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Abstract 

A number of jobs are to be processed using a number of identical machines 
which operate in parallel. The processing times of the jobs are stochastic, but 
have known distributions which are stochastically ordered. A reward r(t) is 
acquired when a job is completed at time t. The function r(t) is assumed to be 
convex and decreasing in t. It is shown that within the class of non-preemptive 
scheduling strategies the strategy SEPT maximizes the expected total reward. 
This strategy is one which whenever a machine becomes available starts 
processing the remaining job with the shortest expected processing time. In 
particular, for r(t)= - t, this strategy minimizes the expected flowtime. 

STOCHASTIC SCHEDULING 

1. Introduction 

The processing times of n jobs are random variables which are stochastically 
ordered as Xi , <* * * <s X,. The jobs are to be processed non-preemptively using 
m machines which operate in parallel. Suppose that machine i becomes 
available at time T, 0. Let r be the vector of times (r, '2, *', 7',,) at which the 
machines become available. The aim is to find the scheduling strategy which, 

amongst non-preemptive strategies S, achieves the maximum reward, 

R(r)=sup E [ r(Tk)] 

Here r(t) is a convex, decreasing function of t, (0 - t < oo). Tk denotes the time at 
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which job k is completed. Note that for r(t) = - t the problem is one of 
minimizing the expected flowtime (sum of job completion times). 

When the processing times are almost surely ordered, Xi * * .. X,, then the 
optimal schedule is the one which as machines become available starts the jobs 
in the order 1,2, * , n (see Conway et al. (1967)). This strategy is usually called 
SEPT (shortest expected processing time first). Glazebrook (1979) and Weiss and 
Pinedo (1980) have shown that SEPT minimizes expected flowtime when the jobs 
have processing times which are exponentially distributed with different means. 
Weber (1980), (1982) has shown that SEPT also minimizes expected flowtime for a 
more general model in which job i has a processing time distributed with 
distribution function Fi (t) = {F(t + t) - F(ti)}/{1 - F(ti)}, where t, >- * * * tn and 
F(t) is a distribution function with an increasing hazard rate, p(t) = 

f(t)/{1 - F(t)}. In this model the jobs are essentially identical, but they have 
received different amounts of processing, t,--, t,, prior to the start. In this 
paper we show that SEPT is optimal for a more general model, which encompasses 
those mentioned above. The only assumption is that the processing times are 

stochastically ordered. 

2. Optimality of non-preemptive SEPT 

Of particular interest are list scheduling strategies, which start processing the 

jobs in a predetermined order. Without confusion we can let L = (ki, .* , kn) 
denote both a permuted listing of (1,2, * * , n) and the list scheduling strategy 
which starts jobs 1,-. ,n in the order kl, - ,kn. Let R(r;L) denote the 

expected reward obtained when the jobs in list L are processed according to list 

scheduling strategy L. Without loss of generality we suppose that Ti - 72 - 
?* * * Tm. For convenience we suppose that r(t) is twice differentiable and that 
the processing times are continuous random variables which have density 
functions. 

We approach the proof of the result through three lemmas. The first states 
that for a list scheduling strategy L the rate of change of the expected reward 
with respect to the starting time of any machine is just the expected reward 
obtained on that machine when the reward function is altered to r(t), the 
derivative of r(t) with respect to t. Let Ri,(; L) denote the expected reward 
obtained on machine i when the list scheduling strategy L is employed and the 
reward function is r(t). To define this without ambiguity, we adopt the 
convention that if machine i and one or more other machines become available 
at the same time then machine i is assigned a job (if any) from the list L only 
once all other machines becoming available at that time have been assigned jobs 
coming earlier in the list. In other words, the assignment is made by pretending 
that machine i becomes available at a slightly later time. Let dR(T, L)/dTi 
denote the right-hand derivative of R(r, L) with respect to Ti. 
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Lemma 1. For any list scheduling strategy L, dR (, L)/dTi exists and 

dR(r; L)/dTi = Ri (T; L), i = 1, * * *, m. 

Proof. The proof is by induction on n. It is clearly true for n = 0. Suppose it is 
true for fewer than n jobs. Suppose L = (il, i2, , in) (here not necessarily SEPT 

ordered). Let f(t) be the density function of X,, and let L1 = (i2, i3, ', in). Then 

fo 
R (r, L) = f f(t){r(r + t) + R( + t, 2, ',Tm ; L)}dt. 

Differentiating and using the inductive hypothesis, 

dR(T; L)/dr = f f(t){r(T1+t)+R1(r + t, T2, , Tm; L)}dt = R,(r; L). 

Similarly, 

dR (T,L)/dIT= f(t){Ri(r + t, T2, ; ;L )}dt = R(T;L), iZ 1. 
o 

This completes the inductive step and proof of the lemma. 

The next lemma states that when the reward function is i(t) and the 

scheduling strategy is SEPT, then the expected reward obtained on a given 
machine is not decreased if that machine is made to start later and is not 
increased if any other machine is made to start later. 

Lemma 2. 

(a) Suppose L is the SEPT list (1,2, * *, n). Then for jZ i and n _ 1, 

Ri (T; L) is non-decreasing in ri and non-increasing in rj. 

(b) Suppose L * is the list (2,3, * , n), omitting some k ' 2. Then for n = 2, 

E[R,(TI + XI, T2 + Xk,. ',T m ;L*)- R(Ti, +Xk,7T2+ X,' ',Tm ; L*)] 0. 

Proof. Again, the proof is by induction on n. Part (a) is trivial for n = 1; part 
(b) is trivial for n = 2. Suppose that the lemma is true when there are fewer than 
n jobs to process. We show that it is true when there are n jobs to process. The 
inductive step for (b) follows from the inductive hypothesis for (a) when there 
are n - 2 jobs to process and the fact that if a function h(x i,x2) = 

R1(Ti + Xi, T2 + X2, * *', T; L2) is non-decreasing in xi and non-increasing in X2, 
then E[h(X,,X2)- h(X2, X)] is non-positive for X, stX2. 

To check the inductive step for (a) we begin by showing that Ri (, L) is 

non-decreasing in rT. Let i = 1 (without loss of generality) and suppose r2 < ? ? ? 
",,. Let L, = (2,3,.-. , n). Then for r, < 2, 

R,(7; L) = E[i(r + X,)+ RI,(, + X, r, -, rm ; L1)l. 
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It follows from i(t) non-decreasing and the inductive hypothesis that the 
expression over which the expectation is taken is non-decreasing in ,1. Thus 
within the region T < ,, it follows that R,(r; L) is non-decreasing in 1T. Similar 
observations apply in the region r, > r2, where 

R,(T; L) = E[R,(I(, ,2 + X, '', ,m ;L1)]. 

It remains to consider the change in R,(T; L) as T, passes through the value r2. 
Suppose T2 = . = Tk < Tk+i -**< T,m and let L* be the list (2,3,*., n), 
omitting job k. Then the change in R,(r; L) as T, passes through the value T2 

may be written as 

R 2(T, T2, ',* ,Tm ;L)- R,(T2, 72,** ',7m; L). 

For k < n this change equals 

E[i(T2 + X) + R1(T2 + Xk, 2 + X1, T3,. **,Tm ; L*) i(T2 + XI) 
- R1(T2 + Xl, T2 + Xk, T3,*, * , ; L*)], 

and for k > n it equals 
E[- (T2 + X)]. 

In both these cases it follows from i(t) being negative and non-decreasing and 
the inductive hypothesis for part (b) that the expression over which the 

expectation is taken is non-negative. This completes the inductive step showing 
that Ri (,;L) is non-decreasing in Ti. Similar arguments (which we omit) 
establish that Ri (r; L) is non-increasing in ri, j i. 

Although it is not used in the proof of the theorejn, the following interesting 
fact is an immediate corollary of Lemma 2. 

Corollary. Suppose L is the SEPT list strategy. Then R (T, L) is non-increasing 
and convex in each ri. 

The final lemma states that when the reward function is r(t) then the expected 
reward obtained on machine 1 (the machine which starts first) is not greater 
when employing SEPT than when employing a strategy which schedules the 
shortest job as the first job on machine 2 (the machine which starts second) and 
schedules the remaining jobs according to SEPT. 

Lemma 3. Suppose L is the SEPT list (1,2,..., n). Let L, be (2,3, , n). 
Then for n > 2, 

Ri(T; L) E[Ri(Ti, T2 + X, * *, fm; L1)]. 

Proof. The proof is by induction on n. When n = 2 we have 

R1(T; L)- Ei[(Ti + X1)] 
< E[i(Ti + X2)] = E[R,(Ti, T2 + X1, - , Tm ;(1))1. 
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Suppose that the lemma is true when there are fewer than n jobs to process. Let 

Lz be (3,4, * , n). If T, = r2 then the lemma is true with equality. If rT < 72 then 
we have 

R,(r; L) = E[r(r, + X,)+ R,(r, + X,, r7,- - , r ; L,)] 
< E[i(r, + X,)+ R,(r, + X,, r2 + X, ', r, ; L)] 

E[r(r + X2)+ R,(r + X2, 7r +X, ', T, m ; L2)] 

= E[RI(T, T2 + X, , ,Tm ; L.)]. 

The first inequality follows by the inductive hypothesis. The second inequality 
follows from i(t) non-decreasing and part (b) of Lemma 2. This completes the 
inductive step and proof of the lemma. 

We are now ready to prove the theorem. 

Theorem. Suppose n jobs have processing times which are stochastically 
ordered. Then the non-preemptive scheduling strategy SEPT maximizes the 

expected reward within the class of non-preemptive strategies. That is, when L is 
the SEPT ordered list, L = (1,2, * * *, n), then R(r) = R (r; L). 

Proof. The proof is by induction on n. The result is true trivially for n = 1. 

Suppose that the result is true when there are fewer than n jobs to process. 
Consider a scheduling strategy S, which begins by processing job k (k > 1) on 
machine 1 (the first machine to become available). By the inductive hypothesis it 
must be optimal to start job 1 next and then start the remaining jobs according to 
the SEPT list strategy L*, where L* is (2, 3, * * , n), omitting job k. Thus amongst 
strategies which start processing job k first, the best is the list strategy resulting 
from the concatenation of (k, 1) and L*, which we denote by Lk l = (k, 1)+ L*. 
We shall shortly show that the list strategy L '.k = (1, k)+ L* is better than L k. 

Assuming this, it follows by the inductive hypothesis that L = (1,2, * * , n) is a 
better strategy than L I.k, and the inductive step is complete. We need only show 

A= R(r; L k)- R (; Lkl)O 

Let R (r; S; c) be the expected reward using strategy S, conditional on Xk = c. 
We shall shortly show that the quantity defined as 

A(c)= R(r;L k,c)-R(r;Lk ;c) 

is non-decreasing in c. Assuming this is so, we have 

A(Xk)->t ,A(X1), 

where X1 is a random variable independent of X, X2," ', X, and identically 
distributed to Xi. By taking the expected value we have 
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A = E[A(Xk)]-E [A(X,)] = 0, 

where the equality to 0 follows from the fact that X, and X, are identically 
distributed. The theorem is therefore proved once we show that A(c) is 

non-decreasing in c. Now 

R(r;L Ik ;c)= E[1(X, < r2 - T){r(Tr + X,)+ r(T, + X, + c) 

+ R (, + X, + c, T2, ', Tm; L*)} 

+ 1(X, ' - 2,){r(r, + X,)+ r(T2 + c) 

+R(T + X,,T2 +C, ', m; L*)}] 

and 

R(T;Lk';c)= r(T+c)+R(T,+C, T2, Tm T;(1)+L*). 

Differentiation of the above gives 

dR (;L"' ;c)ldc = E[1(X, < T2- T,){r(T, + X, + c) 

+ RIl(T + X, + C, T2,'' * *, ; L*)} 

+ 1(X, T 2- rT){r(T2+ c) 
+ R2(T, + X,, T2 + C, * * , Tm; L*)}] 

= E[1(X1 < T2- T){r(T, + X, + c) 
+ R1(1 + X, + c, , T2 ', , Tm; L*)} 

+ 1(X, 
> T2- T){r(T2+ c)+ R,(T2 + c , + X , m ;L*)}] 

and 

dR(T;Lk'; c)/dc = i(T,+ c R+ C (T , + c,2, *? T? ;m ;(1)+ L*) 

- 
E[i(Tl +c)+ R1,(T + c, T2 + XI,, *, ; L*)], 

where the inequality follows from Lemma 3. Thus 

dA(c)/dc _ E[1(XI < r2 - l){r(Ti + XI + C)+ R,(rT + X, + C, T2, *, Tm ;L*)} 

+ 1(X, T -2 - TI){r(T2+ C)+ Ri(T2 + C , T X *, T ; L*)} 

- {r(T + C)+ RI(TI + C, 2+ XI, * T, Tm ; L*)}]. 

Using part (a) of Lemma 2, Tr, _ T2 and i(t) non-decreasing, it is easy to check 

that the expression over which the above expectation is taken is non-negative. 
This completes the proof of the theorem. 

3. Discussion 

We have shown that when the jobs have processing times which are 

stochastically ordered, then the non-preemptive SEPT strategy maximizes the 
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expected reward within the class of non-preemptive strategies. Examining the 
proof of Theorem 1, particularly Lemma 3, it can be seen that the result is still 
true for some models in which the reward obtained on completing each job 
differs from job to job. The reward obtained upon completing job i may be 
generalized to any convex, decreasing function ri (t), provided that when job i is 
stochastically shorter than job j the inequality ri (t) < rj (t) holds for all t. We 
remark that (except for special models like those described in Section 1) the 
non-preemptive SEPT strategy does not maximize the expected reward within the 
class of preemptive strategies. 
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