Symmetric Rendezvous Search

Richard Weber ${ }^{\dagger}$

Talk to the Adams Society, 21 February, 2007 and to LSE, 8 March, 2007
\dagger Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge

Aisle miles (2006)

Two people lose each other while wandering through the aisles of a large supermarket. The height of the shelves precludes aisle-to-aisle visibility. One person wishes to find the other. Should that person stop moving and remain in a single visible site while the other person continues to move through the aisles? Or would an encounter or sighting occur sooner if both were moving through the aisles? (David Kafkewitz, in letter to the New Scientist)

Quo vadis? (Mosteller, 1965)

Two strangers who have a private recognition signal agree to meet on a certain Thursday at 12 noon in New York City, a town familiar to neither to discuss an important business deal, but later they discover that they have not chosen a meeting place, and neither can reach the other because both have embarked on trips. If they try nevertheless to meet, where should they go?

Telephone coordination game (Alpern, 1976)

In each of two rooms, there are n telephones randomly strewn about. The phones are connected pairwise in some unknown fashion. There is a player in each room. In each period $1,2, \ldots$, each player picks up a phone and says "hello", until the first time that they hear one another. The common aim of the players is to minimize the expected number of periods required to meet.

Symmetric rendezvous search on K_{n}

Assumptions

1. There are n locations, which are connected as the complete graph, K_{n}.
2. Two players are randomly placed at two distinct locations.
3. The players have no common labelling of the locations.
4. At steps, $1,2, \ldots$, each player relocates himself at one of the n locations.
5. Players adopt an identical (randomizing) strategy, in which the place that a player locates himself at step t can be only a function of where he has been at times $0,1, \ldots, t-1$.
What should their common strategy be if they are to meet in the least expected number of steps?

Symmetric rendezvous search on K_{n}

Assumptions

1. There are n locations, which are connected as the complete graph, K_{n}.
2. Two players are randomly placed at two distinct locations.
3. The players have no common labelling of the locations.
4. At steps, $1,2, \ldots$, each player relocates himself at one of the n locations.
5. Players adopt an identical (randomizing) strategy, in which the place that a player locates himself at step t can be only a function of where he has been at times $0,1, \ldots, t-1$.
What should their common strategy be if they are to meet in the least expected number of steps?

Symmetric rendezvous search on K_{n}

Assumptions

1. There are n locations, which are connected as the complete graph, K_{n}.
2. Two players are randomly placed at two distinct locations.
3. The players have no common labelling of the locations.
4. At steps, $1,2, \ldots$, each player relocates himself at one of the n locations.
5. Players adopt an identical (randomizing) strategy, in which the place that a player locates himself at step t can be only a function of where he has been at times $0,1, \ldots, t-1$.
What should their common strategy be if they are to meet in the least expected number of steps?

Symmetric rendezvous search on K_{n}

Assumptions

1. There are n locations, which are connected as the complete graph, K_{n}.
2. Two players are randomly placed at two distinct locations.
3. The players have no common labelling of the locations.
4. At steps, $1,2, \ldots$, each player relocates himself at one of the n locations.
5. Players adopt an identical (randomizing) strategy, in which the place that a player locates himself at step t can be only a function of where he has been at times $0,1, \ldots, t-1$.
What should their common strategy be if they are to meet in the least expected number of steps?

Symmetric rendezvous search on K_{n}

Assumptions

1. There are n locations, which are connected as the complete graph, K_{n}.
2. Two players are randomly placed at two distinct locations.
3. The players have no common labelling of the locations.
4. At steps, $1,2, \ldots$, each player relocates himself at one of the n locations.
5. Players adopt an identical (randomizing) strategy, in which the place that a player locates himself at step t can be only a function of where he has been at times $0,1, \ldots, t-1$.
What should their common strategy be if they are to meet in the least expected number of steps?

Some possible strategies

Let T be the number of steps in which the players meet.
Move-at-random If at each discrete step $1,2, \ldots$ each player were to locate himself at a randomly chosen location, then the expected time to meet would be n. E.g.,

$$
E T=1+\frac{n-1}{n} E T \quad \Longrightarrow \quad E T=n
$$

Some possible strategies

Let T be the number of steps in which the players meet.
Move-at-random If at each discrete step $1,2, \ldots$ each player were to locate himself at a randomly chosen location, then the expected time to meet would be n. E.g.,

$$
E T=1+\frac{n-1}{n} E T \quad \Longrightarrow \quad E T=n
$$

Wait-for-mommy Suppose the players could break symmetry (or had some prior agreement). Now it is best for one player to remain stationary while the other tours all other locations in random order. They will meet (on average) half way through the tour. So

$$
E T=\frac{1}{n-1}(1+2+\cdots+(n-1))=\frac{1}{2} n
$$

Wait-for-mommy

Theorem 1 In the asymmetric rendezvous search game on K_{n} the optimal strategy is wait-for-mommy. (Anderson-Weber, 1990)

Proof. Let I_{j} denote the event that the players meet at their j th step, irrespective of any meeting previously.
$P\left(I_{j}\right) \leq \frac{1}{n-1}$.
$P(T \leq k)=P\left(\bigcup_{j=1}^{k} I_{j}\right) \leq \sum_{j=1}^{k} P\left(I_{j}\right) \leq \frac{k}{n-1}$.
$E T \geq \sum_{k=0}^{n-1} P(T>k) \geq \sum_{k=0}^{n-1}\left(1-\frac{k}{n-1}\right)=\frac{1}{2} n$.

The Anderson-Weber strategy

Motivated by the optimality of wait-for-mommy in the asymmetric case, Anderson and Weber (1990) proposed the following strategy:
AW : If rendezvous has not occurred within the first $(n-1) j$ steps then in the next $n-1$ steps each player should either stay at his initial location or tour the other $n-1$ locations in random order, with probabilities p and $1-p$, respectively, where p is to be chosen optimally.

On K_{2}, AW with $p=\frac{1}{2}$ is the same as move-at-random.
Let $w=\inf \{E T\}$, where the infimum is taken over all possible strategies.

The Anderson-Weber strategy on K_{n}

Suppose each player stays at home with probability p, or tours the other $n-1$ locations with probability $1-p$. Then

$$
\begin{aligned}
E T \approx & p^{2}(n-1+E T) \\
& +2 p(1-p) \frac{1}{2}(n-1) \\
& +(1-p)^{2}\left(\int_{0}^{n-1} \frac{t}{n-1} e^{-\frac{t}{n-1}} d t+e^{-1}(n-1+E T)\right) .
\end{aligned}
$$

As $n \rightarrow \infty$ the minimizing p tends to 0.24749 and rendezvous value is $w \sim 0.8289 n$.

The Anderson-Weber strategy on K_{2}

Theorem 2 On K_{2}, AW minimizes $P(T>k)$ for all k.

Proof.

$P\left(I_{k}\right) \leq 1 / 2 \Longrightarrow P\left(I_{k}^{c}\right) \geq 1 / 2$.
Indeed, given players have not met by step $k-1$, we still have $P\left(I_{k}^{c} \mid I_{1}^{c} \cap \cdots \cap I_{k-1}^{c}\right) \geq 1 / 2$.

Thus $P(T>k)=P\left(I_{1}^{c} \cap \cdots \cap I_{k}^{c}\right) \geq 1 / 2^{k}$.
Corollary. $w=2$ on K_{2}.
Proof. $E T=\sum_{k=0}^{\infty} P(T>k) \geq \sum_{k=0}^{\infty} 2^{-k}=2$.

The Anderson-Weber strategy on K_{3}

On K_{3}, AW specifies that in each block of two consecutive steps, each player should, independently of the other, either stay at his initial location or tour the other two locations in random order, doing these with respective probabilities $p=\frac{1}{3}$ and $1-p=\frac{2}{3}$.
AW gives $E T=\frac{5}{2}$, whereas move-at-random gives $E T=3$.
A new result is the following theorem (Weber, 2006).
Theorem $3 \mathrm{On}_{3}$, AW minimizes $E T$.
A corollary of Theorem 2 is that $w=\frac{5}{2}$ on K_{3}.

Formulation of the problem

Suppose the three locations are arranged around a circle.

Each player calls his home location ' a '.
Each player chooses a direction he calls 'clockwise' and the labels that are one and two locations clockwise of home as ' b ' and ' c ' respectively.
A sequence of a player's moves can now be described.
E.g., a player's first 6 moves might be ' $a b a b b c$ '.

Suppose the problem is made a bit easier: the players are provided with the same notion of clockwise.
(We will see later that this does not actually help the players.)
Player II starts one position clockwise of Player I.

$$
B_{1}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

The matrix B_{1} has ' 1 ' if after the first step they do not meet, and ' 0 ' if they do.
The rows of B_{1} correspond to I playing a, b or c.
The columns of B_{1} correspond to II playing a, b or c.

The minimum of $P(T>1)$

If instead, Player II starts two steps clockwise of Player I, then the indicator matrix (for not meeting after one step) is B_{1}^{\top}. Let a bar over a matrix denote the mean of the matrix and its transpose. So

$$
\bar{B}_{1}=\frac{1}{2}\left(B_{1}+B_{1}^{\top}\right)
$$

Consider the problem of minimizing $P(T>1)$. Since it is equally likely for II to start either one or two places clockwise of I, this is equivalent to the problem of finding $p^{\top}=\left(p_{1}, p_{2}, p_{3}\right)$, with $p \geq 0$ and $p_{1}+p_{2}+p_{3}=1$, to minimize
$p^{\top} \bar{B}_{1} p=p^{\top}\left(\begin{array}{ccc}1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1\end{array}\right) p=p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{1} p_{2}+p_{2} p_{3}+p_{3} p_{1}$.
It is not hard to show that this is minimized by $p_{1}=p_{2}=p_{3}=\frac{1}{3}$ and that $P(T>1)$ is minimized to $\frac{2}{3}$.

The minimum of $P(T>2)$

Again suppose that II starts one location clockwise of I. Then the indicator matrix for not meeting within 2 steps is

$$
B_{2}:=B_{1} \otimes B_{1}=\left(\begin{array}{ccc}
B_{1} & B_{1} & 0 \\
0 & B_{1} & B_{1} \\
B_{1} & 0 & B_{1}
\end{array}\right)=\left(\begin{array}{ccccccccc}
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Rows 1-9 (and columns 1-9) correspond respectively to Player I (or II) playing patterns of moves over the first two steps of $a a, a b, a c, b a, b b, b c, c a, c b, c c$.
The probability of not meeting within 2 steps is $p^{\top} \bar{B}_{2} p$.

AW minimizes $P(T>2)$

We find that $p^{\top} \bar{B}_{2} p$ is minimized by $p^{\top}=\frac{1}{3}(1,0,0,0,0,1,0,1,0)$, with $p^{\top} \bar{B}_{2} p=\frac{1}{3}$. I.e., ' $a a^{\prime}$ ', ' $b c^{\prime}$ ' and ' $c b$ ' are to be chosen equally likely. This is the AW strategy.

$$
\bar{B}_{2}=\left(\begin{array}{ccccccccc}
1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & 1 & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} & 1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} & 1 & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 1 & \frac{1}{2} & 0 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 1 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 1
\end{array}\right)
$$

Another optimal strategy is $p^{\top}=(0,1,0,1,0,0,0,0,1)$, where ' $a b$ ', ' $b a$ ' and ' $c c$ ' are to be chosen equally likely.

A quadratic programming problem

To prove that AW minimizes $p^{\top} \bar{B}_{2} p$ we must solve a difficult quadratic programming problem.

The difficulty arises because \bar{B}_{2} is not positive semidefinite. It's eigenvalues are $\left\{4,1,1,1,1,1,1,-\frac{1}{4},-\frac{1}{4}\right\}$. This means that there can be local minima to $p^{\top} \bar{B}_{2} p$.
E.g., $p=\frac{1}{9}(1,1,1,1,1,1,1,1,1)$, is a local minimum, with $p^{\top} \bar{B}_{2} p=\frac{4}{9}$. However, this is not a global minimum.
In general, if a matrix C is not positive semidefinite, the following problem is NP-hard:

$$
\operatorname{minimize} p^{\top} C p: p \geq 0,1^{\top} p=1
$$

A method for finding lower bounds

Suppose we are trying to minimize $p^{\top} C p$, but C is not positive semidefinite.

We can obtain a lower bound on the solution as follows.

$$
\begin{aligned}
\min & \left\{p^{\top} C p: p \geq 0,1^{\top} p=1\right\} \\
& =\min \left\{\operatorname{trace}\left(C p p^{\top}\right): p \geq 0,1^{\top} p=1\right\} \\
& \geq \min \{\operatorname{trace}(C X): X \succeq 0, X \geq 0, \operatorname{trace}(J X)=1\}
\end{aligned}
$$

where $J=11^{\top}$ is a matrix of all 1 s.
This is by using the fact that if p satisfies the l.h.s. constraints, then $X=p p^{\top}$ satisfies the r.h.s. constraints.

Semidefinite programming problems

Given symmetric matrices C, A_{1}, \ldots, A_{m}, consider the problem

$$
\begin{gathered}
\text { minimize }\{\operatorname{trace}(C X) \\
\left.: X \succeq 0, X \geq 0, \operatorname{trace}\left(A_{i} X\right)=b_{i}, i=1, \ldots, m\right\}
\end{gathered}
$$

This is a Semidefinite Programming Problem (SDP).
The minimization is over the components of X.
This can mean lots of decision variables.
If X is $j \times j$ and symmetric, then there are $j(j-1) / 2$ variables.
SDPs can be solved to any degree of numerical accuracy using interior point algorithms (e.g., using Matlab and sedumi).

Semidefinite programming has been called 'linear programming for the 21st century'. The SDP above becomes a linear programming problem in the special case that C, A_{1}, \ldots, A_{m} are all diagonal.

A lower bound on $p^{\top} \bar{B}_{2} p$

As a relaxation of the quadratic program:

$$
\operatorname{minimize}\left\{p^{\top} \bar{B}_{2} p: p \geq 0,1^{\top} p=1\right\}
$$

we consider the SDP:

$$
\operatorname{minimize}\left\{\operatorname{trace}\left(\bar{B}_{2} X\right): X \succeq 0, X \geq 0, \operatorname{trace}\left(J_{2} X\right)=1\right\}
$$

where J_{2} is the 9×9 matrix of 1 s. There are 36 decision variables.
We find that the minimum value is $1 / 3$.
But $p^{\top} \bar{B}_{2} p=1 / 3$ for $p^{\top}=\frac{1}{3}(1,0,0,0,0,1,0,1,0)$.
So we may conclude that $1 / 3$ is the minimal value of $p^{\top} \bar{B}_{2} p$.

Lower bounds on $P(T>k)$

Let ϕ_{k} be the minimal possible value of $P(T>k)$.
The problem of minimizing $P(T>k)$ is equivalent to minimizing $p^{\top} \bar{B}_{k} p$, where

$$
B_{k}=B_{1} \otimes B_{k-1}
$$

To find a lower bound on ϕ_{k} we consider the SDP:

$$
\operatorname{minimize}\left\{\operatorname{trace}\left(\bar{B}_{k} X\right): X \succeq 0, X \geq 0, \operatorname{trace}\left(X J_{k}\right)=1\right\}
$$

where J_{k} is a $3^{k} \times 3^{k}$ matrix of 1 s .
Notice that \bar{B}_{k} is $3^{k} \times 3^{k}$ and so the number of decision variables in the SDP grows very rapidly, as $\Omega\left(3^{2 k}\right)$.

Lower bounds on $E[\min \{T, k+1\}]$

Similarly, let w_{k} be the minimal possible value of the 'expected k-truncated rendezvous time', $E[\min \{T, k+1\}]$. Now

$$
E[\min \{T, k+1\}]=p^{\top} M_{k} p,
$$

where

$$
M_{k}=J_{k}+B_{1} \otimes J_{k-1}+\cdots+B_{k}
$$

To find a lower bound on w_{k} we consider the SDP:

$$
\operatorname{minimize}\left\{\operatorname{trace}\left(\bar{M}_{k} X\right): X \succeq 0, X \geq 0, \operatorname{trace}\left(X J_{k}\right)=1\right\}
$$

Lower bounds on ϕ_{k} and w_{k}

Recall that ϕ_{k} and w_{k} are, respectively, the infimal possible values of $P(T>k)$ and $E[\min \{T, k+1\}]$. Solving SDPs, we get
Lower bounds when players have a common clockwise:

k	1	2	3	4
ϕ_{k}	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{2}{10}$	$\frac{1}{11}$
w_{k}	$\frac{5}{3}$	2	$\frac{20}{9}$	$\frac{21}{9}$

Lower bounds when players have no common clockwise:

k	1	2	3	4	5
ϕ_{k}	$\frac{2}{3}$	$\frac{1}{3}$	$\frac{2}{9}$	0.108697	
w_{k}	$\frac{5}{3}$	2	$\frac{20}{9}$	$\frac{21}{9}$	$\frac{65}{27}$

Observations

1. It is computationally infeasible to go much further. The number of decision variables in the SDP is 3240 when $k=4$. For $k=5$ it would be 29403 .
2. These lower bounds prove that AW minimizes $E[\min \{T, k+1\}]$ as far as $k=4$, and AW minimizes $P(T>k)$ as far as $k=2$.
3. For $k=3$ the lower bound on $p^{\top} \bar{B}_{3} p$ is $2 / 10$, and this cannot be achieved. In fact, the minimum is $2 / 9$.
4. The answers depend on whether or not the players are provided with a common notion of clockwise. If they are not, then they must choose p such that ' b ' and ' c ' are treated the same. This requires $p=S_{k} p$, where S_{k} is a matrix that swaps the roles of the non-home locations.

A conjecture concerning AW

$$
E T=\sum_{k=0}^{\infty} P(T>k) .
$$

AW does not minimize every term in this sum. For example, with AW we get $P(T>4)=\frac{1}{9}$, but there is another strategy for which $P(T>4)=\frac{1}{10}$.
w_{k} is the minimal value of $E[\min \{T, k+1\}]=\sum_{j=0}^{k} P(T>j)$. It is found by minimizing $p^{\top} M_{k} p$, where

$$
M_{k}=J_{k}+B_{1} \otimes J_{k-1}+\cdots+B_{k}
$$

Empirically, we notice that the lower bounds for w_{k} are always achieved by AW, and are the same whether or not the players have a common notion of clockwise. This leads us to conjecture the following theorem.

The optimality of AW for K_{3}

Theorem 4 The Anderson-Weber strategy is optimal for the symmetric rendezvous search game on K_{3}, minimizing $E[\min \{T, k+1\}]$ to w_{k} for all $k=1,2, \ldots$, where

$$
w_{k}= \begin{cases}\frac{5}{2}-\frac{5}{2} 3^{-\frac{k+1}{2}}, & \text { when } k \text { is odd } \\ \frac{5}{2}-\frac{3}{2} 3^{-\frac{k}{2}}, & \text { when } k \text { is even. }\end{cases}
$$

Consequently, the minimal achievable value of $E T$ is $w=\frac{5}{2}$. $\left\{w_{k}\right\}_{0}^{\infty}=\left\{1, \frac{5}{3}, 2, \frac{20}{9}, \frac{21}{9}, \frac{65}{27}, \ldots\right\}$.

Proof that AW is optimal on K_{3}

We begin by describing how we might prove that a given strategy minimizes $E[\min \{T, 3\}]=P(T>0)+P(T>1)+P(T>2)$, or equivalently, that a given p minimizes $p^{\top} \bar{M}_{2} p$.

1. Suppose we are trying to minimize $p^{\top} \bar{M}_{2} p$, but \bar{M}_{2} is not positive semidefinite.
2. Suppose we can find a matrix H_{2}, which is positive semidefinite and such that $M_{2} \geq H_{2}$.
3. Suppose we can minimize $p^{\top} \bar{H}_{2} p$. This provides a lower bound on the minimum of $p^{\top} \bar{M}_{2} p$.
4. If this lower bound can be achieved, i.e., $p^{\top}\left(\bar{M}_{2}-\bar{H}_{2}\right) p=0$, then p minimizes $p^{\top} \bar{M}_{2} p$.

Proof that AW is optimal on K_{3}

We begin by describing how we might prove that a given strategy minimizes $E[\min \{T, 3\}]=P(T>0)+P(T>1)+P(T>2)$, or equivalently, that a given p minimizes $p^{\top} \bar{M}_{2} p$.

1. Suppose we are trying to minimize $p^{\top} \bar{M}_{2} p$, but \bar{M}_{2} is not positive semidefinite.
2. Suppose we can find a matrix H_{2}, which is positive semidefinite and such that $M_{2} \geq H_{2}$.
3. Suppose we can minimize $p^{\top} \bar{H}_{2} p$. This provides a lower bound on the minimum of $p^{\top} \bar{M}_{2} p$.
4. If this lower bound can be achieved, i.e., $p^{\top}\left(\bar{M}_{2}-\bar{H}_{2}\right) p=0$, then p minimizes $p^{\top} \bar{M}_{2} p$.

Proof that AW is optimal on K_{3}

We begin by describing how we might prove that a given strategy minimizes $E[\min \{T, 3\}]=P(T>0)+P(T>1)+P(T>2)$, or equivalently, that a given p minimizes $p^{\top} \bar{M}_{2} p$.

1. Suppose we are trying to minimize $p^{\top} \bar{M}_{2} p$, but \bar{M}_{2} is not positive semidefinite.
2. Suppose we can find a matrix H_{2}, which is positive semidefinite and such that $M_{2} \geq H_{2}$.
3. Suppose we can minimize $p^{\top} \bar{H}_{2} p$. This provides a lower bound on the minimum of $p^{\top} \bar{M}_{2} p$.
4. If this lower bound can be achieved, i.e., $p^{\top}\left(\bar{M}_{2}-\bar{H}_{2}\right) p=0$, then p minimizes $p^{\top} \bar{M}_{2} p$.

Proof that AW is optimal on K_{3}

We begin by describing how we might prove that a given strategy minimizes $E[\min \{T, 3\}]=P(T>0)+P(T>1)+P(T>2)$, or equivalently, that a given p minimizes $p^{\top} \bar{M}_{2} p$.

1. Suppose we are trying to minimize $p^{\top} \bar{M}_{2} p$, but \bar{M}_{2} is not positive semidefinite.
2. Suppose we can find a matrix H_{2}, which is positive semidefinite and such that $M_{2} \geq H_{2}$.
3. Suppose we can minimize $p^{\top} \bar{H}_{2} p$. This provides a lower bound on the minimum of $p^{\top} \bar{M}_{2} p$.
4. If this lower bound can be achieved, i.e., $p^{\top}\left(\bar{M}_{2}-\bar{H}_{2}\right) p=0$, then p minimizes $p^{\top} \bar{M}_{2} p$.

The minimum of $E[\min \{T, 3\}]$

We can take $p^{\top}=\frac{1}{3}(1,0,0,0,0,1,0,1,0)$ and

$$
\begin{aligned}
& M_{2}=\left(\begin{array}{lllllllll}
3 & 3 & 2 & 3 & 3 & 2 & 1 & 1 & 1 \\
2 & 3 & 3 & 2 & 3 & 3 & 1 & 1 & 1 \\
3 & 2 & 3 & 3 & 2 & 3 & 1 & 1 & 1 \\
1 & 1 & 1 & 3 & 3 & 2 & 3 & 3 & 2 \\
1 & 1 & 1 & 2 & 3 & 3 & 2 & 3 & 3 \\
1 & 1 & 1 & 3 & 2 & 3 & 3 & 2 & 3 \\
3 & 3 & 2 & 1 & 1 & 1 & 3 & 3 & 2 \\
2 & 3 & 3 & 1 & 1 & 1 & 2 & 3 & 3 \\
3 & 2 & 3 & 1 & 1 & 1 & 3 & 2 & 3
\end{array}\right) \\
& \geq H_{2}=\left(\begin{array}{lllllllll}
3 & 3 & 2 & 3 & 3 & 2 & 1 & 1 & 0 \\
2 & 3 & 3 & 2 & 3 & 3 & 0 & 1 & 1 \\
3 & 2 & 3 & 3 & 2 & 3 & 1 & 0 & 1 \\
1 & 1 & 0 & 3 & 3 & 2 & 3 & 3 & 2 \\
0 & 1 & 1 & 2 & 3 & 3 & 2 & 3 & 3 \\
1 & 0 & 1 & 3 & 2 & 3 & 3 & 2 & 3 \\
3 & 3 & 2 & 1 & 1 & 0 & 3 & 3 & 2 \\
2 & 3 & 3 & 0 & 1 & 1 & 2 & 3 & 3 \\
3 & 2 & 3 & 1 & 0 & 1 & 3 & 2 & 3
\end{array}\right)
\end{aligned}
$$

The eigenvalues of \bar{M}_{2} are $\left\{19, \frac{5}{2}, \frac{5}{2}, 1,1,1,1,-\frac{1}{2},-\frac{1}{2}\right\}$, so it is not positive semidefinite. However, H_{2} is positive semidefinite, with eigenvalues $\left\{18,3,3, \frac{3}{2}, \frac{3}{2}, 0,0,0,0\right\}$. Here

$$
\bar{H}_{2} p=\left(\begin{array}{ccccccccc}
3 & \frac{5}{2} & \frac{5}{2} & 2 & \frac{3}{2} & \frac{3}{2} & 2 & \frac{3}{2} & \frac{3}{2} \\
\frac{5}{2} & 3 & \frac{5}{2} & \frac{3}{2} & 2 & \frac{3}{2} & \frac{3}{2} & 2 & \frac{3}{2} \\
\frac{5}{2} & \frac{5}{2} & 3 & \frac{3}{2} & \frac{3}{2} & 2 & \frac{3}{2} & \frac{3}{2} & 2 \\
2 & \frac{3}{2} & \frac{3}{2} & 3 & \frac{5}{2} & \frac{5}{2} & 2 & \frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & 2 & \frac{3}{2} & \frac{5}{2} & 3 & \frac{5}{2} & \frac{3}{2} & 2 & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2} & 2 & \frac{5}{2} & \frac{5}{2} & 3 & \frac{3}{2} & \frac{3}{2} & 2 \\
2 & \frac{3}{2} & \frac{3}{2} & 2 & \frac{3}{2} & \frac{3}{2} & 3 & \frac{5}{2} & \frac{5}{2} \\
\frac{3}{2} & 2 & \frac{3}{2} & \frac{3}{2} & 2 & \frac{3}{2} & \frac{5}{2} & 3 & \frac{5}{2} \\
\frac{3}{2} & \frac{3}{2} & 2 & \frac{3}{2} & \frac{3}{2} & 2 & \frac{5}{2} & \frac{5}{2} & 3
\end{array}\right)\left(\begin{array}{c}
\frac{1}{3} \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
2 \\
2 \\
2 \\
2 \\
\frac{1}{3} \\
2 \\
2 \\
2 \\
2 \\
2
\end{array}\right)
$$

Thus p satisfies a Kuhn-Tucker condition for there to be a local minimum of $p^{\top} \bar{H}_{2} p=2$.
Since $\bar{H}_{2} \succeq 0$, a local minimum is also a global minimum. So $w_{2}=2$. This is achieved by AW.

Minimizing $E[\min \{T, k+1\}]$

Similarly, consider the problem of minimizing $E[\min \{T, k+1\}]$.
This is equivalent to minimizing $p^{\top} \bar{M}_{k} p$, where

$$
M_{k}=J_{k}+B_{1} \otimes J_{k-1}+\cdots+B_{k}
$$

As we did with H_{2} for M_{2}, we look for H_{k}, such that $H_{k} \leq M_{k}$ and $\bar{H}_{k} \succeq 0$. This is a semidefinite programming problem
Notice that H_{k} is $3^{k} \times 3^{k}$ and so the number of decision variables grows very rapidly, as $\Omega\left(3^{2 k}\right)$. So there is a limit to what we can discover numerically.

How can we find H_{k} ?
We can numerically solve the SDP:
maximize $\left\{\operatorname{trace}\left(J_{2} H_{2}\right): H_{2} \leq M_{2}, \bar{H}_{2} \succeq 0\right\}$.

How can we find H_{k} ?

We can numerically solve the SDP:

$$
\operatorname{maximize}\left\{\operatorname{trace}\left(J_{2} H_{2}\right): H_{2} \leq M_{2}, \bar{H}_{2} \succeq 0\right\}
$$

$$
H_{2}=\left(\begin{array}{lllllllll}
3.0000 & 2.7951 & 1.8324 & 2.8005 & 2.8005 & 2.0000 & 0.8857 & 1.0000 & 0.8857 \\
1.8324 & 3.0000 & 2.7951 & 2.0000 & 2.8005 & 2.8005 & 0.8857 & 0.8857 & 1.0000 \\
2.7951 & 1.8324 & 3.0000 & 2.8005 & 2.0000 & 2.8005 & 1.0000 & 0.8857 & 0.8857 \\
0.8857 & 1.0000 & 0.8857 & 3.0000 & 2.7951 & 1.8324 & 2.8005 & 2.8005 & 2.0000 \\
0.8857 & 0.8857 & 1.0000 & 1.8324 & 3.0000 & 2.7951 & 2.0000 & 2.8005 & 2.8005 \\
1.0000 & 0.8857 & 0.8857 & 2.7951 & 1.8324 & 3.0000 & 2.8005 & 2.0000 & 2.8005 \\
2.8005 & 2.8005 & 2.0000 & 0.8857 & 1.0000 & 0.8857 & 3.0000 & 2.7951 & 1.8324 \\
2.0000 & 2.8005 & 2.8005 & 0.8857 & 0.8857 & 1.0000 & 1.8324 & 3.0000 & 2.7951 \\
2.8005 & 2.0000 & 2.8005 & 1.0000 & 0.8857 & 0.8857 & 2.7951 & 1.8324 & 3.0000
\end{array}\right)
$$

and $\min _{p}\left\{p^{\top} H_{2} p\right\}=1.9999889$.

How can we find H_{k} ?

We can numerically solve the SDP:
maximize $\left\{\operatorname{trace}\left(J_{2} H_{2}\right): H_{2} \leq M_{2}, \bar{H}_{2} \succeq 0\right\}$.

$$
H_{2}=\left(\begin{array}{lllllllll}
3.0000 & 2.7951 & 1.8324 & 2.8005 & 2.8005 & 2.0000 & 0.8857 & 1.0000 & 0.8857 \\
1.8324 & 3.0000 & 2.7951 & 2.0000 & 2.8005 & 2.8005 & 0.8857 & 0.8857 & 1.0000 \\
2.7951 & 1.8324 & 3.0000 & 2.8005 & 2.0000 & 2.8005 & 1.0000 & 0.8857 & 0.8857 \\
0.8857 & 1.0000 & 0.8857 & 3.0000 & 2.7951 & 1.8324 & 2.8005 & 2.8005 & 2.0000 \\
0.8857 & 0.8857 & 1.0000 & 1.8324 & 3.0000 & 2.7951 & 2.0000 & 2.8005 & 2.8005 \\
1.0000 & 0.8857 & 0.8857 & 2.7951 & 1.8324 & 3.0000 & 2.8005 & 2.0000 & 2.8005 \\
2.8005 & 2.8005 & 2.0000 & 0.8857 & 1.0000 & 0.8857 & 3.0000 & 2.7951 & 1.8324 \\
2.0000 & 2.8005 & 2.8005 & 0.8857 & 0.8857 & 1.0000 & 1.8324 & 3.0000 & 2.7951 \\
2.8005 & 2.0000 & 2.8005 & 1.0000 & 0.8857 & 0.8857 & 2.7951 & 1.8324 & 3.0000
\end{array}\right)
$$

and $\min _{p}\left\{p^{\top} H_{2} p\right\}=1.9999889$. But $\min _{p}\left\{p^{\top} H_{2} p\right\}=2$ using

$$
H_{2}=\left(\begin{array}{lllllllll}
3 & 3 & 2 & 3 & 3 & 2 & 1 & 1 & 0 \\
2 & 3 & 3 & 2 & 3 & 3 & 0 & 1 & 1 \\
3 & 2 & 3 & 3 & 2 & 3 & 1 & 0 & 1 \\
1 & 1 & 0 & 3 & 3 & 2 & 3 & 3 & 2 \\
0 & 1 & 1 & 2 & 3 & 3 & 2 & 3 & 3 \\
1 & 0 & 1 & 3 & 2 & 3 & 3 & 2 & 3 \\
3 & 3 & 2 & 1 & 1 & 0 & 3 & 3 & 2 \\
2 & 3 & 3 & 0 & 1 & 1 & 2 & 3 & 3 \\
3 & 2 & 3 & 1 & 0 & 1 & 3 & 2 & 3
\end{array}\right)
$$

How to construct H_{k}

Let us search for H_{k} of a special form. For $i=0, \ldots, 3^{k}-1$ we write $i_{\text {base } 3}=i_{1} \cdots i_{k}$ (keeping k digits, including leading 0 s); so $i_{1}, \ldots, i_{k} \in\{0,1,2\}$. Define

$$
P_{i}=P_{i_{1} \cdots i_{k}}=P_{1}^{i_{1}} \otimes \cdots \otimes P_{1}^{i_{k}}
$$

where

$$
P_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

Observe that $M_{k}=\sum_{i} m_{k}(i) P_{i}$, where m_{k} is the first row of M_{k}. This motivates seeking H_{k} of the form

$$
H_{k}=\sum_{i=0}^{3^{k}-1} x_{k}(i) P_{i}
$$

Concluding steps of the proof

- The condition $M_{k} \geq H_{k}$ is equivalent to $m_{k} \geq x_{k}$.
- The matrices $P_{0}, \ldots, P_{3^{k}-1}$ commute and so have a common set of eigenvectors.
- Let $\omega=-\frac{1}{2}+i \frac{1}{2} \sqrt{3}$, a cube root of 1 . Then

$$
V_{k}=V_{1} \otimes V_{k-1}, \quad \text { where } V_{1}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right)
$$

- Let $V_{k}=U_{k}+i W_{k}$.

Columns of V_{k} are eigenvectors of the P_{i} and also of M_{k}.

- Columns of U_{k} are eigenvectors of the \bar{P}_{i} and also of \bar{M}_{k}.
- The condition $\bar{H}_{k} \succeq 0$ is equivalent to $U_{k} x_{k} \geq 0$.

We show that we may take $H_{k}=\sum_{i} x_{k}(i) P_{i}$, where

$$
x_{1}=(2,2,1)^{\top} \quad x_{2}=(3,3,2,3,3,2,1,1,0)^{\top}
$$

and choose a_{k} so that for $k \geq 3$,

$$
\begin{aligned}
x_{k}= & 1_{k}+(1,0,0)^{\top} \otimes x_{k-1} \\
& +(0,1,0)^{\top} \otimes\left(a_{k}, a_{k}, 2,2, a_{k}, 2,1,1,1\right)^{\top} \otimes 1_{k-3} .
\end{aligned}
$$

Here a_{k} is chosen maximally such that $U_{k} x_{k} \geq 0$ and $m_{k} \geq x_{k}$.
All rows of H_{k} have the same sum, and so $p^{\top} H_{k} p$ is minimized by $p=\left(1 / 3^{k}\right) 1_{k}$, and the minimum value is $p^{\top} H_{k} p=1_{k}^{\top} x_{k} / 3^{k}$. So the theorem is true provided $1^{\top} x_{k}=3^{k} w_{k}$. We have

$$
1_{k}^{\top} x_{k}=3^{k}+1_{k-1}^{\top} x_{k-1}+3^{k-2}\left(3+a_{k}\right) .
$$

So $1^{\top} x_{k}=3^{k} w_{k}$ iff the above works when taking

$$
a_{k}= \begin{cases}3-\frac{1}{3^{(k-3) / 2}}, & \text { when } k \text { is odd, } \\ 3-\frac{2}{3^{(k-2) / 2}}, & \text { when } k \text { is even. }\end{cases}
$$

Note that a_{k} increases monotonically in k, from 2 towards 3 . As $k \rightarrow \infty$ we find $a_{k} \rightarrow 3$ and $1_{k}^{\top} x_{k} / 3^{k} \rightarrow \frac{5}{2}$.
Finally, we prove that with these a_{k} we have always have

1. $m_{k} \geq x_{k}$, (implying $M_{k} \geq H_{k}$).
2. $U_{k} x_{k} \geq 0$, (implying $\bar{H}_{k} \succeq 0$).

Both are proved by induction. The first is easy and the second is hard. To prove the second we use the recurrence relation for x_{k} to find recurrences relations for components of the vectors $U_{k} x_{k}$, and then show that all components are nonnegative.

A convexity result for $P(T>k)$

Interestingly, there is an alternative, and purely probabilistic, proof that minimal value of $E[\min \{T, 3\}]$ is 2 . It is a corollary of the following lemma.

Lemma 1 Consider any rendezvous search game in which, given positive constants $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$, the players' aim is to minimize

$$
\sum_{j=1}^{k} \alpha_{i} P(T>j)
$$

Then under any optimal strategy $\phi_{j}=P(T>j)$ is convex decreasing in j, i.e.,

$$
\phi_{j+2}-\phi_{j+1} \geq \phi_{j+1}-\phi_{j}, \quad \text { for all } j=0, \ldots, k-2
$$

Proof. Let I_{j} denote the event that the players meet at their j th step, irrespective of any meeting previously. An optimal strategy minimizes

$$
\sum_{j=1}^{k} \alpha_{i} P(T>j)=\sum_{j=1}^{k} \alpha_{j}\left(1-P\left(I_{1} \cup \cdots \cup I_{j}\right)\right)
$$

Since no improvement is possible if both players swap the locations they visit as steps $j+1$ and $j+2$, we must have

$$
P\left(I_{1} \cup \cdots \cup I_{j} \cup I_{j+1}\right) \geq P\left(I_{1} \cup \cdots \cup I_{j} \cup I_{j+2}\right)
$$

Thus,

$$
\begin{aligned}
\phi_{j+2}= & 1-P\left(I_{1} \cup \cdots \cup I_{j} \cup I_{j+1} \cup I_{j+2}\right) \\
= & 1-P\left(I_{1} \cup \cdots \cup I_{j} \cup I_{j+1}\right)-P\left(I_{1} \cup \cdots \cup I_{j} \cup I_{j+2}\right) \\
& +P\left(\left(I_{1} \cup \cdots \cup I_{j} \cup I_{j+1}\right) \cap\left(I_{1} \cup \cdots \cup I_{j} \cup I_{j+2}\right)\right) \\
\geq & 1-2 P\left(I_{1} \cup \cdots \cup I_{j} \cup I_{j+1}\right)+P\left(I_{1} \cup \cdots \cup I_{j}\right) \\
= & 2 \phi_{j+1}-\phi_{j} .
\end{aligned}
$$

Corollaries

In the particular case of $\alpha_{1}=\cdots=\alpha_{k}=1$ the players seek to minimize the expected k-truncated rendezvous time.

If they are playing the symmetric rendezvous game on K_{3} and $k=3$, we have that under the optimal policy,

$$
\begin{aligned}
E[\min \{T, 3\}] & =P(T>0)+P(T>1)+P(T>2) \\
& \geq P(T>0)+P(T>1)+[2 P(T>1)-P(T>0)] \\
& =3 P(T>1) \\
& \geq 2
\end{aligned}
$$

But we have not be able to find a similar neat way to give a tight lower bound on $E[\min \{T, k\}]$ for any $k>3$.

Symmetric rendezvous search on K_{n}

For K_{3} we have seen that AW minimizes $E[\min \{T, k\}]$ for all $k=1,2, \ldots$.

This is not true for K_{4}. However, AW does minimize $E[\min \{T, 3\}]$ and $E[\min \{T, 6\}]$.

Similarly, AW minimizes $E[\min \{T, 4\}]$ for search on K_{5}.
This suggests the conjecture that for search on K_{n}, AW minimizes $E T$ and also $E[\min \{T, k\}]$, for all k that are divisible by $n-1$.

Symmetric rendezvous search on the line

Two players are placed 2 units apart on a line, randomly facing left or right. At each step each player must either move one unit forward or backwards. Each player knows that the other player is equally likely to be in front or behind him, and equally likely to be facing either way. How can they meet in the least expected time?

- $4.1820 \leq w \leq 4.2574$, and it is conjectured that $w=4.25$.
- It seems not to help if the players are initially faced the same way.
This is similar to the fact that on K_{3} it is no help for players to have a common notion of clockwise.
- In the asymmetric version of rendezvous search, Players I and II may adopt different strategies. It is known that the minimal expected rendezvous time is 3.25 , one less that the conjectured symmetric rendezvous value.
Note that in the asymmetric version of rendezvous on K_{3}, the minimal expected rendezvous time is 1.5 , also one less than the symmetric rendezvous value.

Symmetric rendezvous search in other spaces

Alpern (1976) has also proposed the following problem.

Two astronauts land at random spots on a planet (which is assumed to be a uniform sphere, without any known distinguishing marks or directions) How should they move so as to be within 1 kilometre of one another in the least expected time?

