3 The Rao-Blackwell theorem

Variance is what any two statisticians are at.

3.1 Mean squared error

A good estimator should take values close to the true value of the parameter it is attempting to estimate. If $\hat{\theta}$ is an unbiased estimator of θ then $\mathbb{E}(\hat{\theta} - \theta)^2$ is the variance of $\hat{\theta}$. If $\hat{\theta}$ is a biased estimator of θ then $\mathbb{E}(\hat{\theta} - \theta)^2$ is no longer the variance of $\hat{\theta}$, but it is still useful as a measure of the **mean squared error** (**MSE**) of $\hat{\theta}$.

Example 3.1 Consider the estimators in Example 1.3. Each is unbiased, so its MSE is just its variance.

$$\operatorname{var}(\hat{p}) = \operatorname{var}\left[\frac{1}{n}\left(X_1 + \dots + X_n\right)\right] = \frac{\operatorname{var}(X_1) \dots + \operatorname{var}(X_n)}{n^2} = \frac{np(1-p)}{n^2} = \frac{p(1-p)}{n}$$
$$\operatorname{var}(\tilde{p}) = \operatorname{var}\left[\frac{1}{3}(X_1 + 2X_2)\right] = \frac{\operatorname{var}(X_1) + 4\operatorname{var}(X_2)}{9} = \frac{5p(1-p)}{9}$$

Not surprisingly, $\operatorname{var}(\hat{p}) < \operatorname{var}(\tilde{p})$. In fact, $\operatorname{var}(\hat{p}) / \operatorname{var}(\tilde{p}) \to 0$, as $n \to \infty$.

Note that \hat{p} is the MLE of p. Another possible unbiased estimator would be

$$p^* = \frac{1}{\frac{1}{2}n(n+1)} (X_1 + 2X_2 + \dots + nX_n)$$

with variance

$$\operatorname{var}(p^*) = \frac{1}{\left[\frac{1}{2}n(n+1)\right]^2} \left(1 + 2^2 + \dots + n^2\right) p(1-p) = \frac{2(2n+1)}{3n(n+1)} p(1-p)$$

Here $\operatorname{var}(\hat{p}) / \operatorname{var}(p^*) \to 3/4$.

The next example shows that neither a MLE or an unbiased estimator necessarily minimizes the mean square error.

Example 3.2 Suppose $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$, μ and σ^2 unknown and to be estimated. To find the MLEs we consider

$$\log f(x \mid \mu, \sigma^2) = \log \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x_i - \mu)^2/2\sigma^2} = -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2.$$

This is maximized where $\partial(\log f)/\partial\mu = 0$ and $\partial(\log f)/\partial\sigma^2 = 0$. So

$$(1/\hat{\sigma}^2)\sum_{i=1}^n (x_i - \hat{\mu}) = 0,$$
 and $-\frac{n}{2\hat{\sigma}^2} + \frac{1}{2\hat{\sigma}^4}\sum_{i=1}^n (x_i - \hat{\mu})^2 = 0,$

and the MLEs are

$$\hat{\mu} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \qquad \hat{\sigma}^2 = \frac{1}{n} S_{XX} := \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

It is easy to check that $\hat{\mu}$ is unbiased. As regards $\hat{\sigma}^2$ note that

$$\mathbb{E}\left[\sum_{i=1}^{n} (X_i - \bar{X})^2\right] = \mathbb{E}\left[\sum_{i=1}^{n} (X_i - \mu + \mu - \bar{X})^2\right] = \mathbb{E}\left[\sum_{i=1}^{n} (X_i - \mu)^2\right] - n\mathbb{E}(\mu - \bar{X})^2$$
$$= n\sigma^2 - n(\sigma^2/n) = (n-1)\sigma^2$$

so $\hat{\sigma}^2$ is biased. An unbiased estimator is $s^2 = S_{XX}/(n-1)$.

Let us consider an estimator of the form λS_{XX} . Above we see S_{XX} has mean $(n-1)\sigma^2$ and later we will see that its variance is $2(n-1)\sigma^4$. So

$$\mathbb{E}\left[\lambda S_{XX} - \sigma^2\right]^2 = \left[2(n-1)\sigma^4 + (n-1)^2\sigma^4\right]\lambda^2 - 2(n-1)\sigma^4\lambda + \sigma^4$$

This is minimized by $\lambda = 1/(n+1)$. Thus the estimator which minimizes the mean squared error is $S_{XX}/(n+1)$ and this is neither the MLE nor unbiased. Of course there is little difference between any of these estimators when n is large.

Note that $\mathbb{E}[\hat{\sigma}^2] \to \sigma^2$ as $n \to \infty$. So again the MLE is asymptotically unbiased.

3.2 The Rao-Blackwell theorem

The following theorem says that if we want an estimator with small MSE we can confine our search to estimators which are functions of the sufficient statistic.

Theorem 3.3 (Rao-Blackwell Theorem) Let $\hat{\theta}$ be an estimator of θ with $\mathbb{E}(\hat{\theta}^2) < \infty$ for all θ . Suppose that T is sufficient for θ , and let $\theta^* = \mathbb{E}(\hat{\theta} \mid T)$. Then for all θ ,

$$\mathbb{E}(\theta^* - \theta)^2 \le \mathbb{E}(\hat{\theta} - \theta)^2.$$

The inequality is strict unless $\hat{\theta}$ is a function of T.

Proof.

$$\mathbb{E}[\theta^* - \theta]^2 = \mathbb{E}\left[\mathbb{E}(\hat{\theta} \mid T) - \theta\right]^2 = \mathbb{E}\left[\mathbb{E}(\hat{\theta} - \theta \mid T)\right]^2 \le \mathbb{E}\left[\mathbb{E}((\hat{\theta} - \theta)^2 \mid T)\right] = \mathbb{E}(\hat{\theta} - \theta)^2$$

The outer expectation is being taken with respect to T. The inequality follows from the fact that for any RV, W, $\operatorname{var}(W) = \mathbb{E}W^2 - (\mathbb{E}W)^2 \ge 0$. We put $W = (\hat{\theta} - \theta \mid T)$ and note that there is equality only if $\operatorname{var}(W) = 0$, i.e., $\hat{\theta} - \theta$ can take just one value for each value of T, or in other words, $\hat{\theta}$ is a function of T. Note that if $\hat{\theta}$ is unbiased then θ^* is also unbiased, since

$$\mathbb{E} \theta^* = \mathbb{E} \left[\mathbb{E} (\hat{\theta} \mid T) \right] = \mathbb{E} \hat{\theta} = \theta \,.$$

We now have a quantitative rationale for basing estimators on sufficient statistics: if an estimator is not a function of a sufficient statistic, then there is another estimator which is a function of the sufficient statistic and which is at least as good, in the sense of mean squared error of estimation.

Examples 3.4

(a) $X_1, \ldots, X_n \sim P(\lambda), \lambda$ to be estimated.

In Example 2.3 (a) we saw that a sufficient statistic is $\sum_i x_i$. Suppose we start with the unbiased estimator $\tilde{\lambda} = X_1$. Then 'Rao-Blackwellization' gives

$$\lambda^* = \mathbb{E}\left[X_1 \mid \sum_i X_i = t\right] \; .$$

But

$$\sum_{i} \mathbb{E} \left[X_i \mid \sum_{i} X_i = t \right] = \mathbb{E} \left[\sum_{i} X_i \mid \sum_{i} X_i = t \right] = t$$

By the fact that X_1, \ldots, X_n are IID, every term within the sum on the l.h.s. must be the same, and hence equal to t/n. Thus we recover the estimator $\lambda^* = \hat{\lambda} = \bar{X}$.

(b) $X_1, \ldots, X_n \sim P(\lambda), \ \theta = e^{-\lambda}$ to be estimated.

Now $\theta = \mathbb{P}(X_1 = 0)$. So a simple unbiased estimator is $\hat{\theta} = 1\{X_1 = 0\}$. Then

$$\theta^* = \mathbb{E}\left[1\{X_1=0\} \mid \sum_{i=1}^n X_i = t\right] = \mathbb{P}\left(X_1=0 \mid \sum_{i=1}^n X_i = t\right)$$
$$= \mathbb{P}\left(X_1=0; \sum_{i=2}^n X_i = t\right) / \mathbb{P}\left(\sum_{i=1}^n X_i = t\right)$$
$$= e^{-\lambda} \frac{((n-1)\lambda)^t e^{-(n-1)\lambda}}{t!} / \frac{(n\lambda)^t e^{-n\lambda}}{t!} = \left(\frac{n-1}{n}\right)^t$$

Since $\hat{\theta}$ is unbiased, so is θ^* . As it should be, θ^* is only a function of t. If you do Rao-Blackwellization and you do not get just a function of t then you have made a mistake.

(c) $X_1, \ldots, X_n \sim U[0, \theta], \theta$ to be estimated.

In Example 2.3 (c) we saw that a sufficient statistic is $\max_i x_i$. Suppose we start with the unbiased estimator $\tilde{\theta} = 2X_1$. Rao–Blackwellization gives

$$\theta^* = \mathbb{E}[2X_1 \mid \max_i X_i = t] = 2\left(\frac{1}{n}t + \frac{n-1}{n}(t/2)\right) = \frac{n+1}{n}t$$

This is an unbiased estimator of θ . In the above calculation we use the idea that $X_1 = \max_i X_i$ with probability 1/n, and if X_1 is not the maximum then its expected value is half the maximum. Note that the MLE $\hat{\theta} = \max_i X_i$ is biased.

3.3 Consistency and asymptotic efficiency*

Two further properties of maximum likelihood estimators are consistency and asymptotic efficiency. Suppose $\hat{\theta}$ is the MLE of θ .

To say that $\hat{\theta}$ is **consistent** means that

$$\mathbb{P}(|\theta - \theta| > \epsilon) \to 0 \quad \text{as } n \to \infty$$

In Example 3.1 this is just the weak law of large numbers:

$$\mathbb{P}\left(\left|\frac{X_1 + \dots + X_n}{n} - p\right| > \epsilon\right) \to 0$$

It can be shown that $\operatorname{var}(\tilde{\theta}) \geq 1/nI(\theta)$ for any unbiased estimate $\tilde{\theta}$, where $1/nI(\theta)$ is called the *Cramer-Rao lower bound*. To say that $\hat{\theta}$ is **asymptotically efficient** means that

$$\lim_{n \to \infty} \operatorname{var}(\hat{\theta}) / [1/nI(\theta)] = 1.$$

The MLE is asymptotically efficient and so asymptotically of minimum variance.

3.4 Maximum likelihood and decision-making

We have seen that the MLE is a function of the sufficient statistic, asymptotically unbiased, consistent and asymptotically efficient. These are nice properties. But consider the following example.

Example 3.5 You and a friend have agreed to meet sometime just after 12 noon. You have arrived at noon, have waited 5 minutes and your friend has not shown up. You believe that either your friend will arrive at X minutes past 12, where you believe X is exponentially distributed with an unknown parameter λ , $\lambda > 0$, or that she has completely forgotten and will not show up at all. We can associate the later event with the parameter value $\lambda = 0$. Then

$$\mathbb{P}(\text{data} \mid \lambda) = \mathbb{P}(\text{you wait at least 5 minutes} \mid \lambda) = \int_{5}^{\infty} \lambda e^{-\lambda t} \, dt = e^{-5\lambda}$$

Thus the maximum likelihood estimator for λ is $\hat{\lambda} = 0$. If you base your decision as to whether or not you should wait a bit longer only upon the maximum likelihood estimator of λ , then you will estimate that your friend will never arrive and decide not to wait. This argument holds even if you have only waited 1 second.

The above analysis is unsatisfactory because we have not modelled the costs of either waiting in vain, or deciding not to wait but then having the friend turn up.