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Abstract. We consider a stochastic scheduling problem in which n jobs are to be scheduled on m identical 
processors which operate in parallel. The processing times of the jobs are not known in advance but they have 
known distributions with hazard rates Pl(t), ... ,Pn(t). It is desired to minimize the expected value of /\'(C), where 
Gi is the time at which job i is completed C = (Gl , ... , Gn ), and K(G) is increasing and concave in G. Suppose 
processor i first becomes available at time 'Ti. \Ve prove that if there is a single static list priority policy which is 
optimal for every 'T = ('Tl, ... ,'Tm), then the minimal expected cost must be increasing and concave in T". fvIoreover, 
if 1\,(G) is supermodular in C then this cost is also supermodular in 'T. This result is used to prove that processing 
jobs according to the static list priority order (1,2, ... , n) minimizes the expected value of EWih(Cd, when h(-) is 
a nondecreasing, concave function, WI 2:: ... 2:: Wn , and PI (tl )Wl 2:: ... 2:: Pn (tn)w n for all t1 J' •• , in. 
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1. Stochastic scheduling on parallel processors. Problems of stochastic scheduling on 

parallel processors are those in \vhich some number of jobs with unknown processing times are to be 

scheduled 011 identical processors v,rhich operate in parallel. The processing times of the jobs are not 

known in advance, but they are assurned to be independent and to have known distributions with 

hazard rates Pl(i), .. . , Pn(t), t 2: O. Each job can be processed by any of the available processors. 
\;Ye let Cl 

i be the time at which job i is completed. Obviously CI = (C1 , ... , en) is a randonl 

variable which depends upon the processing times and scheduling policy employed. The problenl 
is to schedule the processing of the jobs to Inininlize the expected value of a given function of the 

conlpletion times, the perfornlance measure, K,( C). \Vhile in general problem is clearly intractible, 

a number of results have been obtained for the case of exponential jobs, in which the processing 

times are exponentially distributed with parameters )'1,'" ,An' In this case, there are a number 

of important performance measures which can be optimized by using a static list priority policy. 

Glazebrook (1979) has shown that the expected value of the flowtinle, K( C) = ~Ci, is nlinirnized 

by the static list priority policy SEPT. This is the policy \vhich at every instant processes those 

uncompleted jobs of smallest expected remaining processing tilnes: meaning that if Al 2:: 2:: /\n 

then SEPT begins the processing of jobs according to the static list priority order 1,2, ,17" 

The policy which processes according to the reversed priority order n, . .. ,lis known as LEPT. 

This policy minimizes the expected value of the makespan, 1'\,( CI
) = max( Ci ) (Bruno, Downey and 

Frederickson (1981)). 

These results have been strengthed in a nunlber of ways. It has been shown that SEPT and 

LEPT are optimal in the class of preemptive policies, for flowtinle and makespan respectively, 

when jobs have processing tilnes which are icle!ltically distributed according to a distribution 
with rnonotime hazard rate, but jobs have already received diffcrent arnounts of processing prior 

to the start (see vVeber (1982)). Tvloreover, in S0I11C cases (including that of exponential jobs) 

these policies Ininilnize fiowtilne and lnakespan in distribution, as well as in expectation. \iVeiss 

and Pinedo (1980) showed that SEPT minimizes the expected value of the \veighted Hnwtillle 
K( Ct) = :EwiCi, in the case where exponential jobs have hazard rates A} 2: ... 2: An and agreeable 

weights: w} 2: ... 2: Wn. They also showed that SEPT minirnizes expected weighted fiowtilne 
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when the processors have different speeds 81 2:: ... 2:: 8 m . This is known as the case of uniform 
processorJ and in this case SEPT is defined as the policy which assigns the uncompleted job with 

k'th shortest remaining expected processing time to the k'th fastest processor, k = 1, ... ,1'n. These 

results have been greatly strengthed by I(ampke (1985) \vho has shown that, irrespective of how 

the Ai'S are ordered, the static list priority policy, \vhich always processes the uncompleted job 

of k'th smallest index on the k'th fastest processor, k = 1, ... ,m, minimizes expected fluwtilue if 

WI 2:: ... 2:: Wn and },1 WI 2:: ... 2:: },1 Wn· Let SI be this smallest index first static list priority policy. 

Clearly the definition of SI is \vithout loss of generality since SI can denote any static list priority 

policy by appropriate renurnbering of the jobs. The main contribution of the present paper is 

to generalize I(ampke's result to models in \vhich the jobs have processing times which are not 

exponentially distributed. In section 3 \ve show that 81 111inimizes the expected value of ~wihCi, 

provided h(c) is nondecreasing and concave in c, WI 2:: ... 2:: Wn and P1(t 1)W1 2:: ... 2:: Pn(tn)Wn 
for all t 1 , ... , tn' 

'rVe also discuss more general performance measures. Our discussion is motivated by other 

recent work of I(ampke (1987) who has studied cost functions of the follo\ving forn1. Suppose the 

jobs are completed in the order il, ... ,in at times Gil ~ ... ~ Gin and I = {I, ... ,n} denotes the 
set of indices of all n jobs. Let 

~(G) = g(I)Gil + g(I - {i 1 })(Gi2 - Gil) + g(I - {i l ,i2 })(Gi3 - Gi 2 ) 

+ ... + g(I - {i 1 , ... ,in-I})(Gin - G'i n _ l ). 

Then ~(G) may be interpreted as the total holding cost incurred, when a holding cost g(U) is 

charged for each unit of time that the set of uncompleted jobs is U. K( G) is said to be Markovian 

because the contribution to the cost arising froIll events after tiIlle t depends only on the set of jobs 

uncompleted at tillle t. The \veighted flowtime is a simple example of a Markovian cost function. 

It is the total holding cost incurred when a holding cost Wi is charged for each unit of time that 
job i is uncompleted. 

I(ampke considered cost functions that were of the above form and also nondecreasing and 

concave in C. The conditions that ~(G) be nondecreasing and concave in G are easily seen to be 
equivalent to 

(1) g(U)-g(U-{i}) 2::0, forallUandiEU, and 

(2) 9 (U) - 9 (U - {i}) - 9(U - {j} ) + 9(U - {i, j} 2:: 0, for all U and i, j E U, 

Statement (2) is the condition that gC) be a supermodular set function (see Lovasz (1983)). It is 
also equivalent to the staten1ent that K( c) be supermodular in c, in the sense that 

~(cV d) - K( c) _. K( d) + K( cAd) 2:: 0, for all c, d 2:: 0, 

\vhere the maxiluun1S and minimun1s of the vectors c and d are taken cOll1ponentwise and 

denoted cV d and cAd respectively. 

I(anlpke has den10nstrated that S1 minimizes the expected value of a nondecreasing, concave 

~/larkovian cost function, for exponential jobs on uniform processors, provided that for all i < j, 
all sets of uncompleted jobs U which contain i and j, and all t 1 , t 2 , one has g(U - {j}) 2:: g(U - {i}) 
and },i(g(U) - g(U - {i})) 2:: },j(g(U) - g(U - {j} )). It is an unresolved question \vhether this result 
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can be generalized to models in which jobs have processsing times which are not exponentially 
distributed. Of course we conjecture that sufficient conditions are simply that for all V, i,j E V, 
i < j, and t 1 ,t2 one should have g(V - {j}) <:: g(V - {i}) and Pi(t1)(g(V) - g(U - {i})) <:: 
Pj(t2)(g(V) - g(V - {j} )). But we have only been able to prove this conjecture for the special 
case mentioned above. 

However, we shall prove one new result about general cost functions. Suppose processors 
1, ... , m first become available at time '1,' .. , 'm respectively, and that for every I the policy SI 
minimizes the expected value of K( C). Then the minimal expected cost inherits any properties of 
being nondecreasing, concave and supermodular in I which are properties of K( C) as a function of 

C. This result is proved in section 2. It is used in section 3 to prove that SI minimizes the expected 
value of f;Wih( Ci) under the conditions mentioned above. Section 4 contains some discussion of 
these results. 

2. Concavity and supermodularity properties of the minimal cost. In this section \ye 
consider a stochastic scheduling problem on m identical parallel processors in which it is desired 
to minimize the expected value of a function of the completion times, K(C1 , ... , Cn)' In fact, we 
suppose there are a number of cost functions, K( C, n), parameterized by a real-valued vector n. 

Suppose that for every fixed n the same static list priority policy is optimal. For the moment we 
do not specify whether this policy is optimal within the class of preepmptive policies or within the 
class of nonpreemptive policies. In either case the theorem of this section will hold. Suppose that 

not all processors are necessarily available from the start. Processor i does not become available 
until time I; <:: O. Given a particular value of I, let K( I, n) be the minimal expected cost. Here, I 
is just another indexing parameter which it is convenient to denote separately from n. 

THEOREM 1. Suppose that the same static list priority policy is optimal for every (I, n), I <:: O. 
Then the minimal expected cost ]((1, n) inherits any properties of being non decreasing, concave, 
or supermodular in (I, n) which are properties of K(C, n) as a function of (C, n). 

Proof 'Without loss of generality we can suppose the optimal policy is 81. This is the policy 
which prioritises the jobs in increasing order of their indices. Whenever an opportunity arises 
to reassign jobs to processors 81 always assigns processing to those uncompleted jobs of smallest 
indices. We shall prove the inheritance of concavity first. The proof is by induction on n. It is 
trivial for n=O. Assuming the theorem is true when less than n jobs are uncompleted, the inductive 
step is established using the following identity. 

(3)	 [{(I,n):= min[E{I(1(('1 +Y,12, ... ,lm),ll +Y,n)}, 

E{I(l((ll' '2 +Y, ... , 1m), '2 +Y, n)}, ... ,E{I(l(h, '2,··" 'm +Y),lm +Y, a:)}]. 

Here Y is the processing time required by job 1. ](1 (I, Cj, n) denotes the minimal expected 

cost given that processors become available at times '1,' .. , ' m , that only jobs 2, ... ,n need be 
completed, and that the cost function which remains to be minimized is K(( Cj, C'2, ... ,C'n)n). 
This cost function is concave in (( Cj, C'z, ... ,C'n), n) and by hypothesis is minimi"ed by L for 
every value of the parameters (C1' n). Therefore, employing the inductive hypothesis, each of the 

m terms within expectations in (3) is concave in (I, n) for every fixed Y. 

Now consider the justification of identity (3). By hypothesis, it is optimal to assign job 1 to 
the first available processor. So, for example, if processor 1 is the first available, then the first 
term within the minimum in (3) is equal to J(( T, n). Moreover, no other term within the minimum 
is less than J((I,a:), for the value of the j'th term could be achieved by a realizable policy which 
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holds back the processing of job 1 until the j'th processor becolues free, but otherwise processes 

the jobs according to the priority order 2, ... ,n. It follo'ws that ]{(7,0:) is concave in (7,0:) for 

the result of taking expectations and then a minimum of concave functions is always a concave 

function. 

That K(7,0:) will be nondecreasing in (7,0:) if fC( C, 0:) is nondecreasing in (C, 0:) follo'ws trivially 

from (3). To establish that ]{(7,0:) inherits supermodularity, if this is a property of fC(C,o:), it is 

sufficient to show that K(( 7{, 72, ... , 7 m ), 0:) - ]{((71,72,' .. , 1m), 0:) is increasing in 72 for 7{ > 71. 

The proof is by induction on n, with the case n = 0 holding by the supermodularity of fC( C, a). 
To establish a step of the induction, assuming the result is true vvhen less than n jobs relnain to 

be completed, we must check a nunlber of cases. The explanation is simplified if we suppose 7 and 

all processing times take only integer values. The assuluption is 'without loss of generality, so let 

us assume 7{ == /1 + 1 and 7~ == 72 + 1. We need to check that 

(4) { !{(( /1 + 1,72 + 1, ... , / m), a) - !{(( 71, /2 + 1, ... , 7 m), 0:) } 

- {](((71 + 1,72, ... , 7 m ), a) - ]{((/1' 72,···, /m), o:)} ~ o. 

There are a number of cases to consider. Without loss of generality, let / m be one of the slllallest 

of 73, ... , 7 m' Let Y be the processing time of job 1. If / m :::; 71, /2 then job 1 can optimally be 

assigned to processor m and the left hand side of (4) is 

E [{ ]{( (71 + 1, /2 + 1, ... , 7 m +Y), / m + Y, a) 

- ]{(( 71, /2 + 1, , / m +Y), / m + Y, a) } 

- { ]{(( 71 + 1, /2, , / m +Y), 7 m + Y, a) 

- I{ (( /1, /2, ... , / m + Y), / m + }/', a) }] 

which is nonnegative by the inductive hypothesis. If /1 < / m and /1 + 1 :::; /2 then a similar 

expression holds with job 1 assigned to processor 1. If 72 < 7 m, /2 + 1 :::; 71 then a silnilar 

expression holds vvith job 1 assigned to processor 2. The relnaining case is /1 = /2 < /m' The left 
hand side of (4) is 

E [{ ]{(( 71 + 1 + Y, /1 + 1, ... , 7 m), /1 + 1 + Y, a) 

- I{ ( ( /1 + Y, 71 + 1, , 7 m), 71 + Y, 0: ) } 

- { ]{( (/1 + 1, 71 + Y, , 7 m), 71 + Y, a) 

- ]{ ( ( 71 + Y, /}, ... , / m), /1 + Y, 0:) }]. 

Ho\vever, the third term in the above, E[]{( (71 + 1,71 + Y, ... ,/m), 71 + Y, 0:)], is not more than 

E[]{( (71 + 1 +Y, /1, ... ,7m), 71 +1 +Y, a)] and nlaking this substitution vve deduce that the above 

in nonegative by using the inductive hypothesis. This completes the proof of the theorem. 0 

It is interesting to consider an intuitive explanation of theorem 1. Concavity of ]((7) III 

/1 is equivalent to the statement that ]{( /1 + 8, /2, ... ,7m) - ]{(71, /2, ... ,7m) decreases in /1· 

Supermodularity is equivalent to the statement that this increases in 72. \iVhen the cost function 

is the flo\vtime, :ECi , our intuition suggests 

]{ ( 71 + 8, 72, ... , / m) - ]{(71 , 72, ... , 7 m) 

= 8E[ number of jobs processed on processor 1 ] + 0(8). 
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Moreover, it is intuitive that as 7j increases, or 72 decreases, the expected number of jobs that are 
processed on processor 1 decreases. 

That this intuition is correct is part of the proof given by Weber, Varaiya and Walrand (1986) 
that nonpreemptive SEPT minimizes expected flowtime on parallel processors when the jobs have 
processing times which are stochastically ordered as Yj :Sst" . :Sst Yn . The more general result 
that is stated here can be used to simplify that proof. The application of the theorem which we 
shall use in the next section is (b) of the following corollary. 

COROLLARY 1. Let [((7) be the minimal cost achieved by the single static list priority policy 

which is optimal for all 7 2: O. Then 

(aJ K(7j, 72 + 1,73,' .. ,7m ) - [((72, 7j + 1,73, ... , 7 m) is nondecreasing in 7j and nonincresing 
in 72, and 

(b) if two random variables Yj , Y2 are stochastically ordered Yj :Sst Y2 , then E{ [((7j +Yj , 7I + 
1 + Y2 ,73,'" ,7m ) - [((7} + Y2 ,7j + 1 + Yj ,73,'" ,7m )} :S O. 

Proof. The expression in (a) is 

{[((7j, 72 + 1,73,· .. , 7 m ) - K( 7}, 72, 73, ... ,7m) } 

+ {!((72,71) T3" .. ,Tm) - ]{(72,71 + 1, T3" .. ,Tm) } 

The two bracketed terms are nondecreasing in 7j, by supermodularity and concavity respectively. 
Similarly, they are nonincreasing in 72' Part (b) follows from (a), by replacing 7I and 72 in (a) by 
7j + Y} and 7} + Y2 respectively and taking the expected value. 

3. Minimizing the expected value of a concave cost function. The following section 
IS concerned with establishing conditions under which the expected value of the cost function 
Ew;h(G;) is minimized by a static list priority policy. vVe assume that h(c) is nondecreasing 
and concave in c. Without loss of generality we also suppose h(O) = O. Suppose that we can 
establish conditions under which a single static list priority policy minimizes the expected value 
of the tnmcated weighted flowtime, Ew; min( G;, t), for all t. Then we can express h(c) as h(c) = 
E[min( c, T)] = Joe P(T 2: t) elt, where T is a random variable. It follows that the given static list 
priority policy minimizes the expected value of Ew;h( C,). 

V,,Ie adopt a discrete time formulation. vVhile the result can be proved in a continuous time 

setting (as in Weber (1982)), a discrete time exposition eliminates the need for a digression on 
continuous time dynamic programming. As in \Veber and Nash (1979), we suppose that time 
proceeds in discrete steps s = 0,1, .... Interval J is [s, s + 1) If job i has received X; intervals of 

processing it is said to be of age x;, and it will be completed at then end of its next interval of 
processing with probability p;(Xi)' The age of job i at time 0 may be nonzero if there has been 
some processing of job i prior to time O. If job i has been completed we denote this by setting 
Xi = 00. Holding cost Wi is charged at time s for each job i which is uncompleted at time 5. The 
truncated weighted flowtime is equivalent to the total holding cost incurred by time t. There are 
m(5) processors available at time 5, where m(5) is integer-valued and nondecreasing in s. When 
other parameters are fixed, the pair (x, 5) is a state variable for the problem. SI is the static list 

priority policy which processes jobs of smallest index first. 

THEOREM 2. Suppose that WI 2: ... 2: W n and PI (tIlwj 2: ... 2: p"(t,,)w,,, for all tl,···,t". 
Then SI minimizes the expected value of EWih(Gi), for any mC) and nondecreasing, concave 

function h(·). 
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Proof. By the conlnlents above, it is sufficient to prove the theorem for an arbitrary t and 

h(c) == min(c, t). We call this the problem with truncation after t intervals. The proof is by 
an induction on t and employs three hypotheses, HI,s, Hz,s and H3 ,s' We shall introduce these 
hypotheses shortly and see that each is clearly true when s = 1. Let Ht be the hypothesis that 

HI,s, Hz,s and H 3 ,s are true, for all m(.), n, Pl(·)"'" Pn('), and 1 ::; s ::; t. We shall shuvI that 
H t - 1 in1plies H t . The first hypothesis is, 

HI,1 is certainly true. The first step of the induction is to shuvv that HI,t follows from H t - I . 

Consider the processing of jobs during interval O. Let m == m(O). Consider SOlne candidate 

optimal policy, II, which processes a job j, j > m, during interval 0 but does not process a job 

i, 'where i ::; 1/t. During interval 0, II processes job j and some m - 1 other jobs. Let this set 

of other jobs be denoted U, and let II' be the policy w'hich process~s i and the jobs of U during 

interval 0 and which is optilnal thereafter. Clearly, since II it is a candidate optimal policy and 

\ve have assumed HI,t-l is true, II must be identical to SI from time 1 onward. This is because 

the scheduling problem that remains for the jobs uncompleted at time 1 has the san1e optin1al 

schedule as a second probleln \vith truncation after t -- 1 intervals. \Ve will sho\v that IT' is at least 

as good as II. 

Consider the states reached at tirne 1 after following II or II' and processing either U + {j} 
or U + {i} during the interval O. Each job in U has received one unit of processing, and job j or 

jobi has received on~ unit of processing, under II or II' respectively. Let the age of job h at time 

1 be X h for h #- i, j and let Xi == X i and X j = x j' The difference in the expected costs achieved 

by II and II' is clearly just the same as the difference \vhich \vould have been achieved if we had 

been in state X at time 0, with 1'n(O) altered to 1, and II and II' were the policies which in that 

starting circumstance processed jobs j and i respectively during interval 0 and behaved optimally 

thereafter. So suppose this scenario is indeed the case. We will show that starting at time 0 in 

state x, with m,(O) altered to 1, it is better to process job i for a single unit of time than to process 

job j. Let Gh(x, s) denote the expected cost attained when, starting in state x at tilne 5, with 

771 ( 5) altered to 1, we follo\v the policy IT h, \vhere this is defined as the policy which processes job 

h during interval s and proceeds optimally thereafter. Let Dij(X,S) == Gi(X,S)-Gj(x,s). Showing 

Dij(X,O) ~ 0 will confirm that II' (-which is IIi) is as good as II (which is II j ). Thus the inductive 

step for HI,t will be con1pleted when we have shown Hz, t, where 

HZ,t : Dij(x,O) ::; 0, \vhen truncation is after t intervals. 

We now derive a useful expression for Dij(x,O). Consider the processing vvhich takes place 

during interval O. Let k = m(l) + 1. The state reached at time 1 after elnploying IIi to schedule 

processing during intervals 0 and 1 will be the same as if no job \vere processed during interval 0, 

the jobs 1, ... , m(l) \vere processed during interval 1, and then either job i or job k is \vere given 

one extra unit of processing as job i is or is not still uncompleted respectively. Let .LX" denote the 

state reached after jobs 1, ... , rn(l) have received one unit of processing. We introduce a notational 

convention that when a quantity is superscripted with a job index it indicates that the quantity 

is to be evaluated assul11ing the job with that index is completed. For example, Gi(:D, s) is the 

expected total holding cost starting at time s in a state \vhere the job ages are given by x, but job 
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i is already complete. Let Pi = 1 - qi = Pi(Xi), by the above observations we have, conditional on 
X, 

Gi(X, 0) = -PiWi + Gi(X, 1) + ~wh1(Xh == (0) for i > rn(l), 

Gi(x, 0) = -PiWi + piGi(X, 1) + qiGi(X, 1) 

+ L;wh1(Xh == (0)	 for i ~ Tn ( 1) , 

(5) Dij(x, 0) = PjWj - PiWi + Dij(X, 1)	 for i,j > rn(l), 

(6) Dij(x, 0) == PjWj - PiWi +PiDij(X, 1) + qiDij(X, 1) for i ~ m (1) < j, 
(7)	 Dij(x,O) = PjWj - PiWi +PiqjDij(X, 1) 

+ qiPjD{k(X, 1) + qiqjDij(X, 1) for i, j ~ m( 1). 

We novv establish Dij(X, 0) ~ O. Notice that repeated applications of D ij = D ik + Dkj imply 
that it is sufficient to show D ij ~ 0 for the case in j == i + 1. So assume this is so. In the cases 

described in (5) and (6) the inductive step is easy, since k ~ j and PjWj - PiWi ~ 0 and \ve have 
assumed H t - 1 . In case (7) the argument is much more intricate. The key idea is to think of 

decreasing Wi to Wj while simultaneously increasing Pi in such a \vay that PiWi does not increase. 

Define Wi == Wj, and for each Xi define i\(Xi) == max{Pi(xi), <Pj} \vhere <Pj == sUPszo{Pj(s)}. 
Consider the new problem \vhich is obtained \vhen \ve decrease Wi to Wi and increase Pi (X i) to Pi( xJ 
in this fashion. We shall express this change of problem by saying "the parameters for i are altered 

towards j."Note that the definitions imply Wi 2:: Wi == Wj, and Pi(Xi)Wi ~ l\(xi)ui ~ Pj(Xj)Wj 
for all x i and x j. Since we are supposing that j == i + 1, this insures that the ne\v problem still 
has pararrleters \vhich satisfy the conditions in the statement of theorem 2. \Ve now introduce an 
inductive hypothesis which states that the terms D{k and Dij in on the right hand side of (7) do 

not decrease as the parameters for i are altered to\vards j. 

H 3 , t : Suppose j == i + 1 < k ~ m(l) + 1 and truncation is after t intervals. 

Then D{k(X,O) and Dij(X,O) do not decrease as the parameters 

for i are altered towards j. 

Assuming by H t - 1 that H 3 ,t-l is true, we first alter the parameters for i towards j in the ternlS 

Dfk(X,l) and D ij (X,l) in (7). The right hand side does not decrease and the signs of these 

two quantities are still nonpositive, by hypothesis H 2 ,t-l' Then as \ve alter the paralneters for i 

to·'Nards j \vith respect to the quantities Pi, qi and Wi, the right hand side does not decrease. At 

the end of these alterations the model has been changed to one in which jobs i and j have identical 

holding costs. Also, since Pi ~ <Pj, we have Pi(Xi) 2:: Pj(Xj) for all Xi and Xj' Following the 
alteration of parameters for i \ve write the left hand side in (7) as Dij(x, 0). Since we have shown 

that Dij(X, 0) ~ Dij(x, 0), the proof \vill be concluded by showing Dij(x, 0) ~ 0, and verifying the 

inductive step for H 3 ,t. 

Firstly, \ve check the inductive step for H3 ,t. This is straightforward. The check for Dij(x, 0) 
has already been carried out in our analysis of the fact that the right hand side of (7) does not 

decrease as the parameters for i are altered towards j, To check the staternent for Dik( T 10) \ve 

denote h == m( 1) + 2 and use 
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and ernploy H"3,t-l on the right hand side to show this is no more than I5~j(x, 0). TvIoreover, 
H 2 ,t and H 3 ,t hold trivially at the base of induction t = 1. Note that throughout the above We 

have assumed a fixed realization for X. The inductive steps are to be completed by taking an 

expectation over X. 

Finally, we use corollary 1 of the previous section to sho\v Dij(X, 0) :s; O. Recall that i, j :s; 1'n(l). 
80 we have 

Dij(X,O) = E[!«Yi , yOj + 1, T3, , T m ) - !«Yi + 1, Yj , T3, , T m )]., 

= E[!« 17 i' Yj + 1, T3, , T m ) - !«(Yj , Yi + 1, T3, , T m )], 

vVhere Y i and Yj are the remaining processing times of jobs i and j, and 73, ... , 7 m are such 

that 7n(s) == 2 + ~ 1(7i ~ s), S ~ 1. Clearly Yi ~st Yj since Pi(Xi) ~ Pj(Xj) fQr all Xi and Xj. 
lvIoreover since Yi and Yj are both at least 1, the !«(. )'s above are evaluated for a problem in which 

no processor is available for processing the remaining n - 2 jobs until time 1. Therefore H 1 ,t-l 

applies, and corollary l(b) can be envoked to deduce that the final term above is nonpositive. This 

completes the "proof of the theorem. 0 

4. Discussion. Our result is both stronger and "weaker than that \vhich has been obtained 
by I{alnpke for the minin1ization of expected vveighted fio\vtime with ~:xponential jobs. VIe have 

generalized that result to more general processing time distributions. ~vVe have also shown that 

the policy 81 minimizes the expected holding cost incurred by tilne t, for every t. 

I<:ampke's method of proof shows only that the total expected holding cost is n1inimized. 

However, it is interesting to note that his result for a general concave Markovian cost function 

does ilnply that 81 minimizes total expected discounted holding cost for discounting at rate a and 

exponential jobs. One need only think of adding an extra processor and job of index 0, which has 

a processing time exponentially distributed with parameter a, and alter the cost funciton to 9a, 

\vhere ga(U) = )'lg(U)/a for 0 E U, and ga(U) = 0 for 0 ~ U. This will ensure that job 0 has the 

highest priority and will always be processed from time 0 until it con1pletes. The total expected 

cost in the new problem \vill be just )'1/a tin1es the total expected discounted cost in the original 

problem. 

For the case of exponential jobs, I(ampke's proved that WI 2:: ... 2:: W n and }.1WI 2:: ... 2 
Anw n are sufficient conditions for 81 to minimize expected weighted flo\vtime. There is a sense 

in which these conditions are also necessary ones. For consider rn = 2, n = 3. Suppose WI is 

very much larger than W2 and W3, so it is definitely optimal to process job 1 from the start. Let 

the jobs have processing tilnes Y1 , Y2 , Y3 . Then it is optimal to start by processing jobs 1 and 

2 rather than jobs 1 and 3 provided w3E(min{Y1, Y2 }) :s; w2E(lnin{Y1, Y3 }). This is equivalent 

to AI(W2 - W3) + (A2W2 - A3w3) 2:: 0, and if this is to hold for all Al \ve will need W2 > W3 and 

A2W2 2:: A3 W 3. Similarly one can check that the conditions of theoreln 2 are necessary if 81 is to 

minimize the expected total holding cost incurred by time t for all T and t. 

Since rn(s) was an arbitrary nondecreasing function, theoreln 2 holds even if m(s) is a stochastic 

process nondecreasing in s. Notice that it was in order to check the inductive step for H 3 ,t that 

\ve needed rn(s) to be nondecreasing. H 3 ,t was a hypothesis concerning jobs i,j :s; 711,(1) which 

rect::ive processing during interval 1. To check an inductive step for H 3 ,t these jobs must continue 

to be processed from tin1e 1 until they are complete. The question relTlains open as to whether 

theorem 2 can be shown to hold for processors of differing speeds, s 1 2:: ... 2:: s n, as has been 

proved by I<:arnpke for the case of exponential jobs. The generalization vvould follo\v from the 

\vork in the previous section if \ve had been able to prove theoreln 2 for arbitrary Tn( s). One \vould 
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simply imagine that m( s) is a stochastic process, taking values that are independent from interval 

to interval, and equal to i with probability (Si - Si+1)/Sl' This would approximate a model with 
processors of different speeds as the discretization of time is made arbitrarily fine. Hovvever, it is 
not possible to relax the condition that m(s) be nondecreasing and the generalization of theorem 

2 to the case of two uniform processors will require some other analysis. 

We expect that theorem 2 can be generalized not only to uniform processors of different speeds, 

but to any concave Markovian cost function. The conditions of the theorem \vould be replaced by 

g(U - {j}) ~ g(U - {i}) and Pi(t 1 )(g(U) - g(U - {i})) ~ Pj(t2)(g(U) - g(U - {j})) for all i < j, all 

sets of uncompleted jobs U 'which contain both i and j, and all t 1 , t 2 . However, it appears difficult 

to prove this generalization by methods in this paper or those adopted by I{ampke. 

It should be interesting to investigate whether the results of section 2 have any parallels when 

one consider the minimization of the expected value of a convex function of the cornpletion times, 

such as the first time at \vhich all of m processors become free. A cost function which is convex 

and Markovian is also submodular in the completion times. However, the question is unresolved 

as to whether ]{(T) might inherit convexity and submodularity in T \vhen these are properties of 

K(C). 
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