Weber[†]

Third International Workshop in Sequential Methodologies 2011

† Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge

Sequential allocation problems

Groundwater Management Burt (1965)

$$F(x,t) = \max_{y \in [0,x]} \{a(y) - c(x,y) + \delta EF(x-y+R_t,t-1)\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

F(x,0) = 0. x is level of water in an aquifer.

Sequential allocation problems

Groundwater Management Burt (1965)

$$\begin{split} F(x,t) &= \max_{y \in [0,x]} \{ a(y) - c(x,y) + \delta EF(x-y+R_t,t-1) \} \\ F(x,0) &= 0. \qquad x \text{ is level of water in an aquifer.} \end{split}$$

Investment Derman, Lieberman and Ross (1975)

$$\begin{split} F(x,t) &= q_t F(x,t-1) + p_t \max_{y \in [0,x]} \{a(y) + F(x-y,t-1)\} \\ F(x,0) &= 0. \end{split} \text{ is remaining capital of dollars.} \end{split}$$

Sequential allocation problems

Groundwater Management Burt (1965)

$$\begin{split} F(x,t) &= \max_{y \in [0,x]} \{ a(y) - c(x,y) + \delta EF(x-y+R_t,t-1) \} \\ F(x,0) &= 0. \qquad x \text{ is level of water in an aquifer.} \end{split}$$

Investment Derman, Lieberman and Ross (1975)

$$\begin{split} F(x,t) &= q_t F(x,t-1) + p_t \max_{y \in [0,x]} \{a(y) + F(x-y,t-1)\} \\ F(x,0) &= 0. \qquad x \text{ is remaining capital of dollars.} \end{split}$$

Fighter

$$F(n,t) = q_t F(n,t-1) + p_t \max_{k \in \{1,\dots,n\}} \{a(k) + F(n-k,t-1)\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

F(n,0) = 0. k is remaining stock of missiles.

Fighter Problems

Invincible Fighter Bartroff et al (2010)

$$F(n,t) = q_t F(n,t-1) + p_t \max_{k \in \{1,\dots,n\}} \{a(k) + F(n-k,t-1)\}$$

$$F(n,0) = 0.$$

Fighter Problems

Invincible Fighter Bartroff et al (2010)

$$F(n,t) = q_t F(n,t-1) + p_t \max_{k \in \{1,\dots,n\}} \{a(k) + F(n-k,t-1)\}$$

$$F(n,0) = 0.$$

Frail Fighter Weber (1985)

$$F(n,t) = q_t F(n,t-1) + p_t \max_{k \in \{1,\dots,n\}} \{a(k) + a(k)F(n-k,t-1)]\}$$

Fighter Problems

Invincible Fighter Bartroff et al (2010)

$$F(n,t) = q_t F(n,t-1) + p_t \max_{k \in \{1,\dots,n\}} \{a(k) + F(n-k,t-1)\}$$

$$F(n,0) = 0.$$

Frail Fighter Weber (1985)

$$F(n,t) = q_t F(n,t-1) + p_t \max_{k \in \{1,\dots,n\}} \{a(k) + a(k)F(n-k,t-1)]\}$$

General Fighter

$$F(n,t) = q_t F(n,t-1) + p_t \max_{k \in \{1,\dots,n\}} \{a(k) + c(k)F(n-k,t-1)\}$$

Might take c(k) = a(k) + u(1 - a(k)).

Monotonicity properties (A), (B) and (C)

$$F(n,t) = q_t F(n,t-1) + p_t \max_{k \in \{1,\dots,n\}} \{a(k) + c(k)F(n-k,t-1)\}$$

Let k(n,t) be the maximizing k in the above. Intuitively obvious properties of an optimal policy are:

(A)
$$k(n,t)$$
 \searrow as $t \nearrow$
(B) $k(n,t)$ \nearrow as $n \nearrow$
(C) $n - k(n,t)$ \nearrow as $n \nearrow$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

lf

(i) $\{p_t\}_{t=1,...}$ is any sequence of probabilities;

lf

(i) {p_t}_{t=1,...} is any sequence of probabilities;
(ii) a(k) is nondecreasing and concave in k, then
(A) holds for the invincible fighter, in the strong sense that

(A)^{*}: $k(n, p_{t-1}, \ldots, p_1)$ is nonincreasing in each p_i .

and for the frail fighter, nonincreasing in p_1 .

lf

(i) {p_t}_{t=1,...} is any sequence of probabilities;
(ii) a(k) is nondecreasing and concave in k, then
(A) holds for the invincible fighter, in the strong sense that

(A)^{*}: $k(n, p_{t-1}, \ldots, p_1)$ is nonincreasing in each p_i .

and for the frail fighter, nonincreasing in p_1 . Does (A) hold for the general fighter?

lf

(i) {p_t}_{t=1,...} is any sequence of probabilities;
(ii) a(k) is nondecreasing and concave in k, then
(A) holds for the invincible fighter, in the strong sense that

(A)^{*}: $k(n, p_{t-1}, \ldots, p_1)$ is nonincreasing in each p_i .

and for the frail fighter, nonincreasing in p₁.
Does (A) hold for the general fighter?
(B) holds for the invincible fighter, but not frail fighter.

lf

(i) {p_t}_{t=1,...} is any sequence of probabilities;
(ii) a(k) is nondecreasing and concave in k, then
(A) holds for the invincible fighter, in the strong sense that

(A)*: $k(n, p_{t-1}, \ldots, p_1)$ is nonincreasing in each p_i .

and for the frail fighter, nonincreasing in p_1 .

Does (A) hold for the general fighter?

(B) holds for the invincible fighter, but not frail fighter.

If also,

(iii) c(k) is nondecreasing and log-concave in k, then **(C)** holds for the general fighter.

Bomber Problem

Klinger and Brown (1968)

With discrete ammunition, and attacks occurring as a Poisson process of rate 1, the continuous-time bomber problem (CBP) has defining equations:

$$\begin{split} P(n,t) &= P(\text{survive to until time } t) \\ &= e^{-t} + \int_0^t \max_{k \in \{1,\dots,n\}} c(k) P(n-k,s) e^{-(t-s)} \, ds. \\ P(n,0) &= 1. \end{split}$$

Bernoulli model: $a(k) = 1 - \theta^k$, a concave function of k.

Doubly-discrete Bomber Problem (DBP)

Aim is to survive t periods. With s periods to go, an attack occurs with probability p_s (= $1 - q_s$).

$$P(n,t) = q_t P(n,t-1) + p_t \max_{k \in \{1,\dots,n\}} c(k) P(n-k,t-1)$$
$$P(n,0) = 1.$$

Again we are interested in whether the following are true of false.

(A)
$$k(n,t) \searrow$$
 as $t \nearrow$ proved
(C) $n - k(n,t) \nearrow$ as $n \nearrow$ proved
(B) $k(n,t) \nearrow$ as $n \nearrow$?

(A) (B) (C)s and open problems

 $F(n,t) = q_t F(n,t-1) + p_t \max_{k \in \{1,\ldots,n\}} \{a(k) + c(k)F(n-k,t-1)\}$

F(n,0)	a(k)	c(k)	p_t	(A)	(B)	(C)	
0	Bernoulli	= u + (1 - u)a(k)	= p	?	no	yes	general fighter
0	concave	= u + (1 - u)a(k)	= 1	yes	no	yes	general fighter
0	concave	$=\delta$		(A)*	yes	yes	invincible fighter
0	concave	= a(k)		yes	no	yes	frail fighter

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

(A) (B) (C)s and open problems

 $F(n,t) = q_t F(n,t-1) + p_t \max_{k \in \{1,\ldots,n\}} \{a(k) + c(k)F(n-k,t-1)\}$

F(n,0)	a(k)	c(k)	p_t	(A)	(B)	(C)	
0	Bernoulli	= u + (1 - u)a(k)	= p	?	no	yes	general fighter
0	concave	= u + (1 - u)a(k)	= 1	yes	no	yes	general fighter
0	concave	$=\delta$		(A)*	yes	yes	invincible fighter
0	concave	= a(k)		yes	no	yes	frail fighter
1	0	Bernoulli	= p	yes	?	yes	bomber
1	0	log-concave	= 1	yes	yes	yes	bomber
1	0	log-concave		yes	no	yes	bomber
1	0	log-concave	= p	yes	no	yes	bomber
1	0	concave	= p	yes	no	yes	bomber

(A) (B) (C)s and open problems

 $F(n,t) = q_t F(n,t-1) + p_t \max_{k \in \{1,\ldots,n\}} \{a(k) + c(k)F(n-k,t-1)\}$

F(n,0)	a(k)	c(k)	p_t	(A)	(B)	(C)	
0	Bernoulli	= u + (1 - u)a(k)	= p	?	no	yes	general fighter
0	concave	= u + (1 - u)a(k)	= 1	yes	no	yes	general fighter
0	concave	$=\delta$		(A)*	yes	yes	invincible fighter
0	concave	= a(k)		yes	no	yes	frail fighter
1	0	Bernoulli	= p	yes	?	yes	bomber
1	0	log-concave	= 1	yes	yes	yes	bomber
1	0	log-concave		yes	no	yes	bomber
1	0	log-concave	= p	yes	no	yes	bomber
1	0	concave	= p	yes	no	yes	bomber
≥ 0	concave	log-concave				yes	bomber/fighter

(A) (B) (C) s of the bomber problem

Theorem 1 (A) and **(C)** hold for the DBP (and CBP, CDBP and CCBP) under generous assumptions that (i) $\{p_t\}_{t=1,...}$ is any sequence of probabilities (i.e. nonstationary). (iii) c(k) is any nondecreasing and log-concave function of k.

Is (B) true under these same generous assumptions?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Suppose c(k) is merely log-concave in k (rather than concave in k)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

(A) and (C) are true.(B) is not true.

$$p_t = \frac{10}{11} \text{ for all } t.$$

$$\{c(0), c(1), c(2), c(3), c(4), \ldots\} = \{0, \frac{3}{16}, \frac{1}{2}, 1, 1, \ldots\}.$$
Note that $c(i)^2 \ge c(i+1)c(i-1)$ for all $i \ge 1$.

$${k(n,4)}_{n=1,2,\ldots} = {1, 1, 1, 2, 2, 3, 2, \ldots}.$$

i.e. $3 = k(6,4) > k(7,4) = 2.$

Suppose c(k) is merely concave in k (rather than of Bernoulli form $c(k) = 1 - v\theta^k$)

(A) and (C) are true. (B) is not true. Let ammunition be continuous (CDBP).

$$P(x,1) = q + pc(x)$$

$$P(x,2) = q^{2} + qpc(x) + \max_{y} \left\{ pqc(y) + p^{2}c(y)c(x-y) \right\}$$

We design $c(\cdot)$ so that it is not log-concave in the neighbourhood of x = 3, and so that in this neighbourhood,

$$y(x,2) = \arg\max_{y} \{c(y)P(x-y,1)\} = \frac{1+x}{2}.$$

▲日▼▲□▼▲□▼▲□▼ □ のので

c(x) for which P(x, 2) is not log-concave in the neighbourhood of x = 3

$$c(x) = \min\left\{\frac{1}{96} + \frac{31}{96}x, \frac{17}{96} + \frac{31}{192}x, \frac{5}{12} + \frac{31}{384}x, 1\right\}$$
$$= \begin{cases} \frac{1}{96} + \frac{31}{96}x, & x \in \left[0, \frac{32}{31}\right] \\ \frac{17}{96} + \frac{31}{192}x, & x \in \left[\frac{32}{31}, \frac{92}{31}\right] \\ \frac{5}{12} + \frac{31}{384}x, & x \in \left[\frac{92}{31}, \frac{224}{31}\right] \\ 1, & x \ge \frac{224}{31} \end{cases}$$

(B) is not true under generous assumptions

$$y(32,3) = \arg \max_{y \in [0,5.24]} \left[c(y)F(31.4 - y, 2) \right] = 14.0079$$
$$y(33,3) = \arg \max_{y \in [0,5.25]} \left[c(y)F(31.5 - y, 2) \right] = 13.9174.$$

(B) is not true under generous assumptions

$$y(32,3) = \arg \max_{y \in [0,5.24]} \left[c(y)F(31.4 - y, 2) \right] = 14.0079$$
$$y(33,3) = \arg \max_{y \in [0,5.25]} \left[c(y)F(31.5 - y, 2) \right] = 13.9174.$$

(B) fails because

$$3.4027 = \arg \max_{y \in [0,6.39]} \left[c(y) P(6.39 - y, 2) \right]$$
$$3.3965 = \arg \max_{y \in [0,6.40]} \left[c(y) P(6.40 - y, 2) \right].$$

(B) is not true under generous assumptions

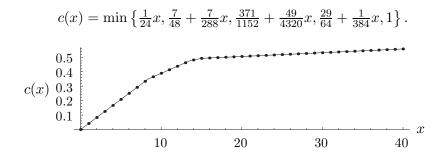
$$y(32,3) = \arg \max_{y \in [0,5.24]} \left[c(y)F(31.4 - y, 2) \right] = 14.0079$$
$$y(33,3) = \arg \max_{y \in [0,5.25]} \left[c(y)F(31.5 - y, 2) \right] = 13.9174.$$

(B) fails because

$$3.4027 = \arg \max_{y \in [0, 6.39]} \left[c(y) P(6.39 - y, 2) \right]$$
$$3.3965 = \arg \max_{y \in [0, 6.40]} \left[c(y) P(6.40 - y, 2) \right].$$

6.39 - 3.4027 = 2.98736.40 - 3.3965 = 3.0035lie just either side of x = 3, where P(x, 2) is not log-concave.

Discrete ammunition counterexample



$$\begin{split} \{k(n,2)\}_{n=1}^{40} &= \{1,2,3,4,5,6,7,8,9,9,9,9,10,10,11,11,12,12,13,13, \\ &\quad 13,14,14,14,14,14,15,15,15,16,17,18,19,20,21,22,23,24,25\} \\ \{k(n,3)\}_{n=1}^{40} &= \{1,2,3,4,5,6,6,7,7,8,8,8,8,9,9,9,9,10,11,12, \\ &\quad 13,13,13,13,14,14,14,14,14,15,14,15,14,15,14,15,15,15,15,15\}. \end{split}$$

▲日▼▲□▼▲□▼▲□▼ □ のので

So k(31,3) = 15 > 14 = k(32,3), in contradiction to **(B)**.

Log-concavity of P(n,t)

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

1. (A) follows from $\frac{P(n+1,t)}{P(n,t)} \nearrow$ in t.

Log-concavity of P(n,t)

- 1. (A) follows from $\frac{P(n+1,t)}{P(n,t)} \nearrow$ in t.
- 2. **(B)** would follow from $\frac{P(n+1,t)}{P(n,t)} \searrow$ in n, i.e. if P(n,t) is log-concave in n.

Log-concavity of P(n, t)

- 1. (A) follows from $\frac{P(n+1,t)}{P(n,t)} \nearrow$ in t.
- (B) would follow from P(n+1,t)/P(n,t) ↓ in n,
 i.e. if P(n,t) is log-concave in n.
 P(n,1) = q + pc(n) is concave in n.
 P(n,2) is log-concave in n (for c(k) = 1 θ^k model).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Log-concavity of P(n,t)

- 1. (A) follows from $\frac{P(n+1,t)}{P(n,t)} \nearrow$ in t.
- 2. **(B)** would follow from $\frac{P(n+1,t)}{P(n,t)} \searrow$ in n, i.e. if P(n,t) is log-concave in n. P(n,1) = q + pc(n) is concave in n. P(n,2) is log-concave in n (for $c(k) = 1 - \theta^k$ model). P(n,t) is not necessarily log-concave when $t \ge 3$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

P(n,t) fails to be log-concave when

$$\Delta(n,t) = \frac{P(n+1,t)}{P(n,t)} - \frac{P(n,t)}{P(n-1,t)} > 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

for some n, t and some p, θ .

P(n,t) fails to be log-concave when

$$\Delta(n,t) = \frac{P(n+1,t)}{P(n,t)} - \frac{P(n,t)}{P(n-1,t)} > 0$$

▲日▼▲□▼▲□▼▲□▼ □ のので

for some n, t and some p, θ .

 $p = 0.58, \ \theta = 0.6, \ \Delta(8,3) = \frac{93682400617500}{668426731570135139} = 0.0001402.$ Simons and Yao (1990)

P(n,t) fails to be log-concave when

$$\Delta(n,t) = \frac{P(n+1,t)}{P(n,t)} - \frac{P(n,t)}{P(n-1,t)} > 0$$

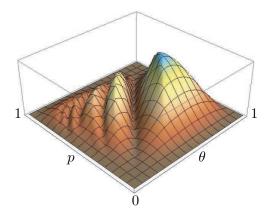
▲日▼▲□▼▲□▼▲□▼ □ のので

for some n, t and some p, θ .

 $p = 0.58, \ \theta = 0.6, \ \Delta(8,3) = \frac{93682400617500}{668426731570135139} = 0.0001402.$ Simons and Yao (1990)

 $p = 0.7207, \ \theta = 0.7254, \ \Delta(8,3) = 0.0004779.$ (most positive Δ found)

Regions of Log-concavity in DBP



 $P(8,3)^2 - P(7,3)P(9,3)$ as a function of p and θ . The region where this quantity is negative lies in the central trench, where p is a bit less than θ .

1. I know of no example where $\Delta(n,t) > 0$ for n < 8.

- 1. I know of no example where $\Delta(n,t) > 0$ for n < 8.
- 2. Log-concavity can fail for arbitrarily large n.

E.g. $\theta=p=99/100, \ \Delta(n,3)>0$ for $n=16,22,28,34,\ldots$.

Log-concavity of P(n, t) can fail in DBP

- 1. I know of no example where $\Delta(n,t) > 0$ for n < 8.
- 2. Log-concavity can fail for arbitrarily large n. E.g. $\theta = p = 99/100$, $\Delta(n,3) > 0$ for $n = 16, 22, 28, 34, \dots$.

Log-concavity can fail for arbitrarily large t.
 Take p a bit less than θ and both approaching 1.

Log-concavity of P(n,t) can fail in DBP

- 1. I know of no example where $\Delta(n,t) > 0$ for n < 8.
- Log-concavity can fail for arbitrarily large n.
 E.g. θ = p = 99/100, Δ(n,3) > 0 for n = 16, 22, 28, 34,
- Log-concavity can fail for arbitrarily large t.
 Take p a bit less than θ and both approaching 1.
- 4. Continuous time is the limit as $p \rightarrow 0$. So what about small p? For p = 0.01, $\theta = 0.01000048$, $\Delta(8,3) = 4.58768 \times 10^{-15}$. (This really is positive; checked in exact arithmetic).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Log-concavity in CBP

No examples have (yet!) been found in CBP for which P(n,t) is not log-concave (continuous time, discrete ammunition).

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Log-concavity in CBP

No examples have (yet!) been found in CBP for which P(n,t) is not log-concave (continuous time, discrete ammunition).

However, for a slightly different model P(n,t) fails to be log-concave (and nonetheless **(B)** appears to hold).

We take $c(k) = 1 - (7/8)^k$ and make the restriction that only 1, 2 or 3 missiles may be fired.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

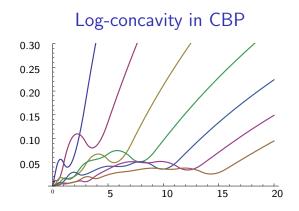


Figure: $-\Delta(n,t) = P(n,t)/P(n-1,t) - P(n+1,t)/P(n,t)$, for the continuous-time bomber problem with $\theta = 1/2$, for $0 \le t \le 20$ and $n = 2, \ldots, 8$ (reading left to right across the asymptotes). Although we see that P(n,t) is log-concave in n, the fact that these functions are not monotone increasing, in either n or t, means that it is probably difficult to prove that P(n,t) is log-concave in n by some sort of induction on n, or using differential equations in t.

Continuous ammunition

CDBP and CCBP (continuous ammunition)

$$P(x,t) = qP(x,t-1) + p \max_{0 < y \le x} c(y)P(x-y,t-1)$$

or

$$\frac{d}{dt}P(x,t) = \max_{0 < y \le x} c(y)P(x-y,t)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1. P(x,t) is log-concave in $x \iff$ (B) is true. $P(x,t)P''(x,t) - P'(x,t)^2 < 0.$

Consider iterating, from a start of $P_0(n,t) = 1$, with

$$P_{i}(n,t) = e^{-t} + \int_{0}^{t} \max_{k \in \{1,\dots,n\}} c(k) P_{i-1}(n-k,s) e^{-(t-s)} ds$$

Might we inductively show that $P_i(n,t)$ is log-concave? This poses a problem of maximizing the probability of surviving until time t, or until the first i attacks have been repelled. Discrete time equivalent problem is

$$P_i(n,t) = q^t + \sum_{s=1}^{t-1} \max_{k \in \{1,\dots,n\}} c(k) P_{i-1}(n-k,s) q^{t-1-s} p$$

Discrete time equivalent problem is

$$P_{i}(n,t) = q^{t} + \sum_{s=1}^{t-1} \max_{k \in \{1,\dots,n\}} c(k) P_{i-1}(n-k,s) q^{t-1-s} p$$

Discrete time equivalent problem is

$$P_i(n,t) = q^t + \sum_{s=1}^{t-1} \max_{k \in \{1,\dots,n\}} c(k) P_{i-1}(n-k,s) q^{t-1-s} p$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Denote the maximizer of $c(k)P_i(n-k,s-1)$ as $k_i(n,s)$.

Discrete time equivalent problem is

$$P_i(n,t) = q^t + \sum_{s=1}^{t-1} \max_{k \in \{1,\dots,n\}} c(k) P_{i-1}(n-k,s) q^{t-1-s} p$$

Denote the maximizer of $c(k)P_i(n-k,s-1)$ as $k_i(n,s)$.

With p = 1/2, $c(k) = 1 - (3/5)^k$, we find $k_8(7, 18) = 2 > k_8(8, 18) = 1$.

So **(B)** does not hold for $k_8(n, 18)$.

Also, rather surprisingly, $k_7(7,17) = 1$ and $k_8(7,17) = 2$.

・ロ・・母・・ヨ・・ヨ・ うへぐ

Varying the final missile's miss probability (B)

Suppose that if the last missile is fired in a volley of k then

$$a(k) = 1 - \psi \theta^{k-1}, \quad v \in [\theta, 1].$$

Might we find $k(n,t,\psi)$ nonincreasing in ψ so that $k(n,t) = k(n,t,\theta) \ge k(n,t,1) = k(n-1,t)$?

No counterexample to this has (yet) been found.

Another variation in which (B) fails

Suppose the boundary condition P(n,0) = 1 is changed to

$$P(0,0) = 1$$

 $P(n,0) = 1 + \lambda, \quad n = 1, 2, \dots$

Then $k(n,t) \to k(n-1,t)$ as $\lambda \to \infty$.

Another variation in which (B) fails

Suppose the boundary condition P(n,0) = 1 is changed to

$$P(0,0) = 1$$

 $P(n,0) = 1 + \lambda, \quad n = 1, 2, \dots$

Then $k(n,t) \to k(n-1,t)$ as $\lambda \to \infty$.

But with $p=\theta=3/5,$ we find $p(8,3,\lambda)$ is not nonincreasing in $\lambda,$ and indeed

k(8,3,0.6) = 4 and k(9,3,0.6) = 3.

So (B) fails, with this slight change of boundary condition.

Another variation in which (B) fails

Suppose the boundary condition P(n,0) = 1 is changed to

$$P(0,0) = 1$$

 $P(n,0) = 1 + \lambda, \quad n = 1, 2, \dots$

Then $k(n,t) \to k(n-1,t)$ as $\lambda \to \infty$.

But with $p=\theta=3/5,$ we find $p(8,3,\lambda)$ is not nonincreasing in $\lambda,$ and indeed

k(8,3,0.6) = 4 and k(9,3,0.6) = 3.

So (B) fails, with this slight change of boundary condition.

Interestingly, for a boundary condition of P(n,0) = n, we find no counterexample to P(n,t) being log-concave.

Special cases when (B) is true

1. DBP: $k(n+1,t) \ge k(n,t)$ for $t \le 3$ or $n \le 3$.

Special cases when (B) is true

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

1. DBP: $k(n+1,t) \ge k(n,t)$ for $t \le 3$ or $n \le 3$. 2. DBP: $k(n+1,t) = 1 \implies k(n,t) = 1$.

Conclusions

1. Proofs of (A) and (C) make no special use of $c(k) = 1 - \theta^k$. In discrete-time models they do not need $p_t = p$. They need only that c(k) be log-concave. Yet (B) does not hold under such generous assumptions.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusions

- 1. Proofs of **(A)** and **(C)** make no special use of $c(k) = 1 \theta^k$. In discrete-time models they do not need $p_t = p$. They need only that c(k) be log-concave. Yet **(B)** does not hold under such generous assumptions.
- 2. Experimental evidence still suggests the following are true (in the doubly discrete versions of the problems):

(A) in the general fighter problem, when p_t is nonstationary and $a(k) = 1 - \theta^k$, $c(k) = 1 - v\theta^k$.

(B) in the bomber problem, when p_t is nonstationary and $c(k) = 1 - \theta^k$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bibliography

Bartroff J (2011) A proof of the bomber problem's spend-it-all conjecture. Sequential Analysis 30:52–57

Bartroff J, Samuel-Cahn E (2011) The fighter problem: optimal allocation of a discrete commodity. Adv Appl Probab 43:121–130

Bartroff J, Goldstein L, Rinott R, Samuel-Cahn E (2010a) On optimal allocation of a continuous resource using an iterative approach and total positivity. Adv Appl Probab 42(3):795–815

Bartroff J, Goldstein L, Samuel-Cahn E (2010b) The spend-it-all region and small time results for the continuous bomber problem. Sequential Analysis 29:275–291

Burt OR (1964) Optimal resource use over time with an application to ground water. Manage Sci 11(1):80–93

Derman C, Lieberman GJ, Ross SM (1975) A stochastic sequential allocation model. Oper Res 23(6):1120–1130

Huh WT, Krishnamurthy CK (2011) Concavity and monotonicity properties in a groundwater management model, (private communication)

Klinger A (1969) On optimum stochastic allocation. Management Science 16(3):208–210

Klinger A, Brown TA (1968) Allocating unreliable units to random demands. In: Karreman H (ed) Stochastic Optimization and Control, Wiley, pp 173–209

Knapp KC, Olson LJ (1995) The economics of conjunctive groundwater management with stochastic surface supplies. Journal of Environmental Economics and Management 28(3):340–356

Marshall AW, Olkin I (1979) Inequalities: Theory of Majorization and Its Applications. Academic Press, New York

Mastran DV, Thomas CJ (1973) Decision rules for attacking targets of opportunity. Naval Res Logist Q 20(4):661–672

Samuel E (1970) On some problems in operations research. J Appl Probab 7:157–164

Sato M (1997a) On optimal ammunition usage when hunting fleeing targets. Probability in the Engineering and Informational Sciences 11:49–64

Sato M (1997b) A stochastic sequential allocation problem where the resources can be replenished. J Oper Res Soc Japan 40(2):206-219

Shepp LA, Simons G, Yao YC (1991) On a problem of ammunition rationing. Adv Appl Prob 23:624–641

Simons G, Yao YC (1990) Some results on the bomber problem. Adv Appl Prob 22:412–432

Topkis DM (1978) Minimizing a submodular function on a lattice. Oper Res 26(2):305–321

Weber RR (1985) A problem of ammunition rationing. In: Radermacher FJ, Ritter G, Ross SM (eds) Conference report: Stochastic Dynamic Optimization and Applications in Scheduling and Related Fields, held at University of Passau, Facultät für Mathematik und Informatik, p 148