
9 Chi-squared tests of categorical data

A statistician is someone who refuses to play the national lottery,
but who does eat British beef. (anonymous)

9.1 Pearson’s chi-squared statistic

Suppose, as in Section 8.6, that we observe x1, . . . , xk, the numbers of times that
each of k possible outcomes occurs in n independent trials, and seek to make the
goodness-of-fit test of

H0 : pi = pi(θ) for θ ∈ Θ0 against H1 : pi are unrestricted.

Recall

2 logLx(H0, H1) = 2
k∑

i=1

xi log p̂i − 2
k∑

i=1

xi log pi(θ̂) = 2
k∑

i=1

xi log
(
p̂i/pi(θ̂)

)
,

where p̂i = xi/n and θ̂ is the MLE of θ under H0. Let oi = xi denote the number
of time that outcome i occurred and let ei = npi(θ̂) denote the expected number of
times it would occur under H0. It is usual to display the data in k cells, writing oi

in cell i. Let δi = oi − ei. Then

2 logLx(H0, H1) = 2
k∑

i=1

xi log
(
(xi/n)/pi(θ̂)

)

= 2
k∑

i=1

oi log(oi/ei)

= 2
k∑

i=1

(δi + ei) log(1 + δi/ei)

= 2
k∑

i=1

(δi + ei)(δi/ei − δ2
i /2e

2
i + · · ·)

+

k∑
i=1

δ2
i /ei

=
k∑

i=1

(oi − ei)
2

ei
(1)

This is called the Pearson chi-squared statistic.
For H0 we have to choose θ. Suppose the optimization over θ has p degrees of

freedom. For H1 we have k − 1 parameters to choose. So the difference of these
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degrees of freedom is k − p − 1. Thus, if H0 is true the statistic (1) ∼ χ2
k−p−1

approximately. A mnemonic for the d.f. is

d.f. = #(cells) − #(parameters estimated) −1. (2)

Note that

k∑
i=1

(oi − ei)
2

ei
=

k∑
i=1

[
o2

i

ei
− 2oi + ei

]
=

k∑
i=1

o2
i

ei
− 2n + n =

k∑
i=1

o2
i

ei
− n . (3)

Sometimes (3) is easier to compute than (1).

Example 9.1 For the data fromMendel’s experiment, the test statistic has the value
0.618. This is to be compared to χ2

3, for which the 10% and 95% points are 0.584
and 7.81. Thus we certainly do not reject the theoretical model. Indeed, we would
expect the observed counts to show even greater disparity from the theoretical model
about 90% of the time.

Similar analysis has been made of many of Mendel’s other experiments. The data
and theory turn out to be too close for comfort. Current thinking is that Mendel’s
theory is right but that his data were massaged by somebody (Fisher thought it was
Mendel’s gardening assistant) to improve its agreement with the theory.

9.2 χ2 test of homogeneity

Suppose we have a rectangular array of cells with m rows and n columns, with Xij

items in the (i, j) th cell of the array. Denote the row, column and overall sums by

Xi· =
n∑

j=1

Xij, X·j =
m∑

i=1

Xij, X·· =
m∑

i=1

n∑
j=1

Xij.

Suppose the row sums are fixed and the distribution of (Xi1, . . . , Xin) in row i is
multinomial with probabilities (pi1, . . . , pin), independently of the other rows. We
want to test the hypothesis that the distribution in each row is the same, i.e., H0 : pij

is the same for all i, (= pj) say, for each j = 1, . . . , n. The alternative hypothesis is
H1 : pij are unrestricted. We have

log f(x) = const +
∑

i

∑
j

xij log pij , so that

sup
H1

log f(x) = const + sup

{
m∑

i=1

n∑
j=1

xij log pij

∣∣∣∣∣ 0 ≤ pij ≤ 1,
n∑

j=1

pij = 1 ∀i

}

Now,
∑

j xij log pij may be maximized subject to
∑

j pij = 1 by a Lagrangian tech-

nique. The maximum of
∑

j xij log pij + λ
(
1−

∑
j pij

)
occurs when xij/pij = λ,
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∀j. Then the constraints give λ =
∑

j xij and the corresponding maximizing pij is
p̂ij = xij/

∑
j xij = xij/xi·. Hence,

sup
H1

log f(x) = const +
m∑

i=1

n∑
j=1

xij log(xij/xi·).

Likewise,

sup
H0

logf(x) = const + sup

{∑
i

∑
j

xij log pj

∣∣∣∣∣ 0 ≤ pj ≤ 1,
∑

j

pj = 1

}
,

= const +
∑

i

∑
j

xij log(x·j/x··).

Here p̂j = x·j/x··. Let oij = xij and write eij = p̂jxi· = (x·j/x··)xi· for the expected
number of items in position (i, j) under H0. As before, let δij = oij − eij. Then,

2 logLx(H0, H1) = 2
∑

i

∑
j

xij log(xijx··/xi·x·j)

= 2
∑

i

∑
j

oij log(oij/eij)

= 2
∑

i

∑
j

(δij + eij) log(1 + δij/eij)

+

∑
i

∑
j

δ2
ij/eij

=
∑

i

∑
j

(oij − eij)
2/eij . (4)

For H0, we have (n−1) parameters to choose, for H1 we have m(n−1) parameters
to choose, so the degrees of freedom is (n − 1)(m − 1). Thus, if H0 is true the
statistic (4) ∼ χ2

(n−1)(m−1) approximately.

Example 9.2 The observed (and expected) counts for the study about aspirin and
heart attacks described in Example 1.2 are

Heart attack No heart attack Total

Aspirin 104 (146.52) 10,933 (10890.5) 11,037
Placebo 189 (146.48) 10,845 (10887.5) 11,034

Total 293 21,778 22,071

E.g., e11 =
( 293

22071

)
11037 = 146.52. The χ2 statistic is

(104−146.52)2

146.52 + (189−146.48)2

46.48 + (10933−10890.5)2

10890.5 + (10845−10887.5)2

10887.5 = 25.01 .
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The 95% point of χ2
1 is 3.84. Since 25.01 > 3.84, we reject the hypothesis that heart

attack rate is independent of whether the subject did or did not take aspirin.
Note that if there had been only a tenth as many subjects, but the same percent-

ages in each in cell, the statistic would have been 2.501 and not significant.

9.3 χ2 test of row and column independence

This χ2 test is similar to that of Section 9.2, but the hypotheses are different. Again,
observations are classified into a m×n rectangular array of cells, commonly called a
contingency table. The null hypothesis is that the row into which an observation
falls is independent of the column into which it falls.

Example 9.3 A researcher pretended to drop pencils in a lift and observed whether
the other occupant helped to pick them up.

Helped Did not help Total
Men 370 (337.171) 950 (982.829) 1,320
Women 300 (332.829) 1,003 (970.171) 1,303

Total 670 1,953 2,623

To test the independence of rows and columns we take

H0 : pij = piqj with 0 ≤ pi, qj ≤ 1,
∑

i

pi = 1,
∑

j

qj = 1 ;

H1 : pij arbitrary s.t. 0 ≤ pij ≤ 1,
∑
i,j

pij = 1 .

The same approach as previously gives MLEs under H0 and H1 of

p̂i = xi·/x··, q̂j = x·j/x··, eij = p̂iq̂jx·· = (xi·x·j/x··), and p̂ij = xij/x·· .

The test statistic can again be show to be about
∑

ij(oij − eij)
2/eij. The eij are

shown in parentheses in the table. E.g., e11 = p̂1q̂1n =
(1320

2623

) ( 670
2623

)
2623 = 337.171.

The number of free parameters under H1 and H0 are mn − 1 and (m − 1) + (n− 1)
respectively. The difference of these is (m−1)(n−1), so the statistic is to be compared
to χ2

(m−1)(n−1). For the data above this is 8.642, which is significant compared to χ2
1.

We have now seen Pearson χ2 tests in three different settings. Such a test is
appropriate whenever the data can be viewed as numbers of times that certain out-
comes have occurred and we wish to test a hypothesis H0 about the probabilities
with which they occur. Any unknown parameter is estimated by maximizing the
likelihood function that pertains under H0 and ei is computed as the expected num-
ber of times outcome i occurs if that parameter is replaced by this MLE value. The
statistic is (1), where the sum is computed over all cells. The d.f. is given by (2).
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