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Aisle miles (2006)

Two people lose each other while
wandering through the aisles of a
large supermarket. The height of the
shelves precludes aisle-to-aisle
visibility. One person wishes to find
the other. Should that person stop
moving and remain in a single visible
site while the other person continues
to move through the aisles? Or
would an encounter or sighting occur
sooner if both were moving through
the aisles? (David Kafkewitz, in
letter to the New Scientist)



Quo vadis? (Mosteller, 1965)

Two strangers who have a private
recognition signal agree to meet on a
certain Thursday at 12 noon in New
York City, a town familiar to neither
to discuss an important business
deal, but later they discover that
they have not chosen a meeting
place, and neither can reach the
other because both have embarked
on trips. If they try nevertheless to
meet, where should they go?



Telephone coordination game (Alpern, 1976)

I II

In each of two rooms, there are n telephones randomly strewn
about. The phones are connected pairwise in some unknown
fashion. There is a player in each room. In each period 1, 2, . . . ,
each player picks up a phone and says “hello”, until the first time
that they hear one another. The common aim of the players is to
minimize the expected number of periods required to meet.



Symmetric rendezvous search on Kn

Assumptions

1. There are n locations, which are connected as the complete
graph, Kn.

2. Two players are randomly placed at two distinct locations.

3. The players have no common labelling of the locations.

4. At steps, 1, 2, . . . , each player relocates himself at one of the
n locations.

5. Players adopt an identical (randomizing) strategy, in which
the place that a player locates himself at step t can be only a
function of where he has been at times 0, 1, . . . , t− 1.

What should their common strategy be if they are to meet in the
least expected number of steps?
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Some possible strategies

Let T be the number of steps in which the players meet.

Move-at-random If at each discrete step 1, 2, . . . each player were
to locate himself at a randomly chosen location, then
the expected time to meet would be n. E.g.,

ET = 1 +
n− 1

n
ET =⇒ ET = n .

Wait-for-mommy Suppose the players could break symmetry (or
had some prior agreement). Now it is best for one
player to remain stationary while the other tours all
other locations in random order. They will meet (on
average) half way through the tour. So

ET = 1
n−1

(
1 + 2 + · · ·+ (n− 1)

)
= 1

2n .
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Wait-for-mommy

Theorem 1 In the asymmetric rendezvous search game on Kn the
optimal strategy is wait-for-mommy. (Anderson-Weber, 1990)

Proof. Let Ij denote the event that the players meet at their jth
step, irrespective of any meeting previously.

P (Ij) ≤ 1
n−1 .

P (T ≤ k) = P
(⋃k

j=1 Ij

)
≤

∑k
j=1 P (Ij) ≤ k

n−1 .

ET ≥
∑n−1

k=0 P (T > k) ≥
∑n−1

k=0

(
1− k

n−1

)
= 1

2n.



The Anderson-Weber strategy

Motivated by the optimality of wait-for-mommy in the asymmetric
case, Anderson and Weber (1990) proposed the following strategy:

AW : If rendezvous has not occurred within the first (n− 1)j
steps then in the next n− 1 steps each player should either
stay at his initial location or tour the other n− 1 locations in
random order, with probabilities p and 1− p, respectively,
where p is to be chosen optimally.

On K2, AW with p = 1
2 is the same as move-at-random.

Let w = inf{ET}, where the infimum is taken over all possible
strategies.



The Anderson-Weber strategy on Kn

Suppose each player stays at home with probability p, or tours the
other n− 1 locations with probability 1− p. Then

ET ≈ p2(n− 1 + ET )

+ 2p(1− p)1
2(n− 1)

+ (1− p)2
(∫ n−1

0

t
n−1e

− t
n−1 dt + e−1(n− 1 + ET )

)
.

As n →∞ the minimizing p tends to 0.24749 and rendezvous
value is w ∼ 0.8289n.



The Anderson-Weber strategy on K2

Theorem 2 On K2, AW minimizes P (T > k) for all k.

Proof.

P (Ik) ≤ 1/2 =⇒ P (Ic
k) ≥ 1/2.

Indeed, given players have not met by step k − 1, we still have

P (Ic
k | Ic

1 ∩ · · · ∩ Ic
k−1) ≥ 1/2.

Thus P (T > k) = P (Ic
1 ∩ · · · ∩ Ic

k) ≥ 1/2k.

Corollary. w = 2 on K2.

Proof. ET =
∑∞

k=0 P (T > k) ≥
∑∞

k=0 2−k = 2.



The Anderson-Weber strategy on K3

On K3, AW specifies that in each block of two consecutive steps,
each player should, independently of the other, either stay at his
initial location or tour the other two locations in random order,
doing these with respective probabilities p = 1

3 and 1− p = 2
3 .

AW gives ET = 5
2 , whereas move-at-random gives ET = 3.

A new result is the following theorem (Weber, 2006).

Theorem 3 On K3, AW minimizes ET .

A corollary of Theorem 2 is that w = 5
2 on K3.



Formulation of the problem

Suppose the three locations are arranged around a circle.

I

a

bc

Each player calls his home location ‘a’.

Each player chooses a direction he calls ‘clockwise’ and the labels
that are one and two locations clockwise of home as ‘b’ and ‘c’
respectively.

A sequence of a player’s moves can now be described.
E.g., a player’s first 6 moves might be ‘ababbc’.



Suppose the problem is made a bit easier: the players are provided
with the same notion of clockwise.
(We will see later that this does not actually help the players.)

Player II starts one position clockwise of Player I.

I

II

B1 =

1 1 0
0 1 1
1 0 1

 .

The matrix B1 has ‘1’ if after the first step they do not meet, and
‘0’ if they do.

The rows of B1 correspond to I playing a, b or c.

The columns of B1 correspond to II playing a, b or c.



The minimum of P (T > 1)

If instead, Player II starts two steps clockwise of Player I, then the
indicator matrix (for not meeting after one step) is B>

1 . Let a bar
over a matrix denote the mean of the matrix and its transpose. So

B̄1 = 1
2(B1 + B>

1 ) .

Consider the problem of minimizing P (T > 1). Since it is equally
likely for II to start either one or two places clockwise of I, this is
equivalent to the problem of finding p> = (p1, p2, p3), with p ≥ 0
and p1 + p2 + p3 = 1, to minimize

p>B̄1p = p>

1 1
2

1
2

1
2 1 1

2
1
2

1
2 1

 p = p2
1 + p2

2 + p2
3 + p1p2 + p2p3 + p3p1 .

It is not hard to show that this is minimized by p1 = p2 = p3 = 1
3

and that P (T > 1) is minimized to 2
3 .



The minimum of P (T > 2)

Again suppose that II starts one location clockwise of I. Then the
indicator matrix for not meeting within 2 steps is

B2 := B1 ⊗B1 =

B1 B1 0
0 B1 B1

B1 0 B1

 =



1 1 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0
1 0 1 1 0 1 0 0 0
0 0 0 1 1 0 1 1 0
0 0 0 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1
1 1 0 0 0 0 1 1 0
0 1 1 0 0 0 0 1 1
1 0 1 0 0 0 1 0 1


Rows 1–9 (and columns 1–9) correspond respectively to Player I
(or II) playing patterns of moves over the first two steps of
aa, ab, ac, ba, bb, bc, ca, cb, cc.

The probability of not meeting within 2 steps is p>B̄2p.



AW minimizes P (T > 2)

We find that p>B̄2p is minimized by p> = 1
3(1, 0, 0, 0, 0, 1, 0, 1, 0),

with p>B̄2p = 1
3 . I.e., ‘aa’, ‘bc’ and ‘cb’ are to be chosen equally

likely. This is the AW strategy.

B̄2 =



1 1
2

1
2

1
2

1
2 0 1

2 0 1
2

1
2 1 1

2 0 1
2

1
2

1
2

1
2 0

1
2

1
2 1 1

2 0 1
2 0 1

2
1
2

1
2 0 1

2 1 1
2

1
2

1
2

1
2 0

1
2

1
2 0 1

2 1 1
2 0 1

2
1
2

0 1
2

1
2

1
2

1
2 1 1

2 0 1
2

1
2

1
2 0 1

2 0 1
2 1 1

2
1
2

0 1
2

1
2

1
2

1
2 0 1

2 1 1
2

1
2 0 1

2 0 1
2

1
2

1
2

1
2 1



Another optimal strategy is p> = (0, 1, 0, 1, 0, 0, 0, 0, 1), where
‘ab’, ‘ba’ and ‘cc’ are to be chosen equally likely.



A quadratic programming problem

To prove that AW minimizes p>B̄2p we must solve a difficult
quadratic programming problem.

The difficulty arises because B̄2 is not positive semidefinite. It’s
eigenvalues are {4, 1, 1, 1, 1, 1, 1,−1

4 ,−1
4}. This means that there

can be local minima to p>B̄2p.

E.g., p = 1
9(1, 1, 1, 1, 1, 1, 1, 1, 1), is a local minimum, with

p>B̄2p = 4
9 . However, this is not a global minimum.

In general, if a matrix C is not positive semidefinite, the following
problem is NP-hard:

minimize p>Cp : p ≥ 0 , 1>p = 1 .



A method for finding lower bounds

Suppose we are trying to minimize p>Cp, but C is not positive
semidefinite.

We can obtain a lower bound on the solution as follows.

min{p>Cp : p ≥ 0 , 1>p = 1}
= min{trace(Cpp>) : p ≥ 0 , 1>p = 1}
≥ min{trace(CX) : X � 0 , X ≥ 0 , trace(JX) = 1} ,

where J = 11> is a matrix of all 1s.

This is by using the fact that if p satisfies the l.h.s. constraints,
then X = pp> satisfies the r.h.s. constraints.



Semidefinite programming problems

Given symmetric matrices C,A1, . . . , Am, consider the problem

minimize {trace(CX)
: X � 0 , X ≥ 0 , trace(AiX) = bi, i = 1, . . . ,m} .

This is a Semidefinite Programming Problem (SDP).

The minimization is over the components of X.
This can mean lots of decision variables.
If X is j × j and symmetric, then there are j(j − 1)/2 variables.

SDPs can be solved to any degree of numerical accuracy using
interior point algorithms (e.g., using Matlab and sedumi).

Semidefinite programming has been called ‘linear programming for
the 21st century’. The SDP above becomes a linear programming
problem in the special case that C,A1, . . . , Am are all diagonal.



A lower bound on p>B̄2p

As a relaxation of the quadratic program:

minimize {p>B̄2p : p ≥ 0 , 1>p = 1} ,

we consider the SDP:

minimize {trace(B̄2X) : X � 0 , X ≥ 0 , trace(J2X) = 1} ,

where J2 is the 9× 9 matrix of 1s. There are 36 decision variables.
We find that the minimum value is 1/3.

But p>B̄2p = 1/3 for p> = 1
3(1, 0, 0, 0, 0, 1, 0, 1, 0).

So we may conclude that 1/3 is the minimal value of p>B̄2p.



Lower bounds on P (T > k)

Let φk be the minimal possible value of P (T > k).
The problem of minimizing P (T > k) is equivalent to minimizing
p>B̄kp, where

Bk = B1 ⊗Bk−1 .

To find a lower bound on φk we consider the SDP:

minimize{trace(B̄kX) : X � 0 , X ≥ 0 , trace(XJk) = 1} .

where Jk is a 3k × 3k matrix of 1s.

Notice that B̄k is 3k × 3k and so the number of decision variables
in the SDP grows very rapidly, as Ω(32k).



Lower bounds on E[min{T, k + 1}]

Similarly, let wk be the minimal possible value of the ‘expected
k−truncated rendezvous time’, E[min{T, k + 1}]. Now

E[min{T, k + 1}] = p>Mkp ,

where
Mk = Jk + B1 ⊗ Jk−1 + · · ·+ Bk .

To find a lower bound on wk we consider the SDP:

minimize {trace(M̄kX) : X � 0 , X ≥ 0 , trace(XJk) = 1} .



Lower bounds on φk and wk

Recall that φk and wk are, respectively, the infimal possible values
of P (T > k) and E[min{T, k + 1}]. Solving SDPs, we get

Lower bounds when players have a common clockwise:

k 1 2 3 4
φk

2
3

1
3

2
10

1
11

wk
5
3 2 20

9
21
9

Lower bounds when players have no common clockwise:

k 1 2 3 4 5
φk

2
3

1
3

2
9 0.108697

wk
5
3 2 20

9
21
9

65
27

‡



Observations

1. It is computationally infeasible to go much further. The
number of decision variables in the SDP is 3240 when k = 4.
For k = 5 it would be 29403.

2. These lower bounds prove that AW minimizes
E[min{T, k + 1}] as far as k = 4, and AW minimizes
P (T > k) as far as k = 2.

3. For k = 3 the lower bound on p>B̄3p is 2/10, and this cannot
be achieved. In fact, the minimum is 2/9.

4. The answers depend on whether or not the players are
provided with a common notion of clockwise.
If they are not, then they must choose p such that ‘b’ and ‘c’
are treated the same. This requires p = Skp, where Sk is a
matrix that swaps the roles of the non-home locations.



A conjecture concerning AW

ET =
∞∑

k=0

P (T > k) .

AW does not minimize every term in this sum. For example, with
AW we get P (T > 4) = 1

9 , but there is another strategy for which
P (T > 4) = 1

10 .

wk is the minimal value of E[min{T, k + 1}] =
∑k

j=0 P (T > j).
It is found by minimizing p>Mkp, where

Mk = Jk + B1 ⊗ Jk−1 + · · ·+ Bk .

Empirically, we notice that the lower bounds for wk are always
achieved by AW, and are the same whether or not the players have
a common notion of clockwise. This leads us to conjecture the
following theorem.



The optimality of AW for K3

Theorem 4 The Anderson–Weber strategy is optimal for the
symmetric rendezvous search game on K3, minimizing
E[min{T, k + 1}] to wk for all k = 1, 2, . . . , where

wk =


5
2 −

5
23−

k+1
2 , when k is odd,

5
2 −

3
23−

k
2 , when k is even.

Consequently, the minimal achievable value of ET is w = 5
2 .

{wk}∞0 = {1, 5
3 , 2, 20

9 , 21
9 , 65

27 , . . .}.



Proof that AW is optimal on K3

We begin by describing how we might prove that a given strategy
minimizes E[min{T, 3}] = P (T > 0) + P (T > 1) + P (T > 2),
or equivalently, that a given p minimizes p>M̄2p.

1. Suppose we are trying to minimize p>M̄2p, but M̄2 is not
positive semidefinite.

2. Suppose we can find a matrix H2, which is positive
semidefinite and such that M2 ≥ H2.

3. Suppose we can minimize p>H̄2p. This provides a lower
bound on the minimum of p>M̄2p.

4. If this lower bound can be achieved, i.e., p>(M̄2 − H̄2)p = 0,
then p minimizes p>M̄2p.
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The minimum of E[min{T, 3}]

We can take p> = 1
3(1, 0, 0, 0, 0, 1, 0, 1, 0) and

M2 =



3 3 2 3 3 2 1 1 1

2 3 3 2 3 3 1 1 1

3 2 3 3 2 3 1 1 1

1 1 1 3 3 2 3 3 2

1 1 1 2 3 3 2 3 3

1 1 1 3 2 3 3 2 3

3 3 2 1 1 1 3 3 2

2 3 3 1 1 1 2 3 3

3 2 3 1 1 1 3 2 3



≥ H2 =



3 3 2 3 3 2 1 1 0

2 3 3 2 3 3 0 1 1

3 2 3 3 2 3 1 0 1

1 1 0 3 3 2 3 3 2

0 1 1 2 3 3 2 3 3

1 0 1 3 2 3 3 2 3

3 3 2 1 1 0 3 3 2

2 3 3 0 1 1 2 3 3

3 2 3 1 0 1 3 2 3


.



The eigenvalues of M̄2 are {19, 5
2 , 5

2 , 1, 1, 1, 1,−1
2 ,−1

2}, so it is not
positive semidefinite. However, H̄2 is positive semidefinite, with
eigenvalues {18, 3, 3, 3

2 , 3
2 , 0, 0, 0, 0}. Here

H̄2p =



3 5
2

5
2 2 3

2
3
2 2 3

2
3
2

5
2 3 5

2
3
2 2 3

2
3
2 2 3

2
5
2

5
2 3 3

2
3
2 2 3

2
3
2 2

2 3
2

3
2 3 5

2
5
2 2 3

2
3
2

3
2 2 3

2
5
2 3 5

2
3
2 2 3

2
3
2

3
2 2 5

2
5
2 3 3

2
3
2 2

2 3
2

3
2 2 3

2
3
2 3 5

2
5
2

3
2 2 3

2
3
2 2 3

2
5
2 3 5

2
3
2

3
2 2 3

2
3
2 2 5

2
5
2 3





1
3
0

0

0

0

1
3
0

1
3
0



=



2

2

2

2

2

2

2

2

2



.

Thus p satisfies a Kuhn-Tucker condition for there to be a local
minimum of p>H̄2p = 2.
Since H̄2 � 0, a local minimum is also a global minimum.
So w2 = 2. This is achieved by AW.



Minimizing E[min{T, k + 1}]

Similarly, consider the problem of minimizing E[min{T, k + 1}].

This is equivalent to minimizing p>M̄kp, where

Mk = Jk + B1 ⊗ Jk−1 + · · ·+ Bk .

As we did with H2 for M2, we look for Hk, such that Hk ≤ Mk

and H̄k � 0. This is a semidefinite programming problem

Notice that Hk is 3k × 3k and so the number of decision variables
grows very rapidly, as Ω(32k). So there is a limit to what we can
discover numerically.



How can we find Hk?
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
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How to construct Hk

Let us search for Hk of a special form. For i = 0, . . . , 3k − 1 we
write ibase 3 = i1 · · · ik (keeping k digits, including leading 0s); so
i1, . . . , ik ∈ {0, 1, 2}. Define

Pi = Pi1··· ik = P i1
1 ⊗ · · · ⊗ P ik

1 ,

where

P1 =

0 1 0
0 0 1
1 0 0

 .

Observe that Mk =
∑

i mk(i)Pi, where mk is the first row of Mk.
This motivates seeking Hk of the form

Hk =
3k−1∑
i=0

xk(i)Pi .



Concluding steps of the proof

I The condition Mk ≥ Hk is equivalent to mk ≥ xk.

I The matrices P0, . . . , P3k−1 commute and so have a common
set of eigenvectors.

I Let ω = −1
2 + i1

2

√
3, a cube root of 1. Then

Vk = V1 ⊗ Vk−1 , where V1 =

1 1 1
1 ω ω2

1 ω2 ω

 .

I Let Vk = Uk + iWk.
Columns of Vk are eigenvectors of the Pi and also of Mk.

I Columns of Uk are eigenvectors of the P̄i and also of M̄k.

I The condition H̄k � 0 is equivalent to Ukxk ≥ 0.



We show that we may take Hk =
∑

i xk(i)Pi, where

x1 = (2, 2, 1)> x2 = (3, 3, 2, 3, 3, 2, 1, 1, 0)>

and choose ak so that for k ≥ 3,

xk =1k + (1, 0, 0)> ⊗ xk−1

+ (0, 1, 0)> ⊗ (ak, ak, 2, 2, ak, 2, 1, 1, 1)> ⊗ 1k−3 .

Here ak is chosen maximally such that Ukxk ≥ 0 and mk ≥ xk.

All rows of Hk have the same sum, and so p>Hkp is minimized by
p = (1/3k)1k, and the minimum value is p>Hkp = 1>k xk/3k.
So the theorem is true provided 1>xk = 3kwk. We have

1>k xk = 3k + 1>k−1xk−1 + 3k−2(3 + ak) .



So 1>xk = 3kwk iff the above works when taking

ak =


3− 1

3(k−3)/2
, when k is odd,

3− 2
3(k−2)/2

, when k is even.

Note that ak increases monotonically in k, from 2 towards 3. As
k →∞ we find ak → 3 and 1>k xk/3k → 5

2 .
Finally, we prove that with these ak we have always have

1. mk ≥ xk, (implying Mk ≥ Hk).

2. Ukxk ≥ 0, (implying H̄k � 0).

Both are proved by induction. The first is easy and the second is
hard. To prove the second we use the recurrence relation for xk to
find recurrences relations for components of the vectors Ukxk, and
then show that all components are nonnegative.



A convexity result for P (T > k)

Interestingly, there is an alternative, and purely probabilistic, proof
that minimal value of E[min{T, 3}] is 2. It is a corollary of the
following lemma.

Lemma 1 Consider any rendezvous search game in which, given
positive constants {α1, . . . , αk}, the players’ aim is to minimize

k∑
j=1

αiP (T > j) .

Then under any optimal strategy φj = P (T > j) is convex
decreasing in j, i.e.,

φj+2 − φj+1 ≥ φj+1 − φj , for all j = 0, . . . , k − 2.



Proof. Let Ij denote the event that the players meet at their jth step,
irrespective of any meeting previously. An optimal strategy minimizes

k∑
j=1

αiP (T > j) =
k∑

j=1

αj

(
1− P (I1 ∪ · · · ∪ Ij)

)
.

Since no improvement is possible if both players swap the locations they
visit as steps j + 1 and j + 2, we must have

P (I1 ∪ · · · ∪ Ij ∪ Ij+1) ≥ P (I1 ∪ · · · ∪ Ij ∪ Ij+2) .

Thus,

φj+2 = 1− P (I1 ∪ · · · ∪ Ij ∪ Ij+1 ∪ Ij+2)

= 1− P (I1 ∪ · · · ∪ Ij ∪ Ij+1)− P (I1 ∪ · · · ∪ Ij ∪ Ij+2)

+ P
(
(I1 ∪ · · · ∪ Ij ∪ Ij+1) ∩ (I1 ∪ · · · ∪ Ij ∪ Ij+2)

)
≥ 1− 2P (I1 ∪ · · · ∪ Ij ∪ Ij+1) + P (I1 ∪ · · · ∪ Ij)

= 2φj+1 − φj .



Corollaries

In the particular case of α1 = · · · = αk = 1 the players seek to
minimize the expected k–truncated rendezvous time.

If they are playing the symmetric rendezvous game on K3 and
k = 3, we have that under the optimal policy,

E[min{T, 3}] = P (T > 0) + P (T > 1) + P (T > 2)

≥ P (T > 0) + P (T > 1) +
[
2P (T > 1)− P (T > 0)

]
= 3P (T > 1)
≥ 2 .

But we have not be able to find a similar neat way to give a tight
lower bound on E[min{T, k}] for any k > 3.



Symmetric rendezvous search on Kn

For K3 we have seen that AW minimizes E[min{T, k}] for all
k = 1, 2, . . . .

This is not true for K4. However, AW does minimize
E[min{T, 3}] and E[min{T, 6}].

Similarly, AW minimizes E[min{T, 4}] for search on K5.

This suggests the conjecture that for search on Kn, AW minimizes
ET and also E[min{T, k}], for all k that are divisible by n− 1.



Symmetric rendezvous search on the line

Two players are placed 2 units apart on a line, randomly facing left
or right. At each step each player must either move one unit
forward or backwards. Each player knows that the other player is
equally likely to be in front or behind him, and equally likely to be
facing either way. How can they meet in the least expected time?

?



?

I 4.1820 ≤ w ≤ 4.2574, and it is conjectured that w = 4.25.

I It seems not to help if the players are initially faced the same
way.
This is similar to the fact that on K3 it is no help for players
to have a common notion of clockwise.

I In the asymmetric version of rendezvous search, Players I and
II may adopt different strategies. It is known that the minimal
expected rendezvous time is 3.25, one less that the
conjectured symmetric rendezvous value.

Note that in the asymmetric version of rendezvous on K3, the
minimal expected rendezvous time is 1.5, also one less than
the symmetric rendezvous value.



Symmetric rendezvous search in other spaces

Alpern (1976) has also proposed the following problem.

Two astronauts land at
random spots on a
planet (which is
assumed to be a uniform
sphere, without any
known distinguishing
marks or directions)
How should they move
so as to be within 1
kilometre of one another
in the least expected
time?
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