
CHAPTER 11

Large Deviation and Fluid
Approximations in Control
of Stochastic Systems
R. Weber

University of Cambridge, U.K.

Large deviation and fluid approximations can provide valuable insight to the
behaviour of stochastic systems. This paper summarises some of the key ideas
and discusses a number of examples, including a probabilistic analysis of the
first-fit decreasing bin packing algorithm, and comments on ideas of Whittle
relating to risk-sensitive control of Markov processes. In a final example, a
large deviations analysis is used to estimate the frequency of buffer overflow
when a number of stationary traffic sources are routed through a switch with
a finite buffer. We show that the buffer overflow frequency is asymptotically
less that a specified amount if and only if the sum of the effective bandwidths
for the different traffic sources is less than the bandwidth of the switch and we
suggest a simple approximation for these effective bandwidths.

11.1 LARGE DEVIATIONS

The analysis of the large deviation behaviour of a stochastic system can often
provide valuable insight to the system's evolution and control. The focus is on
the deterministic fluid model. One seeks to estimate the accuracy of the fluid
model and to understand the most likely way that the system might depart
from the fluid path. Largedeviation analysis is less refined than equilibrium or
heavy-traffic analysis, but it is attractive in its generality.

Largedeviation results havebeen used in numerous areas,including statistics,
physics, and simulation. The rich and beautiful theory is explained in books
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by Freidlin and Wentzell (1984), Bucklew (1990) and Dembo and Zeitouni
(1993). This section begins with a brief overview, that is intuitive and tutorial.
In Sections 11.2-4 we describe some applications under the headings of likely,
near-likely and unlikely paths. The final example describes the use of large
deviation theory in determining effective bandwidths for bursty traffic sources
which share a finitely buffered queue.

Intuitions A large Deviation Principle (LDP) is said to hold when for a family
of probabilitymeasures, fiv, indexed by V, and defined on the same probability
space, we have that for any event A

M,4)~Lexp -Kinf/(fl) . (1)
aeA

The parameter V, is some measure of system size: for example, the number of
particles in the system, the number of observations, or the size of the space in
which the system resides. The idea is that the probability of a rare event becomes
small as the system size increases. Whittle (1990a) uses the symbol ~L to mean
'is asymptotically logarithmically equal to', and this is shorthand for the
statement

- inf J(x) < lim -log fiv(A°) < Jim -\0gnv(A) ^ - inf/(x),

where the rate function, /(•), is called 'a good rate function' if {x:I(x) ^ a} is a
compact set for all a < oo. In this case we say that \iv obeys an LDP with good
rate function /(•), noticing that this requires separate statements for open and
closed sets, here taken as A° and A, the interior and closure of A, respectively.

As an example, suppose A is the event that the number of customers in a
stable M/M/l queue exceeds V during a busy period. The queue length can
take a variety of different paths on the way to reach V; some are more likely
than others. Intuitively, equation (1) says that if A occurs then it does so in the
most likely way. This can be illuminating, although often the required variational
problem is not easy to solve. In summary, the intuitions of large deviation
theory are that: The probability of a rare event decreases to zero exponentially
fast as systemsize increases andthisprobability canbeestimated bytheprobability
of themostlikely way theevent canoccur; given that it has occurred then it almost
certainly occurred in the most likely of unlikely ways.

The Gartner-Ellis theorem To understand large deviations theory, it is helpful
to realise that many of the key results can be derived, at least formally, from
the Gartner-Ellis theorem. Knowing this theorem, one can recall results and
search for new ones. The theorem makes a statement about the convergence
of a dependent sequence of random vectors, {ZUZ2,---} in Md. It holds under
the following assumptions.
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1. The asymptotic logarithmic moment generating function,

(f>(0) = lim n~l logE[exp(n0TZ„)],
n-*oo

existsfor all0,possibly as ± oo. The set {B\(p{B) < k] isclosedfor everyfinite k.
2. The origin is in the interior ofthe effective domain, defined asD^ = (0:<£(0) < oo}.
3. The derivative, <p'(6), exists in the interior of D^ and tends to infinity as 0

approaches the boundary ofD^.

Theorem 1 (Gartner-Ellis) Let P„ be the probability distribution of Z„. Under
the assumptions above, P„ satisfies an LDP with good rate function I(x) =
supo[0Tx-0(0)].

Remarks /(•) is in fact the Legendre transform of <p{-) and to remember its
formula one can recall the derivation of the Chernoff bound for Zne&lm. namely,
P(Z„ >x)^ info>o£exp(n0[Zn - x])= exp(- nsupo[0x - n_1 log£exp(n0Z„)]).
Notice that since /(•) is convex its Legendre transform is #(•) and thus /(•) and
0(-) are convex duals. From the Gartner-Ellis theorem we can recall some
standard results.

Example 1 Sums of i.i.d. random variables When Z„ is the average of i.i.d.
random variables, Zn = {Xl + - + Xn)/n, then tf>(0) = log£[exp(0Arl)] and the
large deviation result is known as Cramer's theorem. In the case ofunivariate
Gaussian N(ji, a2) random variables, I{x) = (x - fi)2/2a2. The observation I(x) > 0,
with equality only for x = n, exemplifies a fact that holds more generally.
P(Z„ >h + e) ~LexP( - ns2lla2) agrees with a direct calculation inthe Gaussian
case that log P(Zn >fi + e)=- ne2/2a2 - (l/2)log n+ 0(1). Notice themagnitudes
of the terms that are neglected in the large deviation approximation.

Example2 Empirical distributions Suppose {Xl,X2,...} are i.i.d. discrete
random variables, taking values au..., ad, with probabilities nlt...tndrespectively.
Let Z„ be the vector whose ith component is the fraction of the observations
XX,...,X„ that are equal to ar Then n{n) = Zn is the empirical distribution. It
follows that (f>(8) = log£i7rIexp(0I), andsoafter solving the optimization problem
posed by the Legendre transform we obtain the following version of Sanov's
theorem.

' P(fi(n)eA) ~Lexp ( - ninf £ P|log(pf/w,)). (2)
\ PeAi=l J

Example 3 Sample path averages Suppose x^t), x2(f), •.•,x„{t) are realisations
of n identically distributed, but possibly dependent, continuous-time Markov
processes in 0^. Let z„(t) = n~1Y.U1xi(t) be their average. We seek a large
deviation result for P(z„(t)eA), where A is a set of paths over [0, T].
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By seeking to estimate P(z„(t+ 5) —z„(t)«z(t)5\zn(t) = z) and letting ^Owe
are led to consider the derivative characteristic function (d.c.f.)

/i(z,0)=lim lim -£-[exp(n0T[z„(t + <5)-2„(O])-l|z„(O = z].
3-»0 n-*oo fj O

The work of Freidlin-Wentzell and Weiss, confirms the guess that the rate
function takes the form

and

7(z(-)) = sup 0Tz-h(z,8)dt
o

7>(z„e,4)~Lexp -n inf 7(z())
z(-)eA

The function h exists in the important case that the n Markov processes
evolve independently. For a Markov jump model defined on a finitestate space
{1,..., d),we canlet the ithcomponent ofx„{t) besimply an indicator variable
for the event that the process is in state i at time t. The ith component of z„(t)
is the proportion of the processes x1(-),...,x„(-) that are in state i, i.e., the
empirical distribution ofthestate. If theprocesses evolve in a dependent manner
the transition rate from state i to j might be allowed to depend on z and we
would denote this qu{z). The d.c.f. is h(z, 0) = Ei.jZ.goOOEexp^ ~ Qt) ~ llIf the
processes are independent, qu(z) = qtJ.

Example 4 Fluid approximations The fluid approximation for z(-) is the
deterministic path z00(-) that starts at z(0) and obeys the differential equation
z00 = a(z00), where a{z) = \ims^QE[z(t + S)-z{t)\z{t) = zl From it's definition
we have 7(z(-)) *t 0 and Jensen's inequality applied to the definition of h, shows
that OaizJ - h{zm, 0) ^ 0, and so I(z(-)) is minimised to 0 by z = z^.

For the Markov jumpmodel discussed in theprevious example, Weiss (1983)
considers the setofpathsA= {z(-): ||z - zw || ^ 6for some te[0, T]} and shows
that inf,ei4 J(x) ^ kfor some k, and thus P(zneA) ~L exp( - nk). This characterises
the fluid path as the most likely path.

Varadhan's theorem and tail estimates In Sections 11.3 and 11.4 we shall use
the following results. The first is known as Varadhan's theorem and is related
to the ideal of Laplace that Z,a,exp(-n^)/Z,-exp(-«ft) ~Lah where i is the
index for which ft is smallest. Theorem 3 estimates tail probabilities.

Theorem 2 (Varadhan's theorem) Let {Z„} be a sequence ofrandom variables
defined on a metric space X whose probability distributions satisfy a LDP with
good rate function /(•). Suppose g(-) is a real-valued continuous function on
X, satisfying a moment condition lim^^n-1 log£[exp(/i^(Z„))] < oo. Then
lmv.^ n~' log£[exp(/i0(Zn))] = sup^x) - 7(x)].
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Theorem 3 Suppose the same conditions as Theorem 2 hold, and supxg(x) > 0.
Define

a(g,I) = inf <a > 0:sup[#(x) —a *7(x)]^ 0

Thenfor any real £,

1 1 °°
lim -logsupn?P(n0(Z„)>T)= lim -log £ rfP{ng{Zn) > t) = -a(g,I).
t-*oo T "^1 t-»eo T n=l

Proof Suppose a<a0 = a(^,7). This implies supx[^(x) —a_17(x)] < —5 for
some S > 0. Then

£ h<P(w,(Z„)>tK £ n*£[exp{a(«0(Zn)-T)}]
n=l

= exp(—at) £ n* exp<nasup[g(x)—a *7(x)] + o(n) >.

The right-hand equality follows from an application of Theorem 2. The final
sum is finite, since Z"=1n*exp( —5n) < oo, and thus

lim T-1 log £ n*P(ng{Zn) > x) < - a.
n

Now weusethe largedeviationlowerbound to writeas an asymptoticin a,

1 1 7 TtTl|m -logsupn<P(n0(Z„)>T)Ss-!im Mog - P([T/yMZ[T/y])>T)

Ss - - inf 7(x).

Theright-hand side isat least - a ifthere exists a ysuch thata > (l/y)inf{x:fl(x)=y)7(x).
This occurs if a > a(g, I).

11.2 MOST LIKELY PATHS

Example 5 An analysis of the FFD bin packing algorithm Suppose n items of
sizes distributed independently and uniformly over the integers {1,2,...,./} are
to be packed into bins of size k. A method of packing, called first-fit decreasing
(FFD), is to imagine an infinite line of empty bins extending to the right. One
takes the items in non-decreasing order of size, scans bins from the left and
places each item into the first partially full or empty bin into which it will fit.
Suppose j = 6 and k= 13. If n is a multiple of 144 and there are exactly n/6
items of each size, we will have n/12 bins packed [6,6,1], n/12 bins packed
[5,5,3], n/18 bins packed [4,4,4,1], n/48 bins packed [3,3,3,3,1], n/144 bins
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packed [2,2,2,2,2,2,1] and n/48 bins packed [2,2,2,2,2,2]. Note that in the
last type of packing there is unused space of 1. We say that the wasted-space
in the partially full bins is w/48. By assuming n to be divisible by 144 the analysis
of FFD is particularly simple. If n had not been divisible by 144 there would
have been a few 'transition bins', not conforming to one of the 'repeating' types
given above, but the wasted space would have differed from n/48 by no more than
a constant. Definew„(n(n)) as the wasted space within partially full bins that is left
after applying FFD when n items' sizes have empirical distribution n{n). By an
analysis similar to the one illustrated above, wecan show |wn(n{n)) —n£(n{n))\ < C.
Here £ is independent of n and is computed by pretending that n has divisors
such that no transition bins are created (even if in fact they would be needed);
C is independent of n(n) and n. By Example 2, the empirical distribution is
asymptotically close to uniform. It follows that for £< 1/48, P(w(n{n)) < en)~L
exp(—n7(e)), where 7(e) can be found by solving the optimisation problem posed
in (2) for A= {p;X(p)^e}. For other values o(j,k, cases of linear or sublinear
growth in wasted space can be distinguished similarly. However, a finer analysis
is needed to distinguish the case in which theexpected wasted space is Q(n112).
Further discussion and more general cases are considered by Coffman et al
(1993).

Example 6 Copies of a MDP operating under a linked control Suppose as in
Example 3, that the ith component of x is 1 or 0 as an underlying Markov
decision process, defined on a statespace {1,..., d],isor isnot instate i. Suppose
that when at time s the underlying process is in state i, then action a is taken
with probability w?(s), at a cost of c% with transition to state; at rate <fiy Then
the cost, written c(x,m) = Z«.XC"*«>is lmear in x- Define

rr

c(x,u)ds, (3)C(X, U, t) =

where x,uareunderstood to beevaluated at t on theleft-hand side and at s within
the integral. If there are n copies of the process evolving independently, but
under thesame policy andfrom thesame initial state, then clearly E[C(xu u,«)] =
ElC(zn, u, t)], where again zn{t) is the average ofxx(t),..., x„(t). Since z„ remains
close to zmt we have £[C(z„,w,f)] ~C{zn,u,t). However, this result is trivial
since in fact, zoo(0 = Ex^t) and so the approximation is exact.

Things are more interesting if n copies of the process must be controlled in
a manner that introduces dependence. Whittle(1988), has studiedsuch a model,
in which in each of d states of a MDP there are two possible actions, called
'active' and 'passive.' As usual a cost is incurred and the state of the process
changes in a random fashion depending on the action taken. Consider for the
moment a single process, subject to a constraint that the active action must be
taken a proportion ft of the time; thesolution to the MDP will be to take this
action in a set ofstates Ju, (possibly randomising in one state in order to match
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the constraint exactly). If J^ is monotone non-decreasing in \i, this places a
natural priority ordering on the states.

Now suppose that ncopies of the process are to be controlled simultaneously,
with the constraint that the active action must be taken in exactly m = nfi
processes at each instant. Whittle suggested the reasonable heuristic of taking
the active action in precisely those m processes whose states are of highest
priority in the order determined above. Observe that under this policy the
evolutions of the processes are dependent. However, one hopes that as n increases
their evolutions will be nearly independent and that the time-average cost will
be the same as that obtained for a single process operating under the constraint
that the active action is to be taken a proportion n of the time.

A fluid model resolvesthe question and demonstrates that for some examples
the hope may not be realised. Suppose the fluid path, z(t) = a(z, u), converges
to an asymptotically stable equilibrium point z. Mitra and Weiss (1988) have
shown that for constants cuc2, the time-average value of \\z„(t)-z\\2 is less
thancl exp( —nc2). Essentially, this follows from the result quoted at theend of
Section 11.4. Hence the time-average cost differsfrom the cost at z by an amount
that tends to 0 as n->oo, and in this case the heuristic policy is asymptotically
optimal. However, surprisingly, itcan happen thatthe simultaneously controlled
MDPs have a fluid approximation that tends to a stable limit cycle. In this
case the time-average cost, per MDP, is asymptotically that of the fluid path
integrated around thelimit cycle, and this can be more than the cost obtained
by the solution of the constrained problem for a single MDP. See Weber and
Weiss (1990) for further details.

11.3 NEAR-LIKELY PATHS

Whittle (1990a) has given an intriguing elucidation of how a large deviation
estimate combined with a risk-sensitive cost function can pose an optimal
control problem whose solution is found along what one might call a 'near-likely'
path ofa stochastic process. The control problem satisfies astochastic maximum
principle and its solution is asymptotically optimal in a deterministic limit. It
is also exact in the setting of linear dynamics, exponential quadratic cost and
Gaussian noise (LEQG). The following exemplifies these ideas for the Markov
jump process, where things are particularly simple.

Example 7 Risk-sensitive control Let us take the objective function

G(x, u,t)= -- log £exp( - a c(x, u)ds \. (4)

Minimisation of G(x, u, t) fora > 0 suggests a degree of risk seeking, in that the
coefficient of - a2/2 in a Taylor's series expansion of G(x, u, t) is the variance
of the cost in (3). Similarly, minimising G(x, u, t) for a < 0 corresponds to risk
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aversion. This is the risk-sensitivity criterion that forms the basis of Whittle's
(1990b) development of optimal control in the setting LEQG. We shall assume
a completely observable state. One of the particularly nice features of (4) is that
costs that have already been incurred over an interval [t, tt) are irrelevant to
determining the optimal control over [tx, T~\.

As in example 6 we shall consider a Markov jump process, recall that
costs are linear and replicate n independent copies, all starting in state x, to
write

G(z„, u, t) =- £ G(xh u, t) = log £ exp(
n« =i an |_ \

an

PT

c(z„,u)ds (5)

Note that we are assuming that the action taken in each process does not
depend on the states of the other processes. At first, one might think that controls,
of'global' character could do better by introducing covariance between the costs
incurred by the n processes. However, a dynamic programming argument can
be used to show that this is not the case.

An estimate of (5) can be made using Varadhan's theorem; we multiply the
cost along each possible path by the large deviation estimate of the probability
of that path, and select the product which is greatest. This gives

G(z,u, t) = infsup
=(•) e(-) (..

In fact, n was arbitrary, so the o{n) term may be ignored. Setting X= 6/ol, the
problem becomes one of finding a control u to achieve

| c(z,u) +(l/a)[0Tz - h(z,u,0)]<fc I+o(n).

F(z,t) = infinfsup
«() s(-) A(-)

c(z, u) + XJz - a lh(z,u,Xa)ds . (6)

The above requires stationarity conditions to hold that can be summarised in
a maximum principle with Hamiltonian H(z,u,X) = —c(z,u) + a~1h(z,u,Xct).
The virtue of the maximum principle is that the determination of an optimal
policy is assisted by knowing that the optimal control mustmaximise H(z, u, X),
where the adjoint variables, X= - dF/dzh satisfy A= - dH/dzt, and that the
dynamics for the path are given by i = 577/dA,-.

Notice that a~1h{z,u,Xa) is the derivative characteristic function for the
average of a-1 independent processes. What we have done is to rewrite the
problem in a new way, in which the risk parameter a entersby way ofa change
to the dynamics of the path. As a->0 a~1h(z,u,Xa)^>XTa(z,u) and we recover
a maximum principle for an optimal control formulation of the deterministic
problem posed in the risk-neutral case. For the Markov jump process,

i.a L J J

and it turns out that the equation for X( is just the dynamic programming
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equation

-eXia =sup Xztf ac°ex,a - £q^Ae*'" - eXta) \.
dt « i,a Li J

Whittle's approach gives the same result, but makes no assumption about
linear costs or the form of the Markov process, only that the single process is
already close to being an average of n independent copies of some process, and
therefore that it deviates only slightly from its fluid limit. Effectively, this is the
same as supposing that the process of interest is z„, with d.c.f. nh(z, Q/ri). Taking
the initial cost criterion as (5) and applying Varadhan's theorem leads to the
risk-sensitive, stochastic maximum principle that is exact to within o{n). What
we have seen in this section is that the principle takes an exact form for Markov
jump processes, and in fact, whenever c(x,u) is linear in x.

Theorem 3 provides a further interpretation. If we take g(z) = n~ C{z, u,t) and
7(z, u) = supfl j0Tz - h(z, u, 0), then there exists z(-), «(•) such that - a{g, 7) ^ - a,
only ifn ^ F(z,t). Thus risk-seeking optimal control aligns with the problem of
satisfying lim^^ x~1 logS"= iPiw ~ nC(z„, u,t)>x)^-a for the largest value
of ju. Similarly, taking g(z) = C(z, u, t)- n, risk adverse optimal control aligns
with the problemofsatisfying lim^^ x~l log£"= lP(nC{zn, u, t)- n\L > x) < - a
forthesmallest possible fi. In thiscase, weare sayingthat forall n, theprobability
that C{z„, u, t) exceeds \i + x/n, is bounded as x-»• oo, by exp(- en). Again, greater
a corresponds to greater risk aversion.

11.4 UNLIKELY PATHS

In the final section we shall consider the use of large deviations in controlling
the probability of a rare event.

Example 8 Effective bandwidths in ATM In a communication network using
asynchronous transfer mode(ATM), data is packaged in cells of fixed size and
transmitted between switches of the network over high bandwidth links. Because
traffic sources are bursty there may be intervals of time over which cells arrive
at a switch faster than they can be switched to output links. However, each
switch has a buffer and so provided a switch does not attempt to carry too
manycalls the probability of buffer overflow and resulting cell losscan be kept
smaller than some prespecified limit.The question arises as to the numbers and
types of calls that can be so carried.

Suppose that a switch handles M classes of traffic, consisting of TV, traffic
sources of class i,i = 1,...,M. The bandwidth of the switch is the number of
cells that it can switch per second and is denoted by C. A number of authors
have described models in which a quality of service criterion is satisfied if and
only if

M

fw,e,<C. (7)
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Here, eh is called the effective bandwidth of a source in class i. Intuitively, the
burstycharacterofa sourcemeansthat its effective bandwidthshouldbe greater
than its averagerate. However, because at any momentsomesourceswill deliver
cells to the buffer at above their average rate and other sources will do so at
below their average rate, there is potential for statistical multiplexing. Thus et
need not be as great as the peak rate of source i.

Of course if effective bandwidths can be associated with bursty ATM sources
then problems of admission control and routeing in ATM networks resemble
those in circuit-switched networks. Subsequent research can focus on the
application of ideas from circuit-switched networks, (such as trunk reservation
and dynamic routeing).

Let Whave the steady-state distribution of the workload in a queue with an
infinite buffer. De Veciana and Walrand (1993) have given an excellent review
ofeffectivebandwidth results for models concerned with satisfying a constraint

lim -P(W>B)<-8. (8)
B-flatly B

In a related constraint P(W> B) is replaced in (8) by the steady-state prob
ability that the buffer exceeds level B during a busy period. These constraints
have led to similar effective bandwidth formulae in the work of Kelly (1991)
(for the M/G7/1 and D/G7/1 queue), Courcoubetis and Walrand (1991) (for
discrete-timeGaussian stationary sources), De Veciana et al (1993) and Gibbens
and Hunt (1991) (for sources whose rate is modulated by a continuous time
Markov process), Kesidis, et al (1994) (for general stationary sources) and
Courcoubetis and Weber (1995) (in an approximation to effective bandwidths
for general stationary sources).

Since the buffershould fill infrequently, the theory of large deviations is useful.
We shall adopt the quality of service constraint that there should be only a
small proportion of the time that the buffer is full. This form of constraint is
more obviously related to a practical quality of service requirement than is (8),
though indeed the same effective bandwidths are obtained. The following
theorem is based on the derivation of De Veciana and Walrand (1993); it's proof
is similar, though we have packaged the key ideas into Theorem 3.

Theorem 4 Consider a queue with afinite buffer of size B. Assume the number
ofcells arriving during epoch n is X„, where {X„} is a stationary ergodic process.
The service rate is C cells per epoch, with service taking place in such a way
that W„, the buffer content at the start of epoch n, follows the law W„ =
min{(**;_! + Xn_x - Q+,B}. Suppose EX„<C and

(f>(Q) = lim - log£ exp |
n-»oo n

b<$

[eZxl
exists and satisfies the conditions of the Gartner-Ellis theorem. Let L(B) be the



proportion of epochs during which buffer overflow occurs, defined as

\imP(Wn + Xn-C>B).

Then

lim -logL(B)< -0o<s>C^(£(0o)/0o.
fl-oo B

Remark This implies effective bandwidths. For if the single source imagined
in the statement of the theorem actually comprises N{ independent sources of
type i,each having asymptotic logarithmic generating function <£,•(•), i = 1,..., M,
then (p(0o)/0o = £,-7v*(0i(0o)/0o, an^ the effective bandwidth for a type i source
is identified as <f>i(d0)/90.

Proof We apply theorem 3, with Z„ taking the stationary distribution of
{Xt + —h X„)/n and letting g(x) = x - C. In this case 7(x) = supo[0x —0(0)]
and C3* <p(90)/90o90C 5* supx[0ox - 7(x)]o0o ^ inf,[7(x)/^(x)].

Suppose the buffer is in its stationary distribution at epoch —1. If the buffer
overflows during epoch —1 and was last empty at the start of epoch —n, we
must have X_„H hAr_1-nC^B. This must hold for some n. Hence
theorem 3 now applies to bound the right-hand side of the inequality L(B) <
Zn°=1P(X-„+- + X_1-nC>B).

On the other hand, consider n consecutive periods. By the stationarity of the
process, we have L(B) = £ (number of epochs of buffer overflow in n consecutive
epochs)/n. But the numerator is bounded below by the probability that there
is buffer overflow in at least one of nepochs and this is at least P(Xt H f- X„—
nC^ B). So we can apply theorem 3 to n~lP(Xl + ••• + Xn - nC^ B), i.e., with

For the performance constraint of L(B) < exp( —<5) we take 0O = 5/B to be
small when B is large. To find an approximation for (p{6)/9 let us make the
following assumption.

Assumption Suppose that 0(0) = \i9 + y82/2 + o{92) where

y=limivar( £x\
and that the stationary process {X„} has spectral density

00

f(co) = (l/n) Y, y(k)exp(ia)k).
fc= — 00

Suppose the infinite sum of the autocovariances is absolutely summable and /(•)
is continuous at 0. Then y = nf(0) = Z"= -ooVW' wnere 7 is called the index of
dispersion.
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This condition is plausible if there are no long-term autocorrelations. It is
satisfied by Gaussian stationary sources and other processes, such as the Markov
modulated fluid.

Assuming the assumption holds for each source type, Courcoubetis and Weber
(1993) derived an asymptotic for small 0O, equivalent to expanding (f>(90)/90 in
powers of0O. Doing this, the effective bandwidth ofa type isource can be written
<pi{5/B)/(8/B) = iii + dyi/2B + o{8/B), which suggests use of the approximate
effective bandwidth

«.-*+& <»
Courcoubetis and Walrand (1991) gave this formula for Gaussian sources, in
which case y,- is replaced by the variance, and the formula is exact, since the
o(8/B) term vanishes. The formula is appealing for a number of reasons.

On-line estimation The parameters /i{ and y,- can be estimated on-line. This
is attractive since it is unlikely that any theoretical model is rich enough to
adequately model all traffic classes.

Scaling The bandwidths scale correctly if the division of time into slots is
altered. For example,if the definitionofa slot doubles, then c,ptand y,- all double.

Filtering If a source is filtered before it enters the buffer it may become less
bursty. Can this help? If we apply a filter with transfer function T(-) and no
cells are lost then T(0) = 1. The mean of the output is still p., the index of
dispersion is n\T{0)\2f(0) = rc/(0) = T» an(i so tnere is no change in the effective
bandwidth due to smoothing. This is not surprising, since in large buffer
asymptotics we are already seeing a smoothing in the buffer and the effects of
filtering are masked. De Veciana and Walrand (1993) comment that if 7(0) =
G < 1, which happens if the source is thinned, then the bandwidth changes to
Gp + G25y/2B. Thus bandwidths can be reduced by thinning, but not by
smoothing.

Performance The bandwidths in (9) may be compared with other bandwidth
formulae, both by models and by simulation. For example, consider a source
whose rate is modulated by a two-state Markov process that alternates betweens
states 1 and 2, with holding times in these states that are exponentially distributed
with parameters Xt and p.-, respectively. The rate of the source is 0 or at as the
state is 1 or 2 respectively. Then (9) gives

e'-=7^+-^r^- do)
Xt + Hi J5(A, + //,)3

Taking s = S/B, e\ = <p(s)/(e) = {- [;.,+ fit - ate] + V[A, +^-a.e]2-MA^s}/
2s, which is given by Gibbens and Hunt (1991), and also implicit in the work
of De Veciana etal (1993). The difference between e{ and e\ is small. Consider,
for example, a model of a voice call source in which, counting time in seconds
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and bits in 1000's, wetake a = 30Kbps, X= 2,p. = 3,8 = 10. Abuffer of200ATM
cells, eachof 54bytes, of 8bits, is about B= 80. So for 8= 1/8, we find e = 17.40
and e1" = 17.47. For X= 3, p. = 2, e= 23.40 and <?* = 22.29. For X= 2.5, p= 2.5,
e = 20.63 and ef = 20.00. Note that B = 80 corresponds to buffering about 5
seconds of peak rate from a single source. On this basis a 100 Mbps switch
might carry 5700 voice calls of this model class. Courcoubetis et al (1994)
have made further study use of (9) and (10).
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