
J. Appl. Prob. 28, 852-861 (1990)
Printed in Israel

? Applied Probability Trust 1990

STOCHASTIC DISPATCHING OF MULTI-PRIORITY
JOBS TO HETEROGENEOUS PROCESSORS

SUSAN H. XU,* Pennsylvania State University
PITU B. MIRCHANDANI,** The University of Arizona
SRIKANTA P. R. KUMAR,*** Northwestern University
RICHARD R. WEBER,**** University of Cambridge

Abstract

A number of multi-priority jobs are to be processed on two heterogeneous pro-
cessors. Of the jobs waiting in the buffer, jobs with the highest priority have the first
option of being dispatched for processing when a processor becomes available. On
each processor, the processing times of the jobs within each priority class are
stochastic, but have known distributions with decreasing mean residual (remaining)
processing times. Processors are heterogeneous in the sense that, for each priority
class, one has a lesser average processing time than the other. It is shown that the
non-preemptive scheduling strategy for each priority class to minimize its expected
flowtime is of threshold type. For each class, the threshold values, which specify
when the slower processor is utilized, may be readily computed. It is also shown that
the social and the individual optimality coincide.

STOCHASTIC SCHEDULING; MULTI-SERVER SYSTEMS

1. Introduction

Consider a system in which two heterogeneous processors are available for processing
a number of jobs. The jobs have stochastic processing requirements, but fall into n
classes, C1, - - , C,, such that jobs of the same class have processing requirements whose
distributions are identical. Jobs are dispatched to the processors in a non-preemptive
manner and jobs of lower index classes have priority: a class Ct job may be dispatched to
an idle processor only if it has been rejected by all jobs from classes C1, - - -, C, , .

Received 15 March 1988; revision received 2 November 1989.
* Postal address: Department of Management Science, Pennsylvania State University, University

Park, PA 16802, USA.
** Postal address: Systems and Industrial Engineering, The University of Arizona, Tucson, AZ 8572 1,

USA.
*** Postal address: Department of Electrical Engineering and Computer Science, Northwestern

University, Evanston, IL 60208, USA.
**** Postal address: Department of Engineering, University of Cambridge, Mill Lane, Cambridge

CB2 1RX, UK.
This work has been partially supported by the FMS Program in the Center for Manufacturing

Productivity and Technology Transfer, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA.

852

Stochastic dispatching of multi-priority jobs to heterogeneous processors 853

The flowtime of the jobs in a class is the sum of their completion times. The paper
addresses the following problem: what non-preemptive dispatching rule for each class
minimizes the expected flowtime for the class? So far as class Cljobs are concerned, the
presence of jobs in classes

C,+, -,.
, CC, does not affect their expected flowtime. Class C,

jobs are to be dispatched in a manner that minimizes the expected flowtime of that class,
subject to the priority use of the processors by jobs of classes C1, C - -, C_,..

This study was motivated by the following scenario in production scheduling with
regard to expediting high-priority jobs. When a set of jobs falls behind schedule for
whatever reason or when a set of 'hot' jobs is released to the shop-floor for manufactur-
ing, special effort must be taken for these jobs to make up the lost time or to meet the
required schedule as close as possible, without causing major disruption to 'routine' jobs
waiting to be processed. In manufacturing scheduling this special function is usually
referred to as 'expediting'. Although expediting is a common practice in many control
systems, the problem of expediting high-priority jobs has not been sufficiently studied,
nor are the consequences of expediting these jobs well understood. Consequently, more
attention to studying job expedition may be useful, not only for designing better
scheduling/dispatching algorithms, but also for more realistic modeling and understand-
ing of the manufacturing and the production scheduling environment.

There has been some interest on the optimal dispatching and related problems for
systems with heterogeneous processors. Weiss and Pinedo (1980) and Weber (1981),
(1982) focused on preemptive schedules where the processing of a job may be preempted
to begin the processing of another job. Some research has also been reported with regard
to non-preemptive schedules for heterogeneous processors. Agrawala et al. (1984)
considered the problem of executing a number of identical jobs with exponential
processing times on a set of parallel processors which differ only in speed. They showed
that the optimal non-preemptive policy to minimize expected flowtime is of threshold
type (the threshold values can be explicitly computed as a function of the processing
rates). This (threshold) socially optimal policy is also individually optimal for each job,
and this fact was shown by Kumar and Walrand (1985). Coffman et al. (1987) have
considered the minimization of the expected makespan criterion, and have showed that
for a system with two or three processors with dissimilar speeds the optimal policy is of
threshold type. Among other studies in non-preemptive dispatching, Weber et al. (1986)
consider the scheduling of tasks with stochastically ordered processing times, but the
processors are taken to be identical there.

Nevertheless, most of the work done on systems with heterogeneous processors has
focused either on dispatching one class of identical jobs non-preemptively or dispatch-
ing multi-class jobs preemptively. Very little attention has been paid to the non-
preemptive dispatching of multi-class jobs. Mirchandani and Xu (1987) studied the
problem of non-preemptive dispatching of jobs of n priority classes to two hetero-
geneous processors when the processing times of class C1 jobs on processor Pi are
assumed to be i.i.d. exponential random variables with rate parameter /i, where

/,j
I
_2j,

i = 1, 2 and j = 1, 2,
? . , n. They show that if an optimal threshold policy is

applied to every higher priority class C) job, j = 1, 2, ... , I- 1, then the expected
flowtime of class C1 jobs is also minimized by a threshold dispatching policy. That is, at

854 S. H. XU ET AL.

each decision epoch, available processors are accepted or rejected according to some
readily computable threshold functions.

In this paper we consider the non-preemptive dispatching of multi-priority jobs with
more general processing time distributions. Specifically, the processing times of jobs
within each priority class are assumed to be independent and identically distributed
random variables with the property that the expected remaining processing time is non-
increasing in age (or elapsed processing time). A sufficient condition for this property is
that the processing time distribution has increasing hazard rate. The processors are
heterogeneous in the sense that they differ in the expected processing time for each job in
each priority class. It is shown that the optimal non-preemptive dispatching policy is of
threshold type for each class, and these thresholds can be readily computed. This socially
optimal policy for each priority class is also individually optimal for each job in that
class; and this result in part proves the conjecture in Kumar and Walrand (1985), p. 95
regarding socially and individually optimal policies.

2. Definitions and notations

Throughout this paper we shall let X, represent the processing time of a class C, job on
processor Pi, i = 1, 2, and j = 1, 2,. - -, n, where Xi, 0 <

Xu
5

Mu
is an integer-valued

random variable with hazard rate h11(m) = P(Xj = m + 1 I X, > m). Define Xii
-E(Xu,) and

Xj(m)-E(Xu
- m I X, > m), for m >

0. The processing times are assumed to

satisfy the following conditions:

(A. 1)
Xu(m)

is non-increasing in m, for i = 1, 2 andj = 1, 2,. ., n.

(A.2) Xij 5x2j, for 1 < j 5 n.

The first condition implies that the expected remaining processing time of each job is
non-increasing in its 'age' (the amount of processing it has already received). This
condition is satisfied if the processing times have increasing hazard rate, i.e., hi(m) is
increasing in m, for all i and j (see Ross (1983)). With (A.2), we are assuming that P, is
faster, on the average, than P2 for all job classes.

The dispatching decisions are made at time epochs t = 0, 1,. ?
. We identify the state

of the system at time t = 0, 1,- -... by x = (am; k), where am = (a m , a2m2) is a
two-dimensional vector representing the processors' states

100 if P, is idle

l if Pi is processing a class Cj job of age 1; 1 5 j 5 n, 0
-

1 5 M/

and k = (k1, k2, . ., k,) is called the buffer state, where k1 denotes the number of C, jobs
waiting in bufferj. Note that at indicates the type ofjob on P, and mi its age. Finally, let S
denote the state space which is the set of all possible states.

At each decision time, class C1 jobs receive dispatching preference over Ci
?

jobs. We
define for class C1 jobs a non-preemptive dispatching function]: S - S. In other words,

iff(x) = y then the state of a processor is the same in both x and y, if the processor is

Stochastic dispatching of multi-priority jobs to heterogeneous processors 855

busy in x. At a decision epoch, fj is applied after fl, f2,..., ? -I have been applied
sequentially to their corresponding job classes.

We shall say that a state x is stable under] iffj(x) = x, and unstable otherwise. At any
decision epoch, the dispatching functions are sequentially applied to all classes until the
state becomes stable under the dispatching functions. Then the processors operate on the
jobs assigned to them for one unit of time, at which instant the state evolves and may be
unstable.

The expected flowtime of class Cj jobs under f= (f
",2,

f,) with the initial state x
will be denoted by cj(x; f). It is convenient to define the following operators E, and E2.
Let

Elcj(alml, a2m2; k; f)
(1) = hlai(ml)cj(00, a2m2; k; f) + i1a,(mi)cj(al(mI + 1), a2m2; k; f)

and

E2cj(almI, a2m2; k; f)
(2) = h2a2(m2)cj(alml, 00; k; f) + I,2(m)ci (a1m1, a2(m2 + 1); k; f).

In the above equations,
1i.(m) -

1 - hi,(m). In addition, hio is taken as unity for the case
when the processor is idle. The expected flowtimes for any given dispatching function
can now be written in the following compact recursive form, for a stable state. For
1 5j <n,

(3)
cj(alml,

a2m2; k; f) = kj +
Ij(a•)

+ Ij(a2) +
E2Elcj(aOlml, a2m2; k; f)

where Ij(ai) is an indicator function which equals 1 if a =j, and 0 otherwise. (Note that
EIE2 - E2E1.)

3. Optimal dispatching of class C1 jobs, 1
_

1
_

n

In this section, we analyze the dispatching strategy which minimizes the expected
flowtime for class

Ci
jobs. The analysis here is also applicable to the case when there is

only one class of jobs. We first introduce a threshold-type dispatching function for each
job class, and then establish its optimality.

Definition 1. Let x = (am; k) be any state of the system. Let the dispatching
function 7r, assign class C, jobs to available processors in the following manner:

(i) If a, = 0 and k, > 0, assign a class C, job to processor P,;
(ii) If a, > 0, a2 = 0 and k, > 0, assign a class C, job to P2 if and only if Xa,,(m,) +

k X11 > X21.
Based on the dispatching function ar, we recursively define the following dispatching

function 7rn, 1 <1 < n, for the class Cl jobs.

Definition 2. Let x = (am; k) be any state of the system. Let the dispatching
function lr1 be used for class Ci jobs, 1 j

_
] - 1. The policy 7I which assigns class Ct

jobs is defined as follows:

856 S. H. XU ET AL.

(i) if a, = 0, Z12,? kj = 0 and ki > 0, assign a class Ctjob to P,;
(ii) if a > O0, a2 = 0, k, > 0, and P2 is rejected by all higher priority jobs, dispatch a C,

job to P2 if and only if

(4)
Xl,,(m,)

+ kXxv >
X21. j=1

From Definition 1, it is evident that if
X,,(m,)

+ k, X11 X21, then P2 is not assigned to
class C, jobs, and in addition, it is rejected at all future times by class C, jobs. This is due
to assumption (A. 1) and the fact that the number of C, jobs that remain to be processed
does not increase over time. Likewise, if P2 is rejected by all higher priority jobs, and if

Xl,(mi) + 2i.1 kj j _X X 21, then P2 will be declined by the class C, jobs, in x and all
subsequent states of x. We refer to this property as the 'monotonicity' of 7r, 1 I n.
This property implies that the set

(5)

B,- -{x

= (am; k)ES I X1.,(m,) +i klXl Z

X2jlJ

}

is closed with respect to the evolution of the state. Due to this property, the flowtime of
class C jobs under ir, does not depend on the dispatching function and the buffer states of
the lower priority jobs.

In state x, let c,(x) denote the expected flowtime of C, jobs when policies 7r, , nl_
,, and Ir, are used. Then, for x = (am; k) E Bi, the flowtime of C, jobs can be explicitly

written as:

c,(am; k) = I,(al)xla,(ml) + II(a2)X2a,(m2)
(6) 1 k j_-I

+
II1 x ,

(mi) + +1 kXlp, +
iXlj)

where pi-. kx,, = 0, for j = 1. Before we establish the optimality of
irt,

the following
observation is of interest. For class Ctjobs, consider the class F, of threshold policies with
the property: (i) P, is used whenever it is offered to the C jobs, and (ii) once P2 is rejected
by the Ct jobs, it is never used by the class again. For every job class, if the attention is
restricted to the threshold dispatching strategies, the scheduling problem for each job
class may be viewed as an optimal stopping problem, i.e., when to stop using P2. Clearly,

7rt belongs to Fl. Its optimality among policies in F, can be shown via the one-step
look-ahead rule for stopping problems (Ross (1983)).

Lemma 1. For 1 I n, the policy nr, minimizes the expected flowtime of class C,
jobs among dispatching strategies in F1.

Proof. Consider the state of the form x = (am,, 00; k), and let P2 be rejected by
every higher priority class Cj under the policy nj, j = 1,..., I- 1 (such that

X,,,(m,)
+

i_,/

k

-
X .2j, 1 j

-

/ - 1). Consider the set, B,, of states for which
declining P2 is at least as good as using P2 exactly once. Using Equation (6), the expected
flowtime of the class Ct from declining P2 is

Stochastic dispatching of multi-priority jobs to heterogeneous processors 857

1
kj j - 1

I1(a1)X1,,(m1)
+

• x~,(mi) +
l- I kpX p +

ix .

On the other hand, if P2 is used exactly once, the expected flowtime is
1-1 kj j-1

Ih(a1)X,1,(m1)
+ X21 + ~ (xl.,(m) + kXlp + iX

j-li-1 p-I
k-1-1

+
(Xl.,1(ml)

+ kpXp + iXlQ .
i-i p-1

The difference of the above expressions is
Xla,(mi)

+ If., k1Xli - X21. From (5) it is clear
that B, = B1. In this Markov optimal stopping problem, the set B1 is closed under the
evolution of the state, and hence Theorem 2.2 in Ross ((1983), p. 54, Chapter 3) is
applicable. This yields the optimality of the following one-step look-ahead policy: stop
using P2 when the state enters the set B1 for the first time. This policy is identical to nr,
hence the lemma is established.

Note that the scheduling problem at hand is not a pure stopping problem, because P2
can be rejected at a certain time and used later. Thus, we need to establish the optimality
of 7r, amongst all dispatching functions.

To facilitate proofs by induction we consider any one ordering of the state space S,
namely x0 = (0; 0), x1, x2 * * * , such that ifx, is reachable under some sample path from xj
then x, < xj. It is clear that such an ordering of S is possible.

The following lemma is helpful in establishing the optimality of irl. Intuitively,
Lemma 2 states that if Pi is operated for one unit of time costlessly (instantaneously)
keeping the other components of the state x fixed, the resulting flowtime of C1 jobs
(which equals Eicl(x), see (1) and (2)) is reduced, since the delay or completion time of
the job in Pi, and also of other Cl jobs subsequently processed on Pi, is decreased by one
unit. Define A cl(x) = cl(x) - Eicl(x), for i = 1, 2.

Lemma 2. If dispatching strategies
nl,* ? ", n-l,

and nr are followed, then for any
stable state x = (am; k),

(7) I(ai) 5 Aic1(x) < ki + II(a1), i=1,2, = 1,...,n.

Proof. Consider the ordering of S defined earlier. For each given 1, the proof is by
induction on states. The lemma trivially holds for x0 and also for all states with Ef. I k = 0.
This is because, for such states, Aicl(x) =I1(al)[xi,,(mi)--

,,(mi)Xi,(m1 + 1)]=
Il(a1), for i = 1, 2. Now, suppose that the lemma holds for all states x,, with the index
t

-
I - 1, where I is an integer. We need to show that it holds for x, = x = (am; k), with

Cf,_
k1 > 0. Let C>, 1

_j _
1, be the highest indexed job class which has (non-zero)

waiting jobs in its buffer (i.e., If.'
4 k, = 0 and k > 0). Let ej denote a vector with a 1 in

componentj and 0 in all other components. From (1) and (3), one obtains

As
c1(x) = k1 +

I/(al)
+ I(a2) - hl,,(ml)A2cl(j0, a2m2; k - ei)

- i m,,,(m)c(a(m)A2 1 + 1), a2m2; k).

858 S. H. XU ET AL.

Let y denote either of the two states which appears as an argument to c, above. Note that
y is stable and is such that y < x, = x. Hence the induction hypothesis is applicable.
Now, the lower bound (upper bound) for Alct(x) in the lemma is trivially verified by
using the upper bound (lower bound) for A ct(y) from (7). This establishes the lemma for
i = 1. The proof for the case i = 2 is similar.

We are now ready to establish the main result.

Theorem 1. For 1 <51 < n, the dispatching function 7rt minimizes the expected
flowtime of class C, jobs among all non-preemptive dispatching functions, i.e.,

cW(x)_<-c1(x;
fn ".".f tzt-_I*"* *"l).

Remark. Suppose we relax our definition of admissible policies by allowing class C,
jobs to preempt jobs of lower priority classes (except the jobs assigned before time 0).
This relaxation means that when determining the optimal policy for class C1 jobs we can
pretend that no jobs of lower priority classes are present. Since it will be shown that the
optimal policy is r1t and this policy never assigns a class C1 job to a processor which has
been previously declined for class Cl jobs, it is clear that the option to preempt is never
exercised. Thus 7r1 is also optimal in the restricted class of policies which do not allow
preemption. We write c1(x; fn

? ? ft. ...
7r?

) = c1(x; f), when no lower priority jobs
are present.

Proof of Theorem 1. The proof by induction on I is employed. The base of the
induction is the trivial case: no jobs need to be assigned. Assume strategy rj minimizes
the expected flowtime of class Cj jobs, among all non-preemptive dispatching functions,
for j <1. By the remark above, we may suppose that no jobs of classes j > I are present.
Using Lemma 1 we see that 7r, minimizes the expected flowtime of class C jobs within the
class of threshold policies for assignments of class C, jobs. Now consider the class of all
policies for C1 jobs given that policy 7rj is used to assign Cj jobs, j <1. Let f be an optimal
policy and let x be a least state for which rt does not equal f. By this we mean that 7r1 is
not optimal in state x but that it is optimal for all states y that are reachable from x. If rt
is not optimal in the class of all non-preemptive policies then there is at least one such x.
If processor P, is idle and offered to C, jobs, then x must be of the form x = (00, ca2m2, k),
with 2,:Z ki = 0 (since the higher priority jobs, if there are any left, never decline P,). It
is clear that the optimal policy for C, jobs should never decline the faster available
processor P1. This statement can be justified formally as follows. Suppose that f
prescribes not using P, in state x, so thatfl(x) = (00, f2n2; k*), where k* equals k or k - el
depending on whether or not a C1 job is assigned to P2. Consider a policy ~i which is the
same as f except that it prescribes the assignment of a Cr job to P, in state x. Then,

c1(x; f) - c1(x; ir) = c1(00, f2n2; k* Jf) - c,(10,
f2zn2;

k* - eg; 4)

= E2[c1(lO,
fzn2;

k* - e1) - Ec1c(lO0, f2n2; k* - e1)] > 0,

where the inequality to zero follows from Lemma 2. This implies that using P, whenever
it is available is optimal.

-Stochastic dispatching of multi-priority jobs to heterogeneous processors 859

Now let x be of the form x = (aIm1, 00; k) and let x be stable under Irj (i.e., x EBj), for
j <1. There are two cases to consider, depending on whether or not (a (m, + 1), 00; k) =
y belongs to B1.

(i) Suppose y E B1. Due to monotonicity property, all states that result after one unit
of processing of state x must be in B1, regardless of the action taken in state x. Thus
f, = 7r makes no further assignments of C, jobs to P2 from the next decision epoch. This
implies that f; must be of a threshold type. Consequently, the optimality of 7ri follows
from Lemma 1.

(ii) Suppose y (B1. In this case we have y < x (B. Let P2 be rejected by f; in state x.
Since y (B1, with some positive probability f = ~r1 will assign a C1 job to P2 at the next
decision epoch. Let Cj be the highest indexed class with (non-zero) waiting jobs. We
compare the expected flowtime of class Ct jobs under the two policies:

c1(alml, 00; k; fi) - c1(alml, 10; k - el)

(8) = h.,1(m,)[ct(jO, 00; k -
e.)

- E2cl(O0, 10; k - e) - t)]

+ 1,,(m1)[c1(a1(m1 + 1), 10; k - el) - E2cI(ai(mI + 1), 10; k - el)].

Now if (jO, 00; k - ej) B, then with probability 1 a C1 job will be assigned to P2 at the
next step. In this circumstance it is better to assign a Ci job to P2 initially. This can be
formally verified by using Lemma 2 in Equation (8). On the other hand, if(jO, 00; k - ej)
B1, then using Lemma 2 in Equation (8) again we see that the difference of the flowtimes
under the two policies is no lesser than

hi.,(ml) 1 4• X,
-

X21 + +
•1,(ml). [i--I

The above quantity is negative only if

1 1
SkiXliX

<
X21

-1 hl., (ml)

But using (A.1), X,,(ml) = 1 + hl,(ml)XlI(m, + 1) 5 1 + i,(m,)X1',(1), so
1/h1,,(mi)

,_X,,(mi).
Therefore the above expression requires Z/-1 k-1 X <

X21 - X1,, (mi), which contradicts x (Bi. This completes the proof of Theorem 1.

4. Individual optimality

The socially optimal policy 7r, 1 < 1 < n, is also individually optimal for each job in
class CI in the following sense. Suppose jobs in priority class CI occupy buffer positions
1, 2,... , k1 (with position 1 being the head of the queue). A policy for a job which
specifies when an offered processor should be used or declined, is called an individual
policy. An individually optimal policy is one which for each job minimizes its own
expected completion time (delay), with processor preference given to other jobs ahead of
it in the buffer (of the same priority class). It may be noted that the policy ni can be
implemented as an individual policy i as follows: for a class C1 job in any position k1,

860 S. H. XU ET AL.

(i) accept P, whenever offered, and (ii) accept P2 when offered if and only if (4) is
satisfied.

It is not true in general that individually and socially optimal policies coincide.
However, Kumar and Walrand (1985) have shown that this is the case when there are no
arrivals, and the socially optimal policy 7r can be implemented as an individual policy y,
having the property that once a job rejects an offered processor it never wishes to use it
thereafter. In this case, y is an individually optimal policy.

In the priority class system analyzed in the previous sections, the policy
7i,,

1 < / _
n is

individually implementable. Furthermore, due to the monotonicity property, a job will
never accept a processor which was declined previously. Thus, from Theorem 1 in
Kumar and Walrand (1985), we can conclude as follows.

Theorem 2. For 1 < / 5 n, the policy yl, which is the individual implementation of
ir, is individually optimal for each job in class C1.

If we extend the model to include job arrivals to each class, with FCFS priority within
each class, then in general tr will not be socially optimal and y, will not be individually
optimal. (Although, by Theorem 2 in Kumar and Walrand (1985), Y, will be individually
optimal for the highest priority class.) However, if jobs of all classes are held in just one
queue and free processors are offered to jobs in order of their position in the queue,
without regard to class, then the individually optimal policy for each job is simply to
accept P2 if its expected processing time on P2 is less than the expected total delay which
will be incurred by waiting for itself and all jobs ahead of it to be processed on P,.
However, in general, this policy is not socially optimal.

5. Concluding remarks

In this paper we have studied the non-preemptive scheduling of jobs of multi-priority
classes, having non-increasing mean residual processing time distributions, on two
heterogeneous processors. The optimal strategy for each priority class was shown to be of
a threshold type. These thresholds can be derived off-line and be implemented as a table
of dispatching rules. In the model considered, social and individual optimality coincide.
The conjecture of Kumar and Walrand ((1985), p. 995) is thus proved for the two-
processor case under conditions weaker than they had suggested. Standard limiting
arguments can be used to show that the results derived here for discrete processing time
distributions also hold for continuous processing time distributions.

The problem of optimally dispatching priority jobs to multiple heterogeneous pro-
cessors (m > 2) poses an interesting research topic. In such circumstance to assure the
optimal dispatching strategy for each job class to be of a threshold type, we believe that
we need to strengthen (A. 1) to

(A.1') h,(t) is non-decreasing in t for i = 1,. ., m, j = 1,
? .

, n.

The proof of the optimality of the threshold policy may be carried out as follows.
Define

cu(x)
as the minimal expected flowtime of C, jobs given that all further C1 job

assignments are made only to processors P,,
? . , Pi. Define

Stochastic dispatching of multi-priority jobs to heterogeneous processors 861

B, = {x = (am, k)ES I cj(am, k) - c,(am, k -
e8) <5 Xi+l)}.

That is, B, is the set of states for which the confining of all future Cj job assignments to
P,,

" ? ",
P, is preferable to assigning one more Cjjob to P, + 1. If it can be shown that B, is a

closed set, it would follow that 7rj (with stopping set Bj for processor Pi+I,
i = 1, ... , m - 1) is optimal in the class of threshold policies. Similar arguments to
those in this paper would show that ;j is optimal in the class of all policies.

There are several other interesting topics for future research. In this paper the class
priorities were taken as given. The problem of assigning priorities to each class (given
that each class minimizes its flowtime) to minimize the total expected flowtime of the
entire system is a problem of interest. If priority constraints are removed, the problem is
one of scheduling heterogeneous jobs on heterogeneous processors. This problem, which
has received very little attention, does not appear to have a solution with a simple
characterization. Optimal scheduling to minimize expected makespan in this context is
also a topic for further research.

References

AGRAWALA, A. K., COFFMAN, E. G. JR., GAREY, M. R. AND TRIPATHI, S. K. (1984) A stochastic
optimization algorithm minimizing expected flowtime on uniform processors. IEEE Trans. Computers
33, 351-357.

COFFMAN, E. G., FLATTO, L., GAREY, M. R. AND WEBER R.R. (1987) Minimizing expected
makespan on uniform processors systems. Adv. Appl. Prob. 19, 177-201.

KUMAR, P. R. AND WALRAND, J. (1985) Individually optimal routing in parallel systems. J. Appl.
Prob. 22, 989-995.

MIRCHANDANI, P. B. AND XU, S. H. (1989) Optimal dispatching of multi-priority jobs to two
heterogeneous workstations. IIFMS 2, 25-42.

Ross, S. M. (1983) Introduction to Stochastic Dynamic Programming. Wiley, New York.
WEBER, R. R. (1981) Scheduling jobs on parallel machines to minimize makespan or flowtime. In

Proc. Conf. on Applied Probability, Computer Science: The Interface, Boca Raton.
WEBER, R. R. (1982) Scheduling jobs with stochastic process requirements on parallel machines to

minimize makespan or flowtime. J. Appl. Prob. 19, 167-182.
WEBER, R. R., VARAIYA, P. AND WALRAND, J. (1986) Scheduling jobs with stochastically ordered

processing times on parallel machines to minimize expected flowtime. J. Appl. Prob. 23, 841-847.

WEISS, G. AND PINEDO, M. (1980) Scheduling tasks with exponential service times on non-identical
processors to minimize various cost functions. J. Appl. Prob. 17, 187-202.

	Article Contents
	p. 852
	p. 853
	p. 854
	p. 855
	p. 856
	p. 857
	p. 858
	p. 859
	p. 860
	p. 861

	Issue Table of Contents
	Journal of Applied Probability, Vol. 27, No. 4 (Dec., 1990), pp. 737-927
	Volume Information [pp. 924-927]
	Front Matter
	Random Polymorphisms and Random Evolutionarily Stable Strategies: A Comparison [pp. 737-755]
	Control of Asymptotic Variability in Non-Homogeneous Markov Systems [pp. 756-766]
	A Spatial Markov Property for Nearest-Neighbour Markov Point Processes [pp. 767-778]
	An Ergodic L-Theorem for Simulated Annealing in Bayesian Image Reconstruction [pp. 779-791]
	Further Results on ASTA for General Stationary Processes and Related Problems [pp. 792-804]
	On the Rate of Convergence of Some Functionals of a Stochastic Process [pp. 805-814]
	The Job Search Problem as an Employer-Candidate Game [pp. 815-827]
	Optimal Stopping Problems with Generalized Objective Functions [pp. 828-838]
	The Rendezvous Problem on Discrete Locations [pp. 839-851]
	Stochastic Dispatching of Multi-Priority Jobs to Heterogeneous Processors [pp. 852-861]
	Identifiability Problems in Coherent Systems [pp. 862-872]
	Availability of a Series System with Replacement and Repair [pp. 873-887]
	Optimal Control of a Finite Dam Using P Policies and Penalty Cost: Total Discounted and Long Run Average Cases [pp. 888-898]
	Derivatives of the Expected Delay in the GI/G/1 Queue [pp. 899-907]
	Short Communications
	A Note on the Total Size Distribution of Carrier-Borne Epidemic Models [pp. 908-912]
	The M/G/1 Processor Sharing Queue as the Almost Sure Limit of Feedback Queues [pp. 913-918]

	Obituary: Peter Franken 1937-1989 [pp. 919-923]
	Back Matter

