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Abstract

We consider problems of provisioning an excludable public good amongst n potential
members of a peer-to-peer system who are able to communicate information about their
private preferences for the good. The cost of provisioning the good in quantity Q depends
on Q, and may also depend on n, or on the final number of participating peers, m. Our
aim is to maximize social welfare in a way that is incentive compatible, rational and
feasible. Although it is unfortunately almost never possible to calculate or implement a
truely optimal Mechanism Design, we show that as the number of participants becomes
large the expected social welfare that can be obtained by the optimal design is at most a
factor 1 + O(1/n) or 1 + O(1/

√
n) greater than that which can be obtained with a very

simple scheme that requires only a fixed contribution (payment) from any agent who joins
the system as a participating peer. Our first application is to a model of file sharing, in
which the public good is content availability; the second concerns a problem of peering
wireless LANs, in which the public good is the availability of connectivity for roaming
peers. In both problems we can cope with the requirement that the payments be made
in kind, rather than in cash.

Keywords: file sharing, incentive mechanisms, mechanism design, peer-to-peer, peer-
ing, wireless LANs.

1 Introduction

The design of a peer-to-peer (P2P) system poses many interesting questions. If the quantity
of the service it provides, say Q, is a design parameter, what should it be? How should peers
contribute to the cost of providing Q and how can the ‘free-rider problem’ be avoided? In
this paper we consider how these questions might be answered for models of two possible P2P
systems. The first is a file sharing system, in which Q is ‘the number of distinct files shared’.
The second is a system for sharing wireless LAN (WLAN) resources when peers roam in some
geographic location away from their home LAN. Now Q is ‘the availability of connectivity for
roaming peers’.

Let us think of the service offered by a peer-to-peer system as an economic good, and
imagine that the agents (or peers) know their own differing preferences for the quantity (or
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quality) of service Q that the system can provide. It is reasonable that a peer who values the
system more should make a greater contribution to its cost, or share more of his own resources.
But how do we force each peer to truthfully tell us how much he values the system?

Each of the peer-to-peer systems that we consider in this paper has two important charac-
teristics. Firstly, viewed as a good, it is non-rivalrous, meaning that one agent’s consumption
of the good does not decrease its utility to another agent (at least to a reasonable first ap-
proximation). For instance, content availability in a file sharing system is not reduced by
peers downloading files. Similarly, the probability for obtaining wireless connectivity by a
roaming agent randomly located in an area partially covered by WLANS is not affected by
the fact that other such agents request similar service. A second characteristic is that it is
excludable, meaning that it is possible to prevent particular agents from having access to the
good (e.g., by requiring a password to access the system). Economists often call such goods
‘excludable public goods’ or ‘club goods’. A critical aspect in our modeling approach is that
we consider such a public good model for describing the value obtained by the peers from
using the system.

In economics, our problem is known as the Mechanism Design (MD) problem. We need to
elicit truthful information from the agents, or peers, regarding their valuation of the service,
set Q, and decide which of them are allowed to participate in using the system and how much
each should contribute to covering the cost of building the system at level Q. This is to be
done to produce the greatest possible social welfare. While the full solution of this problem is
extremely complex and not easily solved in practice, we show in Section 2 that as the number
of agents becomes large, there is a good solution to our problem that takes a very simple
form. We merely require each agent to pay the same fixed fee towards payment of the total
cost, and exclude agents that are unwilling to do so. In the cases we consider, this fee need
not be paid in cash, but can be paid in kind, i.e., by contributing to a fixed part of the overall
service. Such a simple contribution policy is easy to implement and requires no centralized
implementation. The only information required by the system designer to compute the fixed
fee is the distribution of the agents’ valuations for the service.

Although there were results pointing to the fact that in the limit optimal incentive pay-
ments reduced to fixed and equal contributions by all peers, there were no result for how
well such simple policies were performing as a function of the number of peers. Our proofs
allow to obtain such tight bounds. The positive result is that the optimal policies are only a
factor(1 + O(1/n) or (1 + O(1/

√
n) better than a very simple class of policies which are easy

to compute. These policies are simple in the sense that the system designer declares a fixed
participation fee and the expected system size to all participants. Then peers must make a
simple decision, to participate or not. One may think of more complex equal contribution
policies, where the system size and the fee may depend on the number of final participants,
requiring more compex calculations both from the system designer and from the peers. Our
results show that the gain of using such policies is small and the per capita gain tends to
zero fast. We also show how to extend the system to handle multiple constraints on how the
cost should be covered, and also to reflect a dependence on the number of final participants.
We apply our approach to model file sharing and peering wireless LANs, and we derive the
simple optimization problems from which one can compute the optimal incentive policies. We
also show that the existence of a weakly feasible incentive compatible mechanism implies the
existence of a strongly feasible one.

We must emphasize that our results must be taken with a degree of salt in designing a
practical system. In order to obtain an asymptotic solution to the notoriously difficult MD
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problem we have had to use very simple models for our P2P systems, in which peers are
identified by a single parameter, their valuation of the service. One can think of it as the
‘first order term’ of a more detailed model which would take into account more accurate
models of cost, utility, and peer interactions. But we expect such more complex models to
lead to intractable game design problems. Even in our simple setup, the single parameter MD
problem is not analytically solvable (although we have managed to solve it completely for a
particular case in Example 1). Hence showing that such simple policies are asymptotically
optimal has great value by suggesting that simple practical policies for incentives may suffice
in practice.

The paper is organized as follows. In Section 2 we describe a model for an excludable public
good and how to solve the optimization problem of finding a social welfare maximizing feasible
incentive compatible mechanism. Section 3 presents our asymptotically optimal scheme and
states the main theorem concerning it. In 3.2 we work through a numerical example that
illustrates the ideas, in 3.3 we discuss other schemes that also require each participant to
make the same payment, and 3.4 presents an extension to a model in which there are k
‘types’ of peer, and k constraints, which impose conditions that peers of the same type must
cover a certain aspect of the cost. Sections 4 and 5 contain our applications to P2P file sharing
systems and WLANS. Section 6 looks at questions of stability and convergence when some
information must be learned. Our conclusions are in Section 7.

Some problem formulation and longer proofs are placed in the Appendix. Appendix A
contains the set up of the optimization problem of maximizing social welfare, and B justifies
the fact that it can be solve using Lagrangian methods. Appendix C contains proof of a
technical lemma. The proofs of our main theorems 1 and 2 are in D and E. Appendix F
contains Theorem 3, which is a significant theoretical result stating even when the mecahnism
may use exclusions, the existence of a weakly feasible incentive compatible scheme implies
the existence of a strongly feasible incentive compatible one. Appendix G contains detailed
calculations for Section 3.3.

1.1 Related work

Our work has been motivated by that of Hellwig [13] and Norman[16], who have also inves-
tigated asymptotic properties of optimal solutions to the MD problem in the public goods
context. Our contribution is to focus on the form of the limiting solution and obtain results
by simpler arguments that also permit some extensions. We show that, depending upon cer-
tain assumptions regarding the forms of the utility and cost functions, the system obtains
expected social welfare such that an optimal incentive mechanism could obtain no more than
a multiplicative factor of 1+O(1/n) or 1+O(1/

√
n) better. Previous research did not obtain

such exact bounds on the performance of the limiting policy, nor was it able to handle multi-
ple constraints. Our proof technique is much simpler and focuses exactly on that aspect. We
also treat the case where the cost may depend on the final number of participants (instead of
the number of potential participants). This type of congestion cost is in fact the basis of our
WLAN model in Section 5.

Golle et. al. [11] made a first effort to model the utilities and costs associated with the
participation in a P2P file sharing system and using game theoretic analysis proposed the
use of micropayments for achieving the desirable equilibria. Buragohain et. al. [5] follow a
game theoretic approach and study the equilibria and corresponding efficiency achieved in a
P2P file sharing system, based on a similar utility and cost model to ours, assuming that the
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system can enforce a level of reciprocity. Other relevant modeling references are [4], [15], [14].
Antoniadis et. al. [1] have attempted to compare different incentive schemes, one of them
being the simple contribution scheme analyzed in this paper. Similarly, [3] and [8] contain
more elaborate applications to file sharing and WLANs using our simple contribution scheme.
Regarding the asymptotic results, all this work referenced [7], an unpublished version of this
current paper where the proofs did not yet obtain the 1 + O(1/n) bound on the performance
of the asymptotic, which is tight.

From a practical perspective, a P2P system designer has to deal with the fact that he
is unable to rely on trusted software1 or on central entities for monitoring and accounting.
Thus a significant part of the research literature in P2P economics studies the game theoretic
and implementation issues related to the effective accounting of peers’ transactions (by means
of reputation, credits, etc.) in such a fully distributed and untrusted environment, see for
example [10], [18], [12]. Such approaches adhere to the principle that peers should benefit
from the system in proportion to the extent that they contribute to actual downloads and
uploads, and be able to identify and punish the free riders by reducing their reputation and
restricting their downloads. The MMAPPS Consortium [6] have discussed the difficulty in
providing and storing reliable accounting information for enforcing incentive policies in P2P
systems.

An interesting system that follows similar incentive policies as the ones proposed in this
paper is Direct Connect.2 This P2P application relies on central control exercised by a special
peer sub-group enforcing specific minimum contribution rules, and excluding peers that are
found to contribute less based on their IP addresses.

2 An Excludable Public Good Model

Consider an excludable public good as described in Section 1. Suppose that to provide the
good in quantity Q costs c(n,Q). Once it is provided, the net benefit to agent i, if he is
permitted to use it, is

θiu(Q) − pi ,

where pi is the payment he makes towards the cost of providing the good. Here θ =
(θ1, . . . , θn) is a vector of ‘preference parameters’, which are assumed to be independent
and identically distributed samples from a distribution on [0, 1] with distribution function F .
This distribution F is known to all agents, but the value of θi is known to agent i alone.
We suppose that u(Q) and c(n,Q) are, respectively, concave and convex functions of Q. The
reader should notice the simplicity of our model: the value agent i obtains is θiu(Q), where
u(Q) is common to all agents. Differentiation is provided through a single parameter, θi.
We could also easily refine this model to assume that agents are not of the same type (i.e.,
characterized by the same distribution F ), but belong to some finite number of types, each
characterized by a different distribution of its preference parameter. In this case the type of
a peer is common information.

1Kazaa is a characteristic example of a real world application that tried to implement a reciprocative
incentive mechanism by giving priority to peers that contribute more by having less downloads than uploads,
which failed due to a hacked version of its software. This version, Kazaa-lite, was assigning by default the
maximum of credits to its users to enhance their priority. Original Kazaa users started blocking users with
large amounts of credit considering them fraudulent.

2http://www.neo-modus.com/
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Knowing n and F , a social planner wishes to design a mechanism which, as a function of
the declared values θ = (θ1, . . . , θn), sets Q, and determines which agents may use the good
and what fees they should pay if they do. These fees must cover the cost c(n,Q). Knowing
the mechanism the planner will use, each agent i declares θi to his best advantage. The
mechanism then sets Q(θ) and decides which agents may use the good and which are to
be excluded from using it. Let πi(θ) be the probability with which the mechanism includes
agent i given the announced preferences θ. If agent i is excluded from using the good then
πi(θ) = 0. If he is allowed to use it, then πi(θ) = 1 and he must pay a fee pi(θ). If exclusion
is not an option for the planner, then we simply make the restriction πi(θ) = 1 for all θ, i.

The mechanism that the social planner chooses to implement defines a game among the
agents, and given that the agents make rational responses, it has a Nash equilibrium. The
planner’s problem is to design the mechanism so that this equilibrium is a point of maximum
economic efficiency, where efficiency is measured by expected social welfare. Let us now put
this in mathematical terms. In (1)–(2) that follow the expectation is taken over θ and in
(3)–(4) it is taken over θ−i, where this denotes all the preferences parameters apart from θi.
The problem is to maximize expected social welfare:

maximize
π1(·),...,πn(·), Q(·)

E
[

∑n
i=1 πi(θ)θiu(Q(θ)) − c(n,Q(θ))

]

(1)

subject to a ‘weak feasibility constraint’, which says that the expected payments must at least
cover the expected cost

E
[

∑n
i=1 πi(θ)pi(θ) − c(n,Q(θ))

]

≥ 0 , (2)

an ‘individual rationality’ constraints, which says each agent can expect positive net benefit:

Eθ−i

[

πi(θi,θ−i) {θiu(Q(θi,θ−i) − pi(θi,θ−i)}
]

≥ 0 , for all θi , (3)

and ‘incentive compatibility’ constraints, such that each agent i does best by declaring his
true θi rather than ‘free-riding’ by declaring some other θ′i:

Eθ−i

[

πi(θi,θ−i) {θiu(Q(θi,θ−i) − pi(θi,θ−i)}
]

≥ E
[

πi(θ
′
i,θ−i)

{

θiu(Q(θ′i,θ−i) − pi(θ
′
i,θ−i)

}

]

, for all i and θ′i . (4)

It is the incentive compatibility constraint (4) that ensures that the agents declare the
true values of their preference parameters. This is assumed in (1)–(3). It is natural to ask
whether imposing (4) means that the social welfare cannot be as great as if we optimized over
all possible mechanisms, including those that are not incentive compatible. However, there is
a well known ‘revelation principle’ in the theory of mechanism design which states that any
Nash equilibrium that can obtained by some mechanism can also be obtained by an incentive
compatible mechanism. This justifies the restriction to incentive compatible mechanisms and
leads to the following simple and useful analytic characterization.

We now consider the problem of maximizing expected social welfare subject to the con-
straint that the mechanism is weakly feasible3, individually rational and incentive compatible.
Let us define

g(θi) = θi −
1 − Fi(θi)

f(θi)
. (5)

3In fact, without actually making the problem any more difficult, we can strengthen the constraint of weak
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Using standard Mechanism Design theory, it is shown in Appendix A that our problem reduces
to single constraint problem, namely of maximizing (1) subject to the constraint

E
[

∑

i πi(θ)g(θi)u(Q(θ)) − c(n,Q(θ))
]

≥ 0 . (6)

This is the same as a model of Norman [16], but he takes c(n,Q) = Qc(n).
In Appendix B we show that this problem can be solved using Lagrangian methods. That

is, for some λ > 0 it can be solved by maximizing a Lagrangian of

E
[

∑n
i=1 πi(θ)(θi + λg(θi))u(Q(θ)) − (1 + λ)c(n,Q(θ))

]

. (7)

The maximization is carried out pointwise. That is, given θ, the values of π1(θ), . . . , πn(θ)
and Q(θ) are chosen to maximize

A(θ, λ)u(Q(θ)) − c(n,Q(θ)) (8)

where

A(θ, λ) =

∑n
i=1 πi(θ)(θi + λg(θi))

1 + λ
. (9)

The fact that the coefficient A(θ, λ) should be maximized means that we should take πi(θ) = 1
if and only if (θi + λg(θi)) > 0. Now it is intuitively reasonable that agents with greatest
preference parameters should be the ones to be included. This is ensured if we impose a re-
striction on the shape of the distribution function F by assuming that g(θi) is nondecreasing
(e.g., this would follow from the assumption that the hazard rate, f(x)/(1 − F (x)) is non-
decreasing). Assuming this, agent i should be included if and only if θi exceeds some θ̄(λ),
where θ̄(λ) + λg(θ̄(λ)) = 0. Note that θ̄(λ) is increasing in λ, A(θ(λ), λ) is decreasing in λ,
and the Q(θ) which maximizes (8) is decreasing in λ.

3 The Asymptotically Optimal Mechanism

3.1 A Scheme of Equal Contributions

The full solution of our problem is, in general, very complex. However, in Appendix D we
prove Theorem 1 below, which shows that, when n is large, a nearly optimal solution can be
achieved with a simple mechanism design. First we make an assumption.

Assumption 1 Suppose that

u(Q) = AQα , (10)

c(n,Q) = BnδQβ , (11)

where A,B > 0, δ > 0, 0 < α ≤ 1, β ≥ 1, and α < β.

feasibility to strong feasibility, in which the expectation operator is removed from (2) thus requiring that cost
is covered for each realization of preference parameters, not just on the average. Crampton, et. al. [9] give an
argument for a case when exclusions are not allowed. However, the method of their proof does not generalize
to mechanism designs in which a possible control is to exclude agents. Although some authors have assumed
that the result is still true in such circumstances, we believe it has actually been an open question. We give
what we believe to be the first proof of this result, and provide a novel proof that is quite different to the
constructive proof of [9]. See Appendix F.
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We shall also prove results under the following weaker assumption.

Assumption 2 Suppose u(Q) = Θ
(

Qα
)

and c(n,Q) = h(n)c(Q), where c(Q) = Θ
(

Qβ
)

,
where 0 < α ≤ 1, β ≥ 1, and α < β. That is, there are positive constants A1, A2, B1, B2,
and a function h such that for all Q and n,

A1Q
α ≤ u(Q) ≤ A2Q

α , (12)

B1h(n)Qβ ≤ c(n,Q) ≤ B2h(n)Qβ . (13)

The assumption has an important consequence in bounded the growth rate of the optimal
value from above and below, as we see in the following lemma.

Lemma 1 Suppose Assumption 2 holds. Let γ = β/(β − α) and define

ξ(x) = max
Q

{

xu(Q) − c(n,Q)
}

. (14)

Then ξ(x) = Θ (xγ) and the optimizing Q satisfies Q(x) = Θ
(

x1/(β−α)
)

. Moreover, ξ′(x) =
Θ
(

xγ−1
)

.

The proof is in Appendix C

Our main result is the following.

Theorem 1 Suppose Assumptions 1 or 2 holds. Let P be the problem of maximizing (1)
subject to (6), with optimal value Φn. Let Q∗ and θ∗ be the optimizing decision variables in
the problem P∗, defined as

maximize
θ∈[0,1],Q≥0

{

n

(
∫ 1

θ
ηf(η)dη

)

u(Q) − c(n,Q)

}

(15)

subject to
n[1 − F (θ)]θu(Q) − c(n,Q) ≥ 0 . (16)

Let the optimal value be Φ∗
n.

Suppose we take as a feasible solution to P the decision variables πi(θ) = 1{θi ≥ θ∗} and
Q(θ) = Q∗. Then the expected social welfare under this (suboptimal) mechanism is Φ∗

n, and
this is asymptotically optimal, in the sense that Φn/Φ∗

n ≤ 1 + O(n−1) (under Assumption 1),
or Φn/Φ∗

n ≤ 1 + O(1/
√

n) (under Assumption 2).

Moreover, Φn and Φ∗
n are Θ

(

nγ
)

, where γ = (β − δα)/(β − α).

The intuition behind this result is as follows. For each θ ∈ [0, 1], let S(θ) be the set of
all agents who have preference parameters in the interval [θ, 1]. Denote the size of this set
by |S(θ)|. Now E|S(θ)| = n(1 − F (θ)), for all θ. Suppose we had the stronger fact that
|S(θ)| = n(1−F (θ)), for all θ. Since, by the remarks above, the optimal mechanism includes
the set of agents with preference parameters greater than some θ, we find (using integration
by parts) that P simplifies to P∗. The planner includes all agents in S(θ), for some θ, and
then charges each of these agents the same fixed fee φ. The mechanism is individually rational
for all agents in S(θ) provided φ ≤ θu(Q). So using the greatest charge consistent with this,
namely φ = θu(Q), the total payment is n(1− F (θ)× θu(Q) and by (16) this covers the cost
of c(n,Q).

7



Now return to the original problem P. The weak law of large numbers guarantees that
|S(θ)| is close to n(1−F (θ)) with high probability when n is large. So we can expect it to be
very nearly optimal to adopt the mechanism above, i.e., to take Q(θ) = Q∗ and set a fixed
fee of θ∗u(Q∗), thus including those peers for which θi ≥ θ∗.

3.2 A Numerical Example

Suppose that the preference parameters are uniformly distributed on [0, 1] and that u(Q) =
(2/3)Q1/2 and c(n,Q) = Q. Consider the so-called ‘first-best’ value of maximized social
welfare that could be achieved if we were to have full information about θ1, . . . , θn and were not
restricted by constraints of weak feasibility, individual rationality and incentive compatibility.
Given that

∑n
i=1 θi take some value T , the social welfare is Tu(Q)−c(Q) and this is maximized

by Q = T 2/9, to a value of T 2/9. The expected value of the social welfare is thus

(1/9)(var(T ) + (ET )2) = (1/9)(n/12 + (n/2)2) = n2/36 + n/108 ≈ 0.02778n2 .

Now consider the solution of P∗. For the uniform distribution, g(θ) = 2θ − 1, so our
problem is

maximize
θ∗,Q

{

n

(
∫ 1

θ∗
θ dθ

)

2
3

√

Q − Q

}

, subject to n

(
∫ 1

θ∗
(2θ − 1) dθ

)

2
3

√

Q − Q ≥ 0 .

The solution of this has θ∗ = 1/4, Q∗ = n2/64 and an optimal fee of φ = n/48. The social
welfare achieved is Φ∗

n = 3n2/128 ≈ 0.02344n2 . Thus, we satisfy the constraints and obtain
a value of social welfare which grows with n like the first-best, but which is asymptotically
smaller by a factor (3/128)/(1/36) = 27/32 ≈ 0.84. The social welfare is less, but we have
satisfied the constraints (2)–(3).

Next we compare the social welfare value that we have found for P∗ (i.e., Φ∗
n = 3n2/128))

with the second-best social welfare value in P. Considering P, we have that its solution by
Lagrangian methods is

Φn = inf
λ

E

[

max
Q

{(

n
∑

i=1

(θi + λg(θi))
+

)

2
3

√

Q − (1 + λ)Q

}]

= inf
λ

E





1
9(1+λ)

(

n
∑

i=1

(θi + λg(θi))
+

)2


 .

To compute this, we define I0(s) = s2 and

In(s) = E





(

s +

n
∑

i=1

(θi + λg(θi))
+

)2


 .

Then, recalling θ1 + λg(θ1) > 0 if and only if θ1 > λ/(1 + 2λ),

In(s) =
λ

1 + 2λ
In−1(s) +

∫

θ1≥λ/(1+2λ)
In−1(s + θ1 + λg(θ1)) dθ1 .
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It turns out that In(s) is a quadratic in s and we can solve recurrence relations for the
coefficients, ultimately to give

In(s) = s2 +
n(1 + λ)2

1 + 2λ
s +

(1 + λ)3

(1 + 2λ)2
(

1
4n2 + 1

12n + (1
4n2 + 5

12n)λ
)

Thus

Φn = min
λ

{

1
9(1+λ)In(0)

}

= min
λ

{

1
9

(1 + λ)2

(1 + 2λ)2
(

1
4n2 + 1

12n + (1
4n2 + 5

12n)λ
)

}

The minimizing value of Lagrange multiplier is

λn =
−5 − 3n +

√
−95 + 78n + 81n2

4 (5 + 3n)

(with λn → λ = 1/2, so in the limit excluding peers with θi ≤ λ/(1 + 2λ) = 1/4, which is
consistent with what we found for P∗). We find

Φn =
n (−1+9 n+

√
−95+78 n+81 n2) (15+9 n+

√
−95+78 n+81 n2)

2

1728 (5+3 n+
√
−95+78 n+81 n2)

2

= 3
128n2 + 7

348n − 1
162 + 47

13122n−1 + O(n−2)

So
Φn

Φ∗
n

= 1 +
7

9n
+ O(n−2)

Note that in this case, in which c(n,Q) does not depend on n, the social welfare per capita
increases with n and there is advantage in having more participants to share the cost. The
welfare per capita is growing as 3n/128 for the approximate to the second-best, this is only
7/348 less than the welfare per capita under the optimal second-best. We find numerically as
shown below.

10 20 30 40 50 60

1.1

1.2

1.3

1.4

1.5

1.6

1

Figure 1: Plot of Φn/Φ∗
n against n.

This illustrates the statement in Theorem 1 that Φn/Φ∗
n = 1 + O(1/n).

Finally, let us compare what happens if exclusions are not allowed. Let us compute the
second-best social welfare value, say Φ†

n. This is easier to compute than when finding Φn,
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because the computations can be made simply in terms of the facts that E
[
∑

i θi

]

= n/2
and E

[

(
∑

i θi)
2
]

= n2/4 + n/12. We find that in our example that, when exclusions are not
allowed

Φ†
n = min

λ
E

(

(
∑

i θi + λg(θi))
2

1 + λ

)

= min
λ

E

(

((1 + 2λ)
∑

i θi − nλ)2

1 + λ

)

=
n(
√

1 + 3n − 1)

27
= O(n3/2) .

Note that the social welfare that can be obtained per capita grows as
√

n, but is vanishingly
small relative to the first-best level of social welfare per capita, which grows linearly in n.
find this by appropriate calculations of The optimal fee structure is

P (θi) =
2

9

(

1 − 1√
1 + 3n

)

θ2
i

and

Q(θ) =

(

n − 2n√
1+3 n

− 2
(

1 − 1√
1+3 n

)

∑n
i=1 θi

)2

9

Note that EQ(θ) = (2n/27)(1 − 1/
√

1 + 3n), which is also the value of E
[
∑n

i=1 P (θi)
]

.
There is no viable approximating second-best solution that can be obtained from P∗ when

one cannot make exclusions.

3.3 Other Equal Contribution Schemes

A feature of our limiting mechanism is that all participating peers pay the same fee. One
can devise other mechanisms for which this is true. Two obvious such mechanisms suggest
themselves. In Mechanism 1 the planner announces that he shall provide the good in quantity
Q and then share the cost c(Q) amongst all those who volunteer to participate. If m out of
n choose to participate then each pays c(Q)/m. Those who wish to participate must make
a commitment to do so, before knowing how many others will participate. In our example,
it turns out that the maximized social welfare using this scheme is 3n2/128 − n/384 + O(1).
So the imposition of strict feasibility occasions a loss compared to Φ∗

n = 3n2/128. Further
details of these calculations are in Appendix G.

In Mechanism 2, we charge a fee of φ and then build the largest facility whose cost can
be met by the number m who choose to participate, namely Q such that c(Q) = mφ. As
before, peers must make a commitment to pay φ without knowing how many others will
also participate. The optimal value in our example is 3n2/128 + 7n/1536 + O(1). Compare
this to Φn = 3n2/128 + 7n/9 + O(1). The strongly feasible policy does a bit better than a
scheme in which Q is fixed a priori, because although it provides the same Q on average, it
automatically saves bigger values of Q for the times that more users participate. Note that
mu(Q) = m

√
mφ is convex in m.

An even better strongly feasible equal contribution scheme would be one in which, having
learnt that m wish to participate, the planner builds a facility of size Q(m) and charges each
participant c(Q(m))/m. Potential participants know the function Q(m). However, even such
a mechanism cannot be more than a factor 1+O(1/n) better than the simple one we propose.
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3.4 An Extension to Multiple Constraints

Let us now consider a problem in which there are k ‘types’ of peer and k constraints, which
impose conditions that peers of the same type must cover a certain aspect of the cost. Let
us suppose that there are nj = nρj participants of type j. Think now that Q is a vector
(Q1, . . . , Qk). Since P∗ can be solved by Lagrangian methods (cf. Appendix B), we know
there exists multipliers λ1, . . . , λk such that

Φ∗
n = max

π1(·),...,πk(·),Q







k
∑

j=1

(

njE
[

πj(θ1)(θ1 + λjgj(θ1))
]

uj(Q) − (1 + λj)cj(Q)
)







= max
Q







k
∑

j=1

(

E
[

∑nj

i=1(θi + λjgj(θi))
+
]

uj(Q) − (1 + λj)cj(Q)
)







As in the proof in Appendix D for the case of a single constraint, we have as a bound that
for any λ,

Φn ≤ E



max
Q







k
∑

j=1

([

∑nj

i=1(θi + λjgj(θi))
+
]

uj(Q) − (1 + λj)cj(Q)
)









 . (17)

The expectation is taken with respect to the θi, which are i.i.d. for participants of the same
type. (For simplicity we omit a second subscript on θi which might have been used to denote
the type of peer.)

Let us suppose that type j utility and cost functions depend on different weighted sums
of powers of Q1, . . . , Qk. That is, there are sets of weights {ηjℓ} and {νjℓ} so that for each
type j

uj(Q) =
∑

ℓηjℓ Qα
ℓ and cj(Q) =

∑

ℓνjℓ Qβ
ℓ .

This is obviously a restriction to our model, but it still includes many interesting possibilities,

such as cj(Q) = (1/k)Q1, and uj(Q) = Q
1/2
1 , (Q2 = · · · = Qk = 0), in which peers of type i

are required to cover exactly (1/k)th of the cost, perhaps by making payments in kind.4 We
now have from (17), and redefining ξ(x) = maxQ{xQα − Qβ},

Φn ≤ E



max
Q

k
∑

j=1

{( nj
∑

i=1

(θi + λjgj(θi))
+

)

∑

ℓηjℓ Qα
ℓ − (1 + λj)

∑

ℓνjℓ Qβ
ℓ

}





= E





k
∑

ℓ=1

[

∑k
j=1(1 + λj)νjℓ

]

max
Qℓ







∑k
j=1

(
∑nj

i=1(θi + λjgj(θi))
+
)

[

∑k
j=1(1 + λj)νjℓ

] ηjℓ Qα
ℓ − Qβ

ℓ











=

k
∑

ℓ=1

[

∑k
j=1(1 + λj)νjℓ

]

E
[

ξ(T ℓ)
]

. (18)

4In fact if we were to take more generally, something like uj(Q) = Qαj and cj(Q) = Qβj , the social welfare
will be Θ(nγ), where γ = maxj{βj/(βj −αj} and so it is only one type of good that really matters as n → ∞.
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The second line follows from the first by bringing the sum on ℓ to the outside, dividing and

multiplying with the term
[

∑k
j=1(1 + λj)νjℓ

]

, and defining

T ℓ =

∑k
j=1

∑nj

i=1(θi + λjgj(θi))
+

∑k
j=1(1 + λj)νjℓ

ηjℓ, hence ET ℓ = n

∑k
j=1 ρjE[(θi + λjgj(θi))

+]
∑k

j=1(1 + λj)νjℓ

ηjℓ .

As in Appendix D , we can bound (18) by making a Taylor expansion of Eξ(T ℓ) around
ξ(ET ℓ) and then use

Φ∗
n = min

λ1,...,λn

k
∑

ℓ=1

[

∑k
j=1(1 + λj)νjℓ

]

ξ(ET ℓ) .

Notice that the optimizing λ1, . . . , λn depend on ρ1, . . . , ρk, but not n. The remaining
details are as before. We find, under these assumpions, that Φ∗

n = Θ(nγ) and Φn/Φ∗
n =

1 + O(1/n).

4 Application to File Sharing

We apply the above ideas to a problem of peer to peer file sharing. Agents are now called
peers. Suppose that n peers make available various files to share with one another. What
matters is the number of distinctly different files that are shared, so we must account for the
possibility that more than one peer will make the same file available. Suppose that the utility
obtained by peer i when the expected number of distinctly shared files is Q is θiu(Q), where
u is concave in Q. We start by analyzing a simple model. Imagine that each peer provides
the same number of files, say φ, choosing these randomly from amongst a set of N distinct
file names. Then the expected number of distinct files that will be available in the system is

Q = N(1 − (1 − φ/N)n) , (19)

and so to obtain Q each peer must supply a number of files

φ(n,Q) = N
(

1 − (1 − Q/N)1/n
)

. (20)

Suppose that each peer incurs a cost that is proportional to the number of files he con-
tributes. For simplicity we let the constant of proportionality be 1 (noting that we could al-
ways re-scale the utility function). Thus the total cost is c(n,Q) = nφ(n,Q), where nφ(n,Q)
is the total number of files shared by peers and this is a convex increasing function of Q,
due to the duplications. Also, for any fixed Q, the cost nφ(n,Q) rapidly increases with n to
the asymptote of −N log(1 − Q/N). This is greater than Q, the total cost if there were no
duplication in the files peers supply.5

5An alternative would be that a peer’s cost is proportional to the rate at which he serves upload requests.
Assuming files are equally popular this means that the total cost incurred by all the peers will be proportional
to the product of the number participating peers and the number of unique files, i.e., c(Q) = (

P
i
πi)Q.

If peers can only access files held within a a certain neighbourhood of their location, this might be better
modelled as c(Q) = (

P
i
πi)

βQ, where 0 < β < 1. There is a problem reproving Theorem 1 because the
proof that Lagrangian methods work (proved here in the Appendix B) no longer holds. This is for future
research. We would expect to be able to address a limiting problem in which u(Q) is concave in Q and
c(Q) = [n(1 − F (θ∗)]βQ.
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In Figure 1, we take N = 1000 and plot nφ(n,Q) against Q for n = 1, 2, 10, ∞. Note that
for small to moderate values of Q the cost is almost linear in Q, but then increases rapidly
as Q approaches N .

200 400 600 800 1000

1000

2000

3000

4000

nφ(n, Q)

Q

n = 1

n = 2

n = 10

n = ∞

Figure 2: nφ(n,Q) against Q, when N = 1000 and n = 1, 2, 10, ∞

For example, for n = 100, we find

c(n,Q) = nφ(n,Q) = Q[1 + 0.495(Q/N) + 0.32835(Q/N)2 + · · · ]

This justifies an approximation c(n,Q) = Q when Q/N is reasonably small.

In an alternative and slightly more sophisticated model we might imagine that the peers
share different numbers of files. Suppose nρi of peers each share i files, each of them choosing
his i files randomly from amongst a set of N = na files, a > 0. Let i∗ be an upper bound
on the number of files that any one peer can share, and

∑

i ρi = 1. The expected number of
distinct files supplied will be

Q = na

[

1 −
i∗
∏

i=1

(

1 − i

na

)nρi

]

= na
[

1 − e−
P

i iρi/a
]

+ O(1) . (21)

Now n
∑

i iρi is the total number of files provided by the peers and we again assume that this
is also the cost. As before, the asymptote as n → ∞ is c(n,Q) = −N log(1 − Q/N). If Q/N
is small, we again have c(n,Q) = Q

(

1 + 1
2(Q/N) + 1

3(Q/N)2 + · · ·
)

≈ Q.

Both of the above lead to models that are covered by Section 2. The social planner
wishes to design a mechanism which maximizes social welfare, subject to its being feasible,
individually rational and incentive compatible. Assuming u(Q) satisfies Assumption 1 and
c(n,Q) = Q, we can apply Theorem 1 and have an asymptotically optimal mechanism by
solving the problem

maximize
Q, θ

nu(Q)

∫ 1

θ
(1 − F (η)) dη − Q (22)

subject to
n[1 − F (θ)]θu(Q) − Q ≥ 0 . (23)

Let Q∗ and θ∗ be the maximizing values of the decision variables. Each peer who has a
preference parameter of at least θ∗ is included and pays the same fixed fee of θ∗u(Q∗). Since
the cost is linear in Q this fee can be paid ‘in kind’, i.e., without monetary payments: each
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included peer pays his fee by contributing the same number of files: namely, Q∗/n(1−F (θ∗)).
(Note that although our theorems assume no bound on Q, in this problem Q is bounded by
N . However, this is immaterial as we expect the optimal system operates at a Q that is well
away from this upper bound.)

A remark on repeated rounds. In the limiting problem there is no reason that a peer
should be other than truthful in representing himself to the system. If he knows that the
expected number of unique files shared is Q and that the fee is φ, then peer i should join if
θiu(Q) ≥ φ. In the non-limiting version of the problem, addressed by the optimal mechanism
design of solving P in Section 2, the individually rationality constraint (3) is in terms of
expected value, so for some θ−i it can be that θiu(Q(θi,θ−i) − pi(θi,θ−i) < 0. When this
happens, peer i might be tempted to defect and to not pay pi(θi,θ−i). However, as file sharing
system is intended to last for more than one time step, we could operate a ‘tit-for-tat’-like
protocol, that would penalize such defection, for example, by threatening to exclude peer i at
a later time when θ−i is such that his net benefit would be positive. We are imagining that θ

is not fixed, but varies over time, when from time to time the peers’ preference parameters are
freshly sampled from F . The effect of the threat to penalize defection will be to make peer i
willing to participate on such occasions that he must accept a negative net benefit, knowing
that on average he will benefit, as is guaranteed by (1) and (3). If every peer’s preferences
parameter varies over time with the distribution F , each will obtain on average 1/nth of the
maximized social welfare.

5 Application to WLANS

Now we apply our ideas to wireless LANS. Access to the Internet is still not as ubiquitous
as access to the telephone network. This greatly reduces the economic value of many new
portable devices, such as PDAs, tablet computers and smart-phones running the IP protocol.
The users of these devices would benefit greatly from cost-effective Internet access that is
wireless, always-on, ubiquitous and high-speed. However, deploying infrastructure with wide
enough coverage to support this is a non-trivial task, especially from the business perspective.

Wireless Local Area Networks (WLANs) are an important developing infrastructure.
Specifically, the IEEE 802.11 WLAN standard has grown steadily in popularity since its
inception and, at least in metropolitan areas, is now well positioned to complement much
more complex and costly technologies such as 3G. This is already happening. WLAN sig-
nals of networks set up by individuals for their own use already pervade many cities and such
WLAN ‘cells’ frequently cover greater areas than were originally intended at their installation.
Given how easy it is to gain access to a WLAN once a potential user is within its coverage
area, and leaving out the obvious security issues involved, one wonders if individuals could
share such infrastructure amongst themselves to achieve ubiquitous Internet access. Sharing
comes as a natural idea since WLANs provide large amounts of bandwidth that is mostly
underutilized by its local users. Also the pipe that connects the local WLAN users to the
Internet is usually of a broadband nature (DSL) and may also be under-used over large time
periods. Existing technology allows WLAN administrators to control access to their networks
and to limit the consumption of network resources by remote (roaming) users. The WLAN
peering model we present next is motivated by these observations.

Suppose that n distinct WLANs are available in a given large geographical location, such
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as a neighbourhood or a part of a city centre. The owners of the WLANs may arrange to
peer with one another, and thus agent i, who is the owner of the ith WLAN can benefit when
he roams in areas covered by other WLANs. When agreeing to become a peer, a WLAN
owner benefits, but he also incurs some cost in providing resources to the community. We
seek a mechanism, defined in terms of certain rules, to specify what quantities of resources
peers must contribute and what subsidies or payments they might have to make. Our aim
is that the incentives given by these rules should be such that when peers act to maximize
their own benefits, social welfare is also maximized. To begin, we assume that there is some
central authority, a ‘global planner’, who serves as an intermediary for implementing these
rules. Then we will show that as the system gets large, the optimal rules can be approximated
by simple contribution policies, alleviating the need for a central mechanism.

Let Q be the ‘coverage’ available in the location, defined as the probability that an agent
can obtain roaming service when away from his own WLAN. Assuming that peering agent
i accepts service requests from roaming peers with probability pi, we can express Q as a
function of p1, . . . , pn. Suppose that the total area of the location is B, the area of coverage
of a typical WLAN is A, the WLANs of different peers do not overlap and that roaming peers
are positioned uniformly on B. Then we have Q =

∑n
i=1 pi A/B.

If agent i does not peer, then pi = 0. If agent i does peer then his cost that is proportional
to the rate of service requests that he accepts. This can be written as σmλpi, where σ is
dollars per rate of service requests accepted (which we may take as σ = 1), λ is the rate
of requests generated by a typical agent, and m is the number of agents who peer, i.e., the
number of i for which pi 6= 0. This is a reasonable model for cost since roaming customers
consume bandwidth from the WLAN.

We view coverage as a non-rivalrous public good. That is, each roaming peer benefits
by the amount of coverage available, and does not reduce the probability with which other
roaming peers can obtain access. He benefits from, but does not consume, Q. The important
issue is to provide incentives for Q to grow, while balancing the resulting costs. It can grow by
having more agents participate in the peering arrangement and by increasing the pis offered
by the agents. We can cast the mechanism design problem faced by the global planner in the
formulation we used earlier. We again have that the utility of agent i is θiu(Q) so that the
total utility is

n
∑

i=1

πiθiu(Q) ,

and total cost is

c(Q) = σλm
n
∑

i=1

pi = (σλB/A)mQ,

where m =
∑n

i=1 πi. The difference of this cost function with the cost functions used earlier
is that now there is a multiplicative congestion factor which is proportional to the number of
peers who actually participate, instead of the initial number of potential peers, n. Thus we
need to extend our public good model to make the cost function depend on m instead of n.

Let us take the cost to be of the more general form mc(Q). Our problem P now becomes

maximize
π1(·),...,πn(·),Q(·)

E
[

∑

iπi(θ)
(

θiu(Q(θ)) − c(Q(θ))
)]

(24)

subject to

E
[

∑

iπi(θ)
(

g(θi)u(Q(θ)) − c(Q(θ))
)]

≥ 0 . (25)
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Let us take u(Q) = AQα, c(Q) = BQβ and γ = β/(β − α). Choose units so that

ξ(x)= max
Q

{xu(Q) − c(Q)} = (Aαx)
β

β−α (Bβ)
− α

β−α (1/α − 1/β) = xγ .

Let us solve (24) while disregarding (25). This gives

Φn ≤ E

[

max
m∈{1,...,n}

{

(
∑m

i=1θ(i)

)γ

mγ−1

}]

,

or, in general,

Φn ≤ E

[

max
m∈{1,...,n}

{

m ξ

(

∑m
i=1θ(i)

m

)}]

,

where θ(1) ≥ · · · ≥ θ(n) are the ordered values of θ1, . . . , θn.

In the limiting problem we will admit all peers with preference parameters of at least θ̄.
The expected number of these is m = n(1 − F (θ̄)) and so the problem P∗ is

maximize
θ̄,Q

[

n

∫

θ̄
θdF (θ)u(Q) − n(1 − F (θ̄))c(Q)

]

(26)

subject to
n(1 − F (θ̄))θ̄u(Q) − n(1 − F (θ̄))c(Q) ≥ 0 . (27)

The constraint (27) says that the total payment mθ̄u(Q) must cover the cost mc(Q). The
condition that the objective function be stationary with respect to θ̄ is

−nθ̄u(Q)f(θ̄) + nf(θ̄)c(Q) = 0

and this implies that (27) holds with equality. Thus in this particular problem the constraint
is redundant and we may concentrate on solving the unconstrained problem. We have

Φ∗
n = n max

θ̄

{

(
∫ 1
θ̄ θ dF (θ))γ

(1 − F (θ̄))γ−1

}

, (28)

or, in general,

Φ∗
n = n max

θ̄

{

(1 − F (θ̄)ξ

(

∫ 1
θ̄ θ dF (θ)

1 − F (θ̄)

)}

, (29)

and the solution is at a θ̄ such that

θ̄

γ − 1
=

∫ 1
θ̄ (1 − F (θ)) dF (θ)

1 − F (θ̄)
= E

[

θ − θ̄
∣

∣ θ ≥ θ̄
]

. (30)

This has a unique solution if θ has a distribution that is ‘new better than used in expectation’
(NBUE), i.e., the right hand side of (30) is decreasing in θ̄. For example, when F is the
uniform distribution θ̄ = (γ − 1)/(γ + 1). We now have something similar to Theorem 1.

Assumption 3 Suppose that, given that m peers are allowed to use the system,

u(Q) = AQα . (31)

c(m,Q) = BmδQβ (32)

where A,B > 0, δ > 0, 0 < α ≤ 1, β ≥ 1, and α < β.
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Theorem 2 Suppose Assumption 3 holds and that the preference parameters are distributed
according to a distribution with a density function bounded away from 0. Then

Φn/Φ∗
n = 1 + O(1/

√
n) .

The proof is in Appendix E.

6 Stability

Suppose that the social planner designs a mechanism on the basis that there are n peers. He
expects that (1 − F (θ))n of them will pay a fee of f = θu(Q). Since the fee is paid ‘in kind’
and equates to providing f files, say (in the case that the problem is one of file sharing), the
total number of files that are provided will be Q = (1 − F (θ))nf .

Suppose that there are indeed n peers, but initially some of them are dubious that Q will
be as large as the planner claims. Consequently, some do not participate and the number of
files that is initially provided is Q1 < Q. Once the peers have observed Q1, those peers with
θi > f/u(Q1) will realise that it is to their advantage to participate. The fees paid by these
will provide Q2 files where

Q2 =

(

1 − F

(

f

u(Q1)

))

nf . (33)

Write this as Q2 = φ(Q1) and imagine iterating Qk+1 = φ(Qk), k = 1, 2, . . .. In general,
there can be more than one root to Q = φ(Q). For example, suppose u(Q) = 0.6Q1/2, f = 5,
n = 120, and θi is uniformly distributed on [0, 1]. Then

φ(Q) =
(

1 − 5/0.6Q1/2
)

(120)(5) . (34)

In this example there are two roots, Q = 100.00 and Q = 320.87. One can easily prove that if
Q1 exceeds the smaller root then Qk tends to the larger root as k tends to infinity. Otherwise
Qk → 0. For Q = 100 the social welfare is 10, whereas for Q = 320.87 it is 184.4. Thus the
greater Q, to which the system converges, is also the root for which a greater number of peers
participate and the greater social welfare is achieved. Similar properties hold for the more
general case of u(Q) = AQa.

An interesting issue is how stability is affected by agents departing and new agents arriving.
Another issue is the optimal choice of the fixed fee as a function of the system size for quickly
reaching the equilibrium. Finally, might like to analyze the effect of errors in the estimation
of the actual content Q.

7 Conclusions

In this paper we have formalized an interesting connection between P2P systems, namely
file sharing and peering wireless LANs, and public good theory. We have shown that simple
incentive policies of the form of fixed contributions can suffice to control the overall system
to a nearly optimal size. Even that our economic model is rather crude and abstracts many
practical aspects of the implementations, it captures the ‘first-order’ properties of the large
externalities that such system exhibit, and which are the main cause for their large adoption.
So in that sense, we have a very positive result.
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There are many ways to extend this simple model but most of them may not lead to
tractable solutions. For instance, personalizing agents by more than a single parameter (for
instance, add a parameter that captures cost sensitivity) probably makes any analysis hope-
less. One could perhaps do a more careful model of the utility function or the cost function by
making it depend on more detailed congestion effects and hence capture performance aspects
encountered in specific network technologies. But it is not obvious that making the problem
more complex will essentially provide us with a better inside. The results one obtains by such
models are more qualitative than quantitative showing rather the form of the optimal control
than computing its exact value.

In our view, interesting extensions include the file sharing case by introducing the concept
of popularity and uploading cost. In this more refined model, one should model the effect of
different file types (in terms of popularity), possibly using the results in Section 3.4. A con-
jecture is that since popular files may result in greater uploading costs the fixed contributions
should be in terms of total upload rates. This will affect which files peers make available
for uploading, and so influence the equilibrium of the type of content that will be available
in the system. Also the wireless LANs to capture quality of service (amount of bandwidth
allocated to roaming peers) and differentiating areas of low demand from areas of higher
demand in terms of the amounts of peers should contribute in these different areas. Finally,
we could assume that the number of participants, n, is not fixed, but that there are arrivals
and departures.

An open problem of practical interest is the implementation of our results. Even simple
exclusion schemes may be hard to enforce in a system with cheap pseudonyms. Making sure
that peers make available valid files (to avoid uploading from other peers) may not always be
an easy task in such a loosely designed system. We are currently investigating several of the
above implementation aspects. An approach where peer contributions are kept at a minimum
possible implementable level (peers are required to share a fixed number of files only during
the time they download files) is in [2].

We are grateful to Robin Mason for initially suggesting the connection of Norman and
Hellwig’s work to P2P file sharing and for many helpful discussions in the context of the IST
project MMAPPS. We have had some helpful correspondence with both these authors. We
are also grateful to Panos Antoniadis for his collaboration in the development of the models
for content sharing and peering WLANs.
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Appendix

A Derivation of the Problem

In this appendix we show that the constraints of individual rationality and incentive compat-
ibility reduce to (6). We give a streamlined explanation of some fairly standard arguments.

Suppose agent ai pays pi(θ).6 Let us define

Vi(θi) =

∫

πi(θi, θ−i)u(Q(θi,θ−i))dFn−1(θ−i) (35)

Pi(θi) =

∫

πi(θi, θ−i)pi(θi,θ−i)dFn−1(θ−i) . (36)

Thus θiV (θi) and P (θi) are the expected utility and expected payment of peer i when his
preference parameter is θi. We have the following.

Lemma 2 (a) It is necessary and sufficient for incentive compatibility that (i) Vi(θi) is
nondecreasing in θi, and (ii)

Pi(θi) = Pi(0) + θiVi(θi) −
∫ θi

0
Vi(η) dη . (37)

(b) Given incentive compatibility, a necessary and sufficient condition for individual rational-
ity is Pi(0) ≤ 0.

Proof. The incentive compatibility condition says that θi must maximize θiVi(θ
′
i) − Pi(θ

′
i)

with respect to θ′i. This implies that for θ′i 6= θi we must have

[

θ′iVi(θi) − Pi(θi)
]

+
[

θiVi(θ
′
i) − Pi(θ

′
i)
]

≤
[

θiVi(θi) − Pi(θi)
]

+
[

θ′iVi(θ
′
i) − Pi(θ

′
i)
]

and so
(θ′i − θi)(Vi(θ

′
i) − Vi(θi)) ≥ 0 .

This implies that (i), that Vi(θi) must be nondecreasing in θi. We also have

θiV
′
i (θi) − P ′

i (θi) = 0 .

So, by integrating, we find a second condition, (ii)

Pi(θi) = Pi(0) + θiVi(θi) −
∫ θi

0
Vi(η)dη . (38)

Thus (i) and (ii) are necessary for incentive compatibility. It is also easy to check that they
are sufficient.

6Since the agents are identical, apart from their labels, it is reasonable to suppose that the social planner
can maximizes welfare with a mechanism design that does not treat agents differently because of their labels.
This would mean that Vi and Pi do not depend on i. However, we will not make this simplification, and so
that we have a problem that is correct even if agents are not statistically identical.
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Since the scheme is to be incentive compatible, we can deduce from (38) that the expected
sum of the payments is given by

n
∑

i=1

∫

πi(θi,θ−i)pi(θ) dFn(θ) (39)

=

n
∑

i=1

∫

Pi(θi) dF (θi)

=
n
∑

i=1

Pi(0) +
n
∑

i=1

∫
[

θiVi(θi) −
∫ θi

0
Vi(η)dη

]

dF (θi)

=
n
∑

i=1

Pi(0) +
n
∑

i=1

{

∫

θiVi(θi)dF (θi) + (1 − F (θi))

∫ θi

0
Vi(η)dη

∣

∣

∣

∣

∣

∞

0

− 1 − F (θi)

f(θi)
Vi(θi) dF (θi)

}

=

n
∑

i=1

Pi(0) +

n
∑

i=1

∫

πi(θi, θ−i)g(θi)u(Q(θ)) dFn(θ) . (40)

Since the scheme is to be weakly feasible, we use (40) to deduce that our problem is one of
maximizing (1) subject to

−
n
∑

i=1

Pi(0) ≤
n
∑

i=1

∫

πi(θ)g(θi)u(Q(θ)) dFn(θ) −
∫

c(n,Q(θ) dFn(θ) . (41)

The maximization is with respect to a choice of the function Q(·) and the constants P1(0),
. . . , Pn(0). The individual rationality of (3) holds if and only if Pi(0) ≤ 0. So we must take
Pi(0) ≤ 0. These enter only through their sum, which may therefore be taken to be zero. A
way to understand the role of the Pi(0) is the following. In the definition of the incentive
payments (38), the last two terms represent the maximum incentive compatible payment that
can be extracted from agent i when his preference parameter is θi. Then the first term on
the right hand side of (41) is the maximum total incentive compatible payment that can be
collected from all the agents. If at the constrained social welfare optimum, the right hand side
of (41) is strictly positive, then we do not need to ask for the maximum possible payment and
can achieve the optimum with less. In this case the negative amount

∑

i Pi(0) is the money
we can give back (after collecting the maximum amount) to the agents. It is up to the system
planner how to redistribute this money (or not collect it in the first place).

We are to maximize (1) subject to (6) by pointwise choice of Q(·). From this we can
calculate Vi(θi) and then the payments from (38) and (36). Provided Vi(θi) turns out to be
nondecreasing we have then solved the problem of maximizing social welfare subject to use
of a feasible, individually rational and incentive compatible scheme.
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B Justification for Use of Lagrangian Methods

We prove that the problem P (of finding the second best optimum) can be solved by La-
grangian methods. The special case k = 1 gives the result that we need in Sections 2, 3 and
4. The case k > 1 is what we need for Section 5. For simplicity of notation we drop the n
from the cost c(n,Q), and simply write c(Q). We suppose that agents are of k types. There
are nj agents of type j, and their preference parameters are θj1, . . . , θjnj

.

Lemma 3 Define P as the problem

maximize E
[

∑k
j=1

[
∑nj

i=1 πij(θ)θijuj(Q(θ)) − cj(Q(θ))
]

]

,

with respect to Q(θ), πij(θ), with 0 ≤ πij(θ) ≤ 1 and subject to

E
[
∑nj

i=1 πij(θ)θijuj(Q(θ)) − cj(Q(θ))
]

≥ 0 for all j.

Then there exists a Lagrange multiplier λ1, . . . .λk such that an optimal solution to P can
be found by maximizing the Lagrangian

E
[

∑k
j=1

∑nj

i=1 πij(θ)
(

θij + λjgj(θij)
)

uj(Q(θ)) − (1 + λ)cj(Q(θ))
]

. (42)

with respect to Q(θ), πij(θ), with 0 ≤ πij(θ) ≤ 1.

Proof. Let us rewrite this as the problem of maximizing

E
[

∑k
j=1

[

∑nj

i=1xij(θ) − cj(Q(θ))
]]

, (43)

with respect to xij(θ), Q(θ), subject to

Q(θ) ≥ 0 , xij(θ) ≥ 0 , (44)

xij(θ) − θijuj(Q(θ)) ≤ 0 , for all i, j, θ (45)

and

− E
[

∑k
j=1

[

∑nj

i=1 xi(θ)
g(θij )

θij
− cj(Q(θ))

]]

≤ 0 . (46)

Assuming that uj(Q) is concave and cj(Q) is convex in Q, the objective function (43) is
a concave function of the decision variables, and (44)–(46) define a region that is convex in
the decision variables, xij(θ), Q(θ). These are sufficient conditions for the problem to be
solvable by maximizing a Lagrangian. That is, there exist λ1, . . . , λk such that we can solve
the problem by maximizing

E
[

∑k
j=1

[

∑nj

i=1 xi(θ)
(

1 + λj
g(θij)

θij

)

− (1 + λj)cj(Q(θ))
]]

, (47)

with respect to Q(θ), and xij(θ), subject to (45). This is equivalent to maximizing (42) with
respect to Q(θ), πij(θ), subject to 0 ≤ πij(θ) ≤ 1.
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C Proof of Lemma 1.

Proof. First, we can suppose h = 1 (or we can absorb it into the constants B1 and B2).
Note that

max
Q

{

xA1Q
α − B2Q

β
}

= C1x
β/(β−α) ≤ ξ(x) ≤ C2x

β/(β−α) = max
Q

{

xA2Q
α − B1Q

β
}

for constants

C1 = (A1)
β/(β−α)B

−α/(β−α)
2 ζ, C2 = (A2)

β/(β−α)B
−α/(β−α)
1 ζ,

ζ = (α/β)α/(β−α) − (α/β)β/(β−α) > 0.

Hence ξ(x) = Ω(xγ).
Now choose η1 and η2 such that for all η 6∈ [η1, η2] we have (A2η

α − B1η
β) < C1. This is

clearly possible, since (A2η
α − B1η

β) is a concave function of η which is equal to 0 at Q = 0
and approaches −∞ as Q → ∞. Then if Q ≤ η1x

1/(β−α) or Q ≥ η2x
1/(β−α), we have

xu(Q) − c(n,Q) ≤ xA2Q
α − B1Q

β = (A2η
α − B1η

β)xβ/(β−α) < C1x
β/(β−α) ≤ ξ(x)

and so Q cannot be optimal. Hence, the optimizing Q, say Q(x), is Ω
(

x1/(β−α)
)

.

Note that by differentiation through (14) we have ξ′(x) = u(Q(x)), and then u(Q(x) =
Ω
(

Q(x)α
)

= Ω
(

xα/(β−α)
)

= Ω
(

xγ−1
)

.
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D Proof of Theorem 1.

Suppose c(n,Q) = h(n)c(Q), and for the moment take h(n) = 1. Let us first make the strong
Assumption 1: that u(Q) = AQα and c(Q) = BQβ, where α ≤ 1 ≤ β, α < β (so u and c are
concave and convex respectively). Define the function ξ by

ξ(x) = max
Q

{xu(Q) − c(Q)} .

Note that this is just the definition of a real-valued function of a variable x (and has nothing
to do with the πi). It is a convex function of x. Let γ = β/(β − α) and choose units so that

ξ(x)=(Aαx)
β

β−α (Bβ)
− α

β−α (1/α − 1/β) = xγ .

Since P∗ can be solved by Lagrangian methods, we know there exists a λ such that

Φ∗
n = max

π1(·),Q

{

E
[

nπ1(θ1)(θ1 + λg(θ1))
]

u(Q) − (1 + λ)c(Q)
}

= max
π1(·),...,πn(·),Q

{

E
[

∑n
i=1 πi(θi)(θi + λg(θi))

]

u(Q) − (1 + λ)c(Q)
}

= max
Q

{

E
[

∑n
i=1(θi + λg(θi))

+
]

u(Q) − (1 + λ)c(Q)
}

Let T =
∑n

i=1 Ti, where

Ti = πi(θi)
(θi + λg(θi))

(1 + λ)
=

(θi + λg(θi))
+

(1 + λ)
.

Note that the Ti are i.i.d. random variables and that, since θ > g(θ), it follows that Ti ∈
[0, θi] ⊂ [0, 1]. Let T̄1 = ET1. Note that T̄1 depends on λ, but since

Φ∗
n = min

λ
max

Q

{

n

∫ 1

0
(θ + λg(θ))+dF (θ)AQα − (1 + λ)BQβ

}

= min
λ

(1 + λ)

[

n

∫ 1
0 (θ + λg(θ))+dF (θ)

1 + λ

]γ

the optimizing λ does not depend on n. Hence T̄1 does not depend on n.
Recall that for any λ, and so for this λ,

Φn ≤ max
π1(·),...,πn(·),Q(·)

E
[

∑n
i=1 πi(θ)(θi + λg(θi))u(Q(θ)) − (1 + λ)c(Q(θ))

]

= max
Q(·)

E
[

∑n
i=1(θi + λg(θi))

+u(Q(θ)) − (1 + λ)c(Q(θ))
]

So we have, since ET = nT̄1,

Φ∗
n = (1 + λ)ξ(ET )

Φn ≤ (1 + λ)Eξ(T )
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Consider first γ ≥ 2. Then by a Taylor expansion of ξ(T ) around nT̄1 we have

Φn ≤ (1 + λ)ξ(nT̄1) + (1 + λ)E(T − nT̄1)ξ
′(nT̄1) + (1 + λ)1

2E[(T − nT̄1)
2ξ′′(T ∗)]

for some T ∗ depending on T . The middle term on the right hand side is 0. Since T ∗ lies
between nT̄1 and T , and so certainly T ∗ ≤ n, we have ξ′′(T ∗) ≤ γ(γ − 1)nγ−2. Hence

Φn ≤ Φ∗
n + (1 + λ)1

2 (nσ2)γ(γ − 1)nγ−2

where σ2 is the variance of Ti, which is some fixed quantity, independent of n. Using the fact
that that Φ∗

n = (1 + λ)(nT̄1)
γ , and T̄1 does not depend on n, we have

Φn/Φ∗
n = 1 + O(1/n) . (48)

Now consider γ ∈ (1, 2). Pick k such that kγ ≥ 2 and note that since k > 1,

Φn/Φ∗
n ≤ E(T/nT̄1)

γ ≤
[

E(T/nT̄1)
kγ
]1/k

Since kγ ≥ 2 we can apply the result in the first part of the proof and deduce that there is
some B such that

Φn/Φ∗
n ≤ (1 + B/n)1/k ≤ 1 + B/kn .

Thus (48) holds in this case also.

Let us now turn to the result that holds under the weaker Assumption 2. The difference
is that we cannot use a Taylor expansion as far as second order, but must be content with a
first order expansion

Φn ≤ (1 + λ)ξ(nT̄1) + (1 + λ)E
[

(T − nT̄1)ξ
′(T ∗)

]

≤ (1 + λ)ξ(nT̄1) + (1 + λ)E
∣

∣

∣
T − nT̄1

∣

∣

∣
ξ′(n)

for some T ∗ depending on T , where we have T ∗ < n and so ξ′(T ∗) ≤ ξ′(n). Now Assumption 2
implies Lemma 1 which gives that ξ′(n) = O(nγ−1) and Φ∗

n = Ω(nγ). Together with E
∣

∣T −
nT̄1

∣

∣ = O(
√

n) this gives Φn/Φ∗
n = 1 + O(1/

√
n).
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E Proof of Theorem 2.

Proof. Let θ̄(1) ≥ · · · ≥ θ̄(n) be points such that F (θ̄(i)) = 1 − i/(n + 1). By a Taylor
expansion around θ̄(1), . . . , θ̄(n), we have that for some θ∗(1), . . . , θ

∗
(n), with

∑m
i=1 θ∗(i) certainly

bounded above by m,

mξ

(

∑m
i=1θ(i)

m

)

= max
Q

{

∑m
i=1θ(i)u(Q) − mc(Q)

}

(49)

= mξ
(
∑m

i=1θ̄(i)/m
)

+
∑m

i=1(θ(i) − θ̄(i)) ξ′
(

∑m
i=1θ

∗
(i)/m

)

≤ max
m

{

mξ
(
∑m

i=1θ̄(i)/m
)}

+
∑n

i=1

∣

∣θ(i) − θ̄(i)

∣

∣ ξ′(1) (50)

and hence, because we are ignoring the cost-covering constraint,

Φn ≤ E

[

max
m∈{1,...,n}

{

mξ

(

∑m
i=1θ(i)

m

)}]

(51)

≤ max
m

{

mξ

(

∑m
i=1θ̄(i)

m

)}

+
∑n

i=1E
∣

∣θ(i) − θ̄(i)

∣

∣ ξ′(1) (52)

where the final line follows from (50). Note first that

∫ θ̄(i−1)

θ̄(i)

θ dF (θ) ≥ θ̄(i)

∫ θ̄(i−1)

θ̄(i)

dF (θ) = θ̄(i)

(

F (θ̄(i−1)) − F (θ̄(i))
)

=
1

n + 1
θ̄(i) .

Also, by definition of θ̄(m), we have m = (n + 1)(1 − F (θ̄(m))). So the first term on the right
of (52) is bounded by

(n + 1)max
θ̄

{

(1 − F (θ̄))ξ

(

∫ 1
θ̄ θ dF (θ)

1 − F (θ̄)

)}

= (n + 1)max
θ̄,Q

{(
∫ 1

θ̄
θ dF (θ)

)

u(Q) − (1 − F (θ̄))c(Q)

}

=

(

n + 1

n

)

Φ∗
n .

Finally, the the second term on the right of (52) is O(
√

n). To see this, we use the
assumption in the theorem statement that the density function f(x) is bounded below by
some a > 0. (If we were to have f(x) = 0 in the interval [F−1(0.1), F−1(0.9)], say, then in
a sample of size 2n + 1 the k = n + 1 order statistic cannot be arbitrarily close to its mean,
which lies close to F−1(0.5). So the claim is not true.) But assuming such a lower bound on
f(x), we have that for all θ, θ′,

|θ − θ′| ≤ |F (θ) − F (θ′)|/a .

Now if θ is a random variable with distribution function F , then F (θ) has the uniform
distribution on [0, 1]. This fact, combined with the above, shows that it is sufficient to prove
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the result for uniform random variables on [0, 1]. But the kth largest of n samples of the
uniform distribution has density

h(x) = k

(

n

k

)

xn−k(1 − x)k−1 ,

and so it is routine to calculate that

n
∑

k=1

E
∣

∣θ(k) − θ̄(k)

∣

∣ ≤

√

√

√

√n

n
∑

k=1

E
[

(

θ(k) − θ̄(k)

)2
]

=

√

n2

6(n + 1)
= O

(√
n
)

,

where the first inequality follows from the fact that for any random variables X1, . . . ,Xn,

1
n

n
∑

i=1

E|Xi| ≤ 1
n

n
∑

i=1

√

E
[

X2
i

]

≤

√

√

√

√

1
n

n
∑

i=1

E
[

X2
i

]

.
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F Weak Feasibility =⇒ Strong Feasibility

We prove an extension of the result of Crampton, et. al. in [9]. That result has also been
recently reproved by Norman [17] in a rather simpler manner (in which he speaks of “ex ante”
and “ex post” budget balance, rather than weak and strong feasibility).

Theorem 3 Whether or not the public good is excludable, the existence of a weakly feasible
incentive compatible payment scheme implies the existence of a strongly feasible incentive
compatible payment scheme.

The constructive proofs in [9] and [17] only work for a nonexcludable good. A strictly
feasible scheme is constructed by a complicated transfer of payments amongst the agents. In
doing this, an agent, say i, can end up being paid by others and so his payment xi(θ) can be
negative for some θ. This cannot be avoided. If one applies the construction in a situation
in which there are to be exclusions, it sometimes finishes with a scheme in which, for one or
more θ and i, we have xi(θ) 6= 0, but θ is such that agent i should be excluded. This would
require payments to be taken from an agent who is excluded, which is usually not a practical
thing to do. We have not been able to find any way to modify the arguments in [9] or [17] to
cover the case of an excludable good. However, we now show how this can be done using a
completely different approach.

Proof. Suppose that θi is distributed with equal probabilities over m values {t1 ≤ t2 · · · ≤
tm}. This assumption of a uniform distribution is for convenience in exposition, and other
distributions can be handled by modifying the arguments below to included weighting factors
against the ǫ terms that appear, or by simply thinking about repeating values, e.g., t1 = t2 =
t3 < t4 = t5 < t6 · · · ≤ tm. This discrete distribution can approximate a continuous one with
arbitrary accuracy. (In fact, the following proof does not require that θ1, . . . , θn be identically
distributed, but we assume this for notational simplicity.)

Suppose we have a weakly feasible scheme, with payment functions y1(θ), . . . , yn(θ). In a
scheme that makes use of exclusions θi will be excluded for some small values of θi, say for
θi ≤ tℓ, and we will have E

[

yi(θ)
∣

∣θi

]

= 0 for all θi ≤ tℓ.
We will construct a strongly feasible incentive compatible scheme, with payment functions

x1(θ), . . . , xn(θ). This will be such that

(i) x1(θ) + · · · + xn(θ) = c(θ),

(ii) E
[

xi(θ)
∣

∣θi

]

= E
[

yi(θ)
∣

∣θi], for all i,

(iii) xi(θ) = 0 if θi ≤ tℓ.

Condition (iii) ensures that the scheme is compatible with the exclusions we wish to make.
For agents who are not excluded we do permit payments to be negative.

The modification algorithm. Suppose we start with a weakly feasible incentive compat-
ible scheme which satisfies (ii) and

(i)′ E
[

x1(θ) + · · · + xn(θ)
]

= E
[

c(θ)
]

.
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This scheme might have been constructed as in [9]. However, we now show how to construct
it by a new method, as the explanation will be a good preparation for understanding what
follows later in this proof. Pick any θ where (i) is violated because x1(θ)+ · · ·+xn(θ) > c(θ),
and any θ

′ where it is violated because of x1(θ
′) + · · ·+ xn(θ′) < c(θ′). Note that (i)′ implies

that there must always be such a pair if (i) does not hold for all θ. There are two possibilities
to consider. If we can pick this pair such that θi = θ′i for some i, then we simply make the
following changes to two payments, gradually increasing ǫ from 0 until we have (i) holding
for one or both of θ and θ

′. The value of E[xi(θ)
∣

∣θi] does not change and the number of
violations to (i) decreases by at last one.

(a) xi(θ) → xi(θ) −ǫ

(b) xi(θ
′) → xi(θ

′) +ǫ

If, alternatively, the above is not possible, we must have θ′1 6= θ1 and θ′2 6= θ2. Let ei be the
n-vector that has a 1 in the ith component and all other components 0. Let

θ
′′ = θ + (θ′2 − θ2)e2 .

So θ
′′ is the state that is the same as θ except that the jth component is θ′2. We make the

following adjustments to the payments, gradually increasing ǫ from 0 until, by (a) or (d), we
have (i) holding for one or both of θ and θ

′. Note that alterations (b) and (c) ensure that
the values of E[x1(θ)

∣

∣θ1], E[x2(θ)
∣

∣θ2] and x1(θ
′′) + · · · + xn(θ′′) do not change.

(a) x1(θ) → x1(θ) −ǫ

(b) x1(θ
′′) → x1(θ

′′) +ǫ

(c) x2(θ
′′) → x2(θ

′′) −ǫ

(d) x2(θ
′) → x2(θ

′) +ǫ

The number of violations to (i) has been decreased by at least one, and this process can
be continued until no such violations are left. This shows that it is possible to have a strongly
feasible scheme.

Now suppose we have a strongly feasible incentive compatible scheme which satisfies (i)
and (ii). We will modify it to produce a strongly feasible incentive compatible scheme which
also satisfies (iii).

Let Θ = {θ : θj ≤ tℓ for all j}. This is the set of states where all agents are excluded and
c(θ) = 0. Suppose there is a θ ∈ Θ and i such that there is a violation of (iii), i.e., θi ≤ tℓ
and xi(θ) 6= 0. Pick a j such xj(θ) 6= 0; note that this is always possible because we cannot
reach a point where such a θ has just one violation of (iii), since we have (i) and c(θ) = 0
for θ ∈ Θ and this implies x1(θ) + · · · + xn(θ) = 0. Let θ

∗ be a state in which all agents are
included, e.g., θ

∗ = (1, . . . , 1). Let

θ
i = θ

∗ + (θi − θ
∗
i )ei

θ
j = θ

∗ + (θj − θ
∗
j )ej

That is, states θ
i and θ

j, are constructed from θ
∗ by, respectively, decreasing the ith and jth

components of θ
∗ to their values in θ. Let ǫ = xi(θ). We now make the following adjustments

to the payments. These are chosen carefully to preserve (i) and (ii), and remove the violation
to (iii) of xi(θ) 6= 0.
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(a) xi(θ) → xi(θ) −ǫ

(b) xj(θ) → xj(θ) +ǫ

(c) xi(θ
i) → xi(θ

i) +ǫ

(d) xj(θ
i) → xj(θ

i) −ǫ

(e) xj(θ
∗) → xj(θ

∗) +ǫ

(f) xi(θ
∗) → xi(θ

∗) −ǫ

(g) xi(θ
j) → xi(θ

j) +ǫ

(h) xj(θ
j) → xj(θ

j) −ǫ

In detail:

(a) removes the violation to (iii);

(b) makes x1(θ) + · · · + xn(θ) = c(θ);

(c) puts E[xi(θ)
∣

∣θi] back to its required value;

(d) makes x1(θ
i) + · · · + xn(θi) = c(θi);

(e) puts E[xj(θ)
∣

∣θj = θ∗j ] back to its required value;

(f) makes x1(θ
∗) + · · · + xn(θ∗) = c(θ∗);

(g) puts E[xi(θ)
∣

∣θi = θ∗i ] back to its required value;

(h) makes x1(θ
j) + · · · + xn(θj) = c(θj) and puts E[xj(θ)

∣

∣θj] back to its required value.

Unfortunately, this may create a new violations of (iii) if xi(θ
j) = 0 and xi(θ

j)+ ǫ 6= 0, or
if xj(θ

i) = 0 and xj(θ
i)− ǫ 6= 0. But even if this happens the number of violations within the

set Θ will have been reduced by at least 1, since θ
i,θj 6∈ Θ. So let us first make adjustments

to violations that occur within Θ until none such are left.
Now look for a violation of (iii) for θ 6∈ Θ. Suppose there is one, say θ, with θi ≤ tℓ and

xi(θ) 6= 0. Since θ 6∈ Θ, there is a j such that θj > tℓ. Now observe that there is at least one
other violation of (iii) for the same agent and θi, since E

[

xi(θ)
∣

∣θi

]

= 0. Suppose this is at θ
′,

where xi(θ
′) 6= 0 and that, again since θ

′ 6∈ Θ, there is a k such that θ′k ≥ tℓ (where k may
possibly be the same as j). Let

θ
† = θ + (θ′k − θk)ek

and make the following alterations, with the same motivations as above, The effect is to retain
(i) and (ii) and remove the violation to (iii) at xi(θ) 6= 0.

(a) xi(θ) → xi(θ) −ǫ

(b) xi(θ
′) → xi(θ

′) +ǫ

(c) xk(θ
′) → xk(θ

′) −ǫ

(d) xk(θ
†) → xk(θ

†) +ǫ

(e) xj(θ
†) → xj(θ

†) −ǫ

(f) xj(θ) → xj(θ) +ǫ
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This does not introduce any new violations to (iii) in the states θ and θ
† because there

is already a violation xi(θ
′) 6= 0, and all the other changes are to payments being made by

agents j and k who are not excluded. Thus we may repeat this until the number of violations
of (iii) is zero.
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G Strongly Feasible Equal Contribution Mechanisms

Here are details of the calculations referred to in Section 3.3 where we consider fixed contri-
bution schemes that satisfy strong feasibility conditions.

G.1 Mechanism 1

Suppose that we build a facility of size Q and then share the cost c(Q) amongst all those who
volunteer to participate. They must make a commitment to do so, before knowing how many
will participate.

Let X be the number of peers with preferences parameters of at least θ. The marginal θ
will be such that

θu(Q) − c(Q)E[1/X] = 0 .

The expected social welfare will be

E
[

X 1
2(1 + θ)u(Q) − c(Q)

]

.

So, for our example, we have the problem of maximizing with respect to Q and θ,

n(1 − θ)1
2(1 + θ)2

3

√

Q − Q . (53)

subject to
θ 2

3

√

Q − QE[1/X] ≥ 0 . (54)

Now

E[1/X] =
1

EX
E

[

1

1 + X−EX
EX

]

=
1

EX

(

1 +
E(X − EX)2

[EX]2
+ · · ·

)

=
1

n(1 − θ)
+

θ

n2(1 − θ)2
+ O(1/n4)

Now use (53) to solve for Q, making the approximation E[1/X] ≈ 1/n(1−θ). Substituting
this in (53) and maximizing with respect to θ gives θ = 1/4 and a maximized value of
3n2/128 − n/384 + o(1). Compare this to Φ∗

n = 3n2/128.

G.2 Mechanism 2

Suppose that we charge a fee of φ and then build the largest facility whose cost can be covered
by the fees. As before, peers must make a commitment to pay their share of the cost without
knowing how many others will also participate.

The marginal θ is now given by

θEu(Xφ) − φ = 0

and the expected social welfare is

E
[

X 1
2(1 + θ)u(Xφ) − c(Xφ)

]

.
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So in our problem we want to maximize with respect to θ and φ,

E
[

X 1
2 (1 + θ)2

3

√

Xφ − Xφ
]

(55)

subject to
θ 2

3E
√

Xφ − φ ≥ 0 . (56)

Now

E
√

X =
√

EXE

[

1 +
X − EX

EX

]1/2

=
√

EXE

[

1 + 1
2

X − EX

EX
− 1

8

(X − EX)2

(EX)2
+ · · ·

]

= (n(1 − θ))1/2

(

1 − 1
8

θ

n(1 − θ)
+ · · ·

)

E
√

X3/2 = (n(1 − θ))3/2

(

1 + 3
8

θ

n(1 − θ)
+ · · ·

)

So ignoring terms that become small for large n, we want to maximize

1
3

√

φ (n (1 − θ))3/2 (1 + θ)

(

1 + 3
8

θ

n (1 − θ)

)

− φn (1 − θ) (57)

subject to

2
3θ(n(1 − θ))1/2

(

1 − 1
8

θ

n(1 − θ)

)

√

φ − φ ≥ 0 . (58)

Now use (58) to find φ as a function of θ and substitute into (57). The optimal θ tends to
1/4, as we would expect. The optimal value is 3n2/128 + 7n/1536 + o(1). Compare this to
Φ∗

n = 3n2/128 and Φn = 3n2/128+7n/9+o(1). The strongly feasible policy does a bit better
because although it provides the same Q on average it makes provides more Q when there
are more people participating. The explanation is that when u(Q) = 2

3

√
Q the term in the

social welfare of X 1
2(1 + θ)u(φX) is a convex function of X, so

E
[

X 1
2 (1 + θ)u(φX)

]

≥ EX 1
2 (1 + θ)u(φEX) .
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