
3 The Rao-Blackwell theorem

Variance is what any two statisticians are at.

3.1 Mean squared error

A good estimator should take values close to the true value of the parameter it is
attempting to estimate. If θ̂ is an unbiased estimator of θ then E (θ̂ − θ)2 is the
variance of θ̂. If θ̂ is a biased estimator of θ then E (θ̂ − θ)2 is no longer the variance
of θ̂, but it is still useful as a measure of the mean squared error (MSE) of θ̂.

Example 3.1 Consider the estimators in Example 1.3. Each is unbiased, so its MSE
is just its variance.

var(p̂) = var

[
1

n
(X1 + · · ·+ Xn)

]
=

var(X1) · · ·+ var(Xn)

n2 =
np(1− p)

n2 =
p(1− p)

n

var(p̃) = var

[
1

3
(X1 + 2X2)

]
=

var(X1) + 4 var(X2)

9
=

5p(1− p)
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Not surprisingly, var(p̂) < var(p̃). In fact, var(p̂)/ var(p̃) → 0, as n → ∞.
Note that p̂ is the MLE of p. Another possible unbiased estimator would be

p∗ =
1

1
2n(n + 1)

(X1 + 2X2 + · · ·+ nXn)

with variance

var(p∗) =
1[1

2n(n + 1)
]2(1 + 22 + · · ·+ n2)p(1− p) =

2(2n + 1)

3n(n + 1)
p(1− p) .

Here var(p̂)/ var(p∗) → 3/4.

The next example shows that neither a MLE or an unbiased estimator necessarily
minimizes the mean square error.

Example 3.2 Suppose X1, . . . , Xn ∼ N(µ, σ2), µ and σ2 unknown and to be esti-
mated. To find the MLEs we consider

log f(x | µ, σ2) = log
n∏

i=1

1√
2πσ2

e−(xi−µ)2/2σ2

= −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2 .

This is maximized where ∂(log f)/∂µ = 0 and ∂(log f)/∂σ2 = 0. So

(1/σ̂2)
n∑

i=1

(xi − µ̂) = 0, and − n

2σ̂2 +
1

2σ̂4

n∑
i=1

(xi − µ̂)2 = 0,
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and the MLEs are

µ̂ = X̄ =
1

n

n∑
i=1

Xi, σ̂2 =
1

n
SXX :=

1

n

n∑
i=1

(Xi − X̄)2.

It is easy to check that µ̂ is unbiased. As regards σ̂2 note that

E

[
n∑

i=1

(Xi − X̄)2

]
= E

[
n∑

i=1

(Xi − µ + µ − X̄)2

]
= E

[
n∑

i=1

(Xi − µ)2

]
− nE (µ − X̄)2

= nσ2 − n(σ2/n) = (n − 1)σ2

so σ̂2 is biased. An unbiased estimator is s2 = SXX/(n− 1).
Let us consider an estimator of the form λSXX . Above we see SXX has mean

(n − 1)σ2 and later we will see that its variance is 2(n− 1)σ4. So

E

[
λSXX − σ2]2 = [2(n− 1)σ4 + (n − 1)2σ4]λ2 − 2(n − 1)σ4λ + σ4 .

This is minimized by λ = 1/(n + 1). Thus the estimator which minimizes the mean
squared error is SXX/(n + 1) and this is neither the MLE nor unbiased. Of course
there is little difference between any of these estimators when n is large.

Note that E [σ̂2] → σ2 as n → ∞. So again the MLE is asymptotically unbiased.

3.2 The Rao-Blackwell theorem

The following theorem says that if we want an estimator with small MSE we can
confine our search to estimators which are functions of the sufficient statistic.

Theorem 3.3 (Rao-Blackwell Theorem) Let θ̂ be an estimator of θ with E (θ̂2) <
∞ for all θ. Suppose that T is sufficient for θ, and let θ∗ = E (θ̂ | T ). Then for all θ,

E (θ∗ − θ)2 ≤ E (θ̂ − θ)2.

The inequality is strict unless θ̂ is a function of T .

Proof.

E [θ∗ − θ]2

= E

[

E

(
θ̂ | T

)
− θ
]2

= E

[

E

(
θ̂ − θ | T

)]2
≤ E

[

E

(
(θ̂ − θ)2 | T

)]
= E (θ̂ − θ)2

The outer expectation is being taken with respect to T . The inequality follows from
the fact that for any RV, W , var(W ) = EW 2 − (EW )2 ≥ 0. We put W = (θ̂− θ | T )
and note that there is equality only if var(W ) = 0, i.e., θ̂ − θ can take just one value
for each value of T , or in other words, θ̂ is a function of T .
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Note that if θ̂ is unbiased then θ∗ is also unbiased, since

E θ∗ = E

[

E (θ̂ | T )
]
= E θ̂ = θ .

We now have a quantitative rationale for basing estimators on sufficient statistics:
if an estimator is not a function of a sufficient statistic, then there is another estimator
which is a function of the sufficient statistic and which is at least as good, in the
sense of mean squared error of estimation.

Examples 3.4

(a) X1, . . . , Xn ∼ P (λ), λ to be estimated.
In Example 2.3 (a) we saw that a sufficient statistic is

∑
i xi. Suppose we start

with the unbiased estimator λ̃ = X1. Then ‘Rao–Blackwellization’ gives

λ∗ = E [X1 |
∑

i Xi = t] .

But ∑
i

E

[
Xi |

∑
i Xi = t

]
= E

[∑
i Xi |

∑
i Xi = t

]
= t .

By the fact that X1, . . . , Xn are IID, every term within the sum on the l.h.s. must
be the same, and hence equal to t/n. Thus we recover the estimator λ∗ = λ̂ = X̄.

(b) X1, . . . , Xn ∼ P (λ), θ = e−λ to be estimated.
Now θ = P(X1 = 0). So a simple unbiased estimator is θ̂ = 1{X1 = 0}. Then

θ∗ = E

[
1{X1 = 0}

∣∣∣ n∑
i=1

Xi = t

]
= P

(
X1 = 0

∣∣∣ n∑
i=1

Xi = t

)

= P

(
X1 = 0;

n∑
i=2

Xi = t

) /

P

(
n∑

i=1

Xi = t

)

= e−λ ((n − 1)λ)te−(n−1)λ

t!

/ (nλ)te−nλ

t!
=

(
n − 1

n

)t

Since θ̂ is unbiased, so is θ∗. As it should be, θ∗ is only a function of t. If you do
Rao-Blackwellization and you do not get just a function of t then you have made a
mistake.

(c) X1, . . . , Xn ∼ U [0, θ], θ to be estimated.
In Example 2.3 (c) we saw that a sufficient statistic is maxi xi. Suppose we start

with the unbiased estimator θ̃ = 2X1. Rao–Blackwellization gives

θ∗ = E [2X1 | maxi Xi = t] = 2

(
1

n
t +

n − 1

n
(t/2)

)
=

n + 1

n
t .

This is an unbiased estimator of θ. In the above calculation we use the idea that
X1 = maxi Xi with probability 1/n, and if X1 is not the maximum then its expected
value is half the maximum. Note that the MLE θ̂ = maxi Xi is biased.
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3.3 Consistency and asymptotic efficiency∗

Two further properties of maximum likelihood estimators are consistency and asymp-
totic efficiency. Suppose θ̂ is the MLE of θ.

To say that θ̂ is consistent means that

P(|θ̂ − θ| > ε) → 0 as n → ∞ .

In Example 3.1 this is just the weak law of large numbers:

P

(∣∣∣∣X1 + · · ·+ Xn

n
− p

∣∣∣∣ > ε

)
→ 0 .

It can be shown that var(θ̃) ≥ 1/nI(θ) for any unbiased estimate θ̃, where 1/nI(θ)
is called the Cramer-Rao lower bound. To say that θ̂ is asymptotically efficient
means that

lim
n→∞

var(θ̂)/[1/nI(θ)] = 1 .

The MLE is asymptotically efficient and so asymptotically of minimum variance.

3.4 Maximum likelihood and decision-making

We have seen that the MLE is a function of the sufficient statistic, asymptotically
unbiased, consistent and asymptotically efficient. These are nice properties. But
consider the following example.

Example 3.5 You and a friend have agreed to meet sometime just after 12 noon.
You have arrived at noon, have waited 5 minutes and your friend has not shown
up. You believe that either your friend will arrive at X minutes past 12, where you
believe X is exponentially distributed with an unknown parameter λ, λ > 0, or that
she has completely forgotten and will not show up at all. We can associate the later
event with the parameter value λ = 0. Then

P(data | λ) = P(you wait at least 5 minutes | λ) =

∫ ∞

5
λe−λt dt = e−5λ .

Thus the maximum likelihood estimator for λ is λ̂ = 0. If you base your decision as
to whether or not you should wait a bit longer only upon the maximum likelihood
estimator of λ, then you will estimate that your friend will never arrive and decide
not to wait. This argument holds even if you have only waited 1 second.

The above analysis is unsatisfactory because we have not modelled the costs of
either waiting in vain, or deciding not to wait but then having the friend turn up.
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