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Abstract 

It is desired to minimize the expected cost of finding an object which moves 
back and forth between two locations according to an unobservable Markov 
process. When the object is in location i (i = 1,2) it resides there for a time 
which is exponentially distributed with parameter A1 and then moves to the 
other location. The location of the object is not known and at each instant until 
it is found exactly one of the two locations must be searched. Searching location 
i for time 8 costs c,i and conditional on the object being in location i there is a 
probability aiS + o(8) that this search will find it. The probability that the object 
starts in location 1 is known to be pi(0). The location to be searched at time t is 
to be chosen on the basis of the value of pi(t), the probability that the object is 
in location 1, given that it has not yet been discovered. We prove that there 
exists a threshold n such that the optimal policy may be described as: search 
location 1 if and only if the probability that the object is in location I is greater than 
1. Expressions for the threshold I are given in terms of the parameters of the 
model. 

MARKOV PROCESSES; OPTIMAL CONTROL; SEARCH PROBLEMS 

1. Introduction 

It is desired to minimize the expected cost of finding an object which moves 
back and forth between two locations according to an unobservable Markov 

process. When the object is in location i (i = 1,2) it resides there for a time 
which is exponentially distributed with parameter Ai and then moves to the other 
location. The location of the object is not known, and at each instant until it is 
found exactly one of the two locations must be searched. Searching location i for 
time 8 costs ci8 and conditional on the object being in location i there is a 

probability a8 + o (8) that this search will find it. The probability that the object 

Received 22 August 1984; revision received 30 July 1985. 
* Postal address: Engineering Department, Control and Management Systems Group, Mill Lane, 

Cambridge, CB2 1RX, UK. 
This research was conducted at the Department of Electrical Engineering and Computer Sciences 

and Electronics Research Laboratory, University of California, Berkeley and was supported by the 
Office of Naval Research Contract N00014-80-C-0507. 

708 



Optimal search for a randomly moving object 

starts in location 1 is known to be p,(0). The location to be searched at time t is 
to be chosen on the basis of the value of pl(t), the probability that the object is in 
location 1, given that it has not yet been discovered. 

The above is a continuous-time version of a problem posed by Ross (1983), 
Section 5.3, in discrete time. In the discrete-time formulation the location of the 
object follows a two-state Markov chain. Ross (1983) makes the intuitively 
reasonable conjecture that there exists a threshold n such that the optimal policy 
can be described as: search location 1 if and only if p,(t) is greater than n. He 
considers the problem of minimizing the expected time to find the object 
(cl = c2 = 1) and observes that it is not necessarily optimal to search the location 
where the immediate probability of finding the object is greatest. It may be 
advantageous to search the location where the object is less likely to be found in 
the short term, since upon not finding the object in this location one may obtain 
a better idea of where the object is likely to be thereafter. In other words, it is 
not necessarily optimal to search location 1 if and only if a,p1(t) exceeds a2p2(t). 

Ross's conjecture for the discrete-time formulation of the problem appears 
remarkably difficult to prove, but it is the result of this paper that the conjecture 
is true in the continuous-time formulation. The truth of the conjecture and 
expressions for the value of the threshold are stated in the following theorem. 
We assume that cl, c2, a1, a2, A1 and A2 are all positive. 

Theorem. An optimal policy can be described as: search location 1 if and 
only if the probability that the object is in location 1 exceeds HI. Define 

01 = [(A, + A2 + al)a2C1 - A2a1(c2 - Cl)]/[(Al + A2)ailC + A2al(c2 - Cl)], 

02 = [(Al + A2)a2C2 - A a2(C2 - c1)]/[(AI + A2 + a2)a1c2 + A202(C2 - Cl)], 

8, = [ - (l +4 ai - A2)+ {(Al + al - A2)2 + 4AIA2 12/2A , 

and 

2 = [- (A,- a2 - A2)+ {(A, - a2- A2)2 + 4AlA2}"2]/2A1. 

The threshold H can be written as H = /(1 + 0), where there are three distinct 
possibilities: 

(a) If 0, 681 then 0 = 01. 

(b) If 02 ' 62 then 0 = 02. 

(c) Otherwise 0 is the unique positive root of the cubic equation 

0 = [ala2A1c2 + (C2 - Cl)(a, + a2)A1]03 

+ [ca c2(A, + A2 + a2) + a1,a2AI(c + 2c2) + (c2 - c)(ai + a2)Al(A1 - 2A2)]2 

- [a2c(A, + A2 + a) + ala2A2(c2 + 2c) + (C2 - ci)(a, + a2)A2(A2 - 2A1)]0 

-a,a2A2cl + (c2- ci)(ai + a2)A2. 
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Figure 1. Three types of optimal trajectory 

It is helpful to see the trajectories of p1(t)lp2(t) for these three cases. Let u, (t) 
denote the effort applied to searching location i at time t, given that the object 
has not yet been found. The vector u(t) is constrained to lie in the set 
Q = {v: v > 0, vl + V2 = 1}. Figure 1 illustrates the three possible types of optimal 
trajectory for pl(t)/p2(t) and ul(t). The arrows indicate the direction of change of 

p,(t)/p2(t) with increasing t. 
The proof of the theorem proceeds as follows. In Section 2 we formulate a 

homogeneous variables description of the problem and show that it reduces to a 
deterministic optimal control problem. We state some standard results of 

optimal control theory as they apply to this problem. In Section 3 we use these 
results to demonstrate that the solution of the problem takes the form described 

by the theorem. 

2. Optimal control formulation 

As above, we shall let u,(t) and u2(t) denote the effort applied to searching 
locations 1 and 2 respectively at time t. The set of admissible policies is denoted 

by U and consists of all piecewise continuous functions u( ): [0, oo)- l. It is 

tempting to take p, as a state variable for the problem. However, this leads to 
non-linear dynamics of the form p = (a2u2- a UI)pp2 + (Alp - A2p2). Instead, 
we formulate a problem in two variables, xl(t) and x2(t), where xi(t) is the 

probability that at time t the object is in location i and has not yet been 
discovered. Then x(t) + x2(t) is the probability that at time t the object has not 

yet been discovered. The problem can be posed as one of determining the 
control u () which achieves the infimum in 

V(x) = inf V(x, u), uEU 
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where 

(1) V(x, u)= f {cIU(t)+ C2u2(t)}{IX(t)+ x2(t)}dt, x(O) = x, 

(2) ,(t) = A2x2(t)- A,x,(t)- a,Lu(t)Xl(t), 

(3) x2(t) = Alx(t) - A2X2(t)- a2u2(t)x2(t). 

The state dynamics given in (2) and (3) are derived straightforwardly. We shall 
write these as i(t) = a(x(t), u(t)) and let x(t) = 4((t, x(0), u), (O t < oo), denote 
the trajectory of the state when it starts at x (0) and the control u ( ) is employed. 
Of course we are particularly interested in the solution to the problem for a 

starting state x(O), such that xI(0)+ X2(0) = 1, but we shall solve the problem for 

any starting state x(0) 0. 
Note that in the statement of the problem, V(x, u) denotes the cost resulting 

from application of a fixed control policy u. We can therefore write 

V(x, u) = x, V((1,0), u ) + x2 V((0, 1), u ). 

This may be proved formally from (1)-(3), or one can note that it is immediate 
from the nature of the problem that the cost must be V((1,0), u) times the 

probability that the object starts in location 1, plus V((O, ),u) times the 

probability the object starts in location 2. Therefore 

V(x)= inf {x, V((1,0), u)+ x2V((O, 1), u)}. 

The following lemma is a consequence of V being the infimum of linear 
functions of x. 

Lemma 1. V(x) is concave in each of the variables x1 and x2. 

We now appeal to standard results of optimal control theory (as found in 

Varaiya (1972), Chapters 7 and 8) and state conditions which are necessary and 
sufficient for a policy to be optimal for the problem. 

Lemma 2. 

(a) Suppose that for a starting state x(0) the policy u(. )E U is optimal and 
the optimal trajectory is x(t) = (t, x(O), u). Then there exists a solution to the 

adjoint equations 

(4) l1(t) = alul(t)rl(t)+ Al1lq(t)- Alr/2(t)- clU(t)- C2u2(t) 

(5) r2(t) = a2u2(t)0q2(t)+ A2/2(t)- A2kl(t)- Cl Ul(t)- c22(t), 

such that u( ) satisfies the maximum principle: 

(6) 
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H(x, v, 71) is the Hamiltonian given by 

H(x, v, 17) = (c1v1 + c2v2)(xi + x2)+ 1(A2X2 - AIXi - alvixi) 
+ i72(A,xi - A2x2 - a22X2). 

(b) Conversely, suppose that for a starting state x (0) there exists policy u( ), 
trajectory x(t) = ((t, x(O), u), and function 1 ( ) satisfying (4), (5) and (6). Then 
u( ) is an optimal policy. 

Part (a) is Pontryagin's maximum principle (here applied as a minimum 
principle). It presents a condition which must be satisfied if a policy u( ) is 
optimal. In general, satisfaction of this condition guarantees only local optimal- 
ity. However, in the problem considered here, the cost is the integral of a linear 
function of x, namely (clul + c2u2)(x1 + x2), and the dynamics, xi = al(x, u) and 
x2 = a2(x, u), are also linear in x. In this special case the existence of a solution to 
(4), (5) and (6) is sufficient to guarantee that a policy is globally optimal. This is 
the claim made in part (b). 

Let the difference between the terms which multiply vi and v2 in the definition 
of H(x, v, 17) be denoted by 

A(x, n7) = (Cl - C2)(xI + X2)+ (a2X272- aIxli71). 

It follows from the maximum principle (6) that (as a function of x and '1) the 

optimal control must be 

((1,0) 
u(x, r) = (0) as A(x, ) 0. 

(0,1) 

If A = 0 then the maximum principle is insufficient to determine the optimal 
control. 

3. Analysis of the optimal policy 

We begin by investigating the relationship between x(t) and the adjoint 
variables 11(t) and 1'2(t). It is a fact which is established in the proof of 

Pontryagin's maximum principle that 7q1(t)xl + 12(t)x2 is a tangent hyperplane to 

V(x) at the point x = x(t). Since time does not enter the objective function or 
dynamics explicitly, q(. ) may be viewed as a function of state rather than of 
time. With a slight abuse of notation we can write 1 (x) to mean 1q(t), evaluated 
at t = 0 when the starting state is x(0) = x. Moreover, since V(x) and H(x, v, 1q) 
are homogeneous in x, the value of 7 (x) depends only on the ratio of xl to x2. 

Remark. Much of the following discussion will be in terms of the ratio x1/x2. 
We suppose, without loss of generality, that the starting state is always such that 
x2(0) #0. This ensures that the denominator of xl(t)/x2(t) is never 0. 
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Figure 2. Geometric interpretation of 12(x,, 1) 

We fix x2 = 1 and observe by the discussion of the previous paragraph that, as 
a function of z, the line 71(xi, 1)z + r/2(X1, 1) is tangent to the function V(z, 1) at 
the point z = xl. We can think of 7R2(xl, 1) as being the intercept of the line 
771(xi, l)z + 712(X1, 1) at z = 0. This is depicted in Figure 2. 

We know by Lemma 1 that V(z,1) is concave in z. So it follows from 
consideration of Figure 2 that q2(xI, 1) is non-decreasing in xl. Equivalently, 
172(XI, x2) is non-decreasing in the value of x,/x2. A similar consideration applies 
to 7l(xi, x2) and therefore the following lemma is proved. 

Lemma 3. Considered as functions of x, the adjoint variables qr,(x) and 
z7:(x) are respectively non-increasing and non-decreasing in the value of x1/x2. 

We now prove a useful fact concerning the time derivative of A(t). 

Lemma 4. The sign of. A(t) is positive or negative as x1(t)/x2(t) is respec- 
tively greater or less than some 0*. 

Proof. Differentiating A with respect to time along the optimal trajectory 
gives 

= (C1 - C2)(X1 + i2) + (a2X2t1 - a(lXi172) + ((a2X2r2 - alX1l). 

Substituting for xi and i2 from (2) and (3) and for 71 and 72 from (4) and (5), we 
obtain 

A = - (c1 - c2)(alu1xI + a2u2X2) + a2r2(AIx1 - A2x2 - a2u2X2) 

- aii7l(A2x2 - A,x1 - a,uIXI)- (c2X2- a,x1)(cIu1 + c2u2) 

+ a2X2(a2u2172 + A2712 - A271)- aixi(aiur17 + AI11 - A172) 

= (c2atX - c1a2X2)+ (a1 +- a2)(AiXlI72 - A2X2i7r). 

The lemma follows from the final expression above and Lemma 3. 

Lemma 4 implies that there is at most one ratio xl(t)/x2(t)= 6* for which 
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A(t) = 0. An immediate consequence of this observation is that it is impossible 
for an optimal policy to have both ui(t) and u2(t) non-zero over some interval of 

time I = [t,, t2), unless x1(t)/x2(t) is constant during the interval I. The reason for 

this is that if u,(t) and u2(t) are both non-zero for t E I then we must have 

A(t) =0 for t E I, and so A(t)=0 for t E I. By Lemma 4 this implies that 

xi(t)l/x(t) is constant for t E. Therefore, except at possibly some isolated 
values of x1/x2, it is strictly optimal to take u(t) equal to either (1, 0) or (0, 1). 

We now derive an expression for the cost attained by a constant control 

u(t) = u = (u,, u2), (0 t < oo). Multiplying (2) and (3) by (A, + A2 + a2u2) and 

(A, + A2 + a Iu) respectively and adding the results we obtain 

(Al + A2 + at22)x + (A1+ + A2 + a+uI)x2 = -(alA2u+ + 2Aiu2 + aa2uu2)(x + x2). 

Hence by integration we have 

(7) V(, u) = (A1 + A2 + a2u2)xl + (A + A2 + alUl)x2 (Cl U + 2U2). 
' a12U1 + -a2AU2+ ati Ca2UiU2 

Let u'(t)= u = (1,0) be the policy of searching location 1 for ever, and let 

u2(t)= u2= (0,1) be the policy of searching location 2 for ever, (O ' t < oo). Let 

81 be the unique number such that if x,(O)/x2(0)= 81 and the control u' is 

employed then xI(t)/x2(t) equals 8, for all t > 0. This definition implies that if 

x1(0)/x2(0) is greater than 81 and u' is employed then xI(t)/x2(t) is greater than 81 
for all t > 0. The number 81 is found from 

81 = Xl/X2 = Xl/X2 = (A2X2-- a1xI - AlXI)/(AIXI - A2X2). 

This gives a quadratic equation in xIlx2 whose positive root is the number 81 
which was defined in the statement of the theorem. We examine the possibility 
that u' is optimal by solving (4) and (5) with 7(t) =0 and u = u'. This gives 

(8) r7(t) = (Al + A2)c,/alA2, and /2(t) = (AI + A2 + al)cl/a1A2. 

With these values for the adjoint variables, some simple algebra shows that u' 

satisfies (6) provided xi/x2 _ 8, where 01 is the number defined in the statement 

of the theorem. It therefore follows from Part (b) of Lemma 2 that u' is optimal 
if x1(0)/x2(0)_ 61 and 81 _ 08. This is the situation in Case (a) of the theorem. 

To complete the analysis of Case (a) of the theorem we must show that in this 

case it is optimal to search location 2 for all x1/x2 less than 01. To do this we 

consider the possibility that for some 0o< 01 it might be optimal to search 

location 1 for xI/X2 just less than 80 and to search location 2 for xi/X2 just greater 
than 80. If this is the case then Lemma 3 implies A(0) = 0 and A(0)> 0 for x(0) 
such that xl(O)/x2(0)= 00. Since by hypothesis xl(t)/x2(t) is strictly increasing 
with time along the trajectory starting at x (0), A(t) must continue to be positive 

along this trajectory and therefore A(t) must be strictly positive when after some 
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time t we have x,(t)/x2(t)= 01. This contradicts the hypothesis that it is optimal 
to search location 1 for xi(t)/x2(t)= 01, since this requires A(t) 0. This 
concludes the argument which establishes a possible solution of the form (a) in 
the theorem. Case (b) is similar, with 82 and 82 defined in an analogous fashion. 

Case (c) may occur if there is a ratio 03 = XI/xz which it would be optimal to 
maintain by sharing search effort between locations 1 and 2. For this to be 
possible 03 must lie between 81 and 82 so that searching locations 1 and 2 will 
cause the value of xI/x2 to decrease and increase respectively. Suppose that when 
the ratio xI(O)/x2(0) is 63 it is optimal to share effort using a constant control 
u(t)= u = (u,, u2). We derive two relationships between u and 03. Firstly, 
x\(t)lx2(t) must have the constant value 03 along the trajectory x(t)= 

(t, u, x(0)). So 

03 = Xl/X2 = Xl/X2 = (A2x2 - AlX1 - aiU1Xl)/(A1X1 - A2X2 - a2U2X2). 

Secondly, A(t) must be 0 for all t. Calculating 7r,(t) and rq2(t) from (4) and (5) 
with r(t) = 0, this requirement is that for xi/x2 = 03, 

0 = (C - C)(X1 + x2)- (A1 + A2+ a2u2)at11- (AI + A2+ alu)a2X2 (cl + c22) acIA2u1 + a2AlU2+ al a2u U2 

Straightforward but tedious algebra eliminates ul, u2 from the two equations 
above and results in the requirement that xl/x2 = 03 be a root of the cubic 

equation displayed in statement (c) of the theorem. One can check by examining 
the signs of this cubic and its derivatives at 0 = 0 that it has at most one positive 
root. Alternatively, one can argue that if there were more than one value of xl/x2 
at which sharing were optimal then there would be at least two values of xI/x2 
such that A = 0. But this contradicts Lemma 4. 

Consider finally the possibility that there might be a value x1/x2 = 0o such that 
it is optimal to search location 1 and cause XI/X2 to decrease when x1/x2 is just 
less than 00 and it is optimal to search location 2 and cause xI/x2 to increase when 
x1/x2 is just greater than 80. In this case, it cannot be optimal to employ u' in all 
states x such that x1x2 < o0. For if this is so then V(x) can be found from (7) 
and V(x) is seen to be differentiable. Since V(x) is differentiable 7 (t) is equal to 
VV(x) evaluated at x(t). Calculation of VV(x) shows that i71(t) and r12(t) are 

given by (8). If this is a solution to (4), (5) and (6) for all initial states such that 
x1(0)/x2(0) < 0o then it is also a solution for initial states such that xl(0)/x2(0) >- 0, 
and hence u1 is optimal for all initial states, in contradiction to the assumptions. 
Similarly, it cannot be optimal to employ u2 in all states x such that x1/x2> 0o. 
Thus the case under consideration must have at least three switching points. One 
of these is where xI/x2 = Oo. Two others must lie at values of xi/x2 which are 
greater and less than 80 and must be such that an optimal trajectory starting at an 
x with either of these values of xi/X2 would maintain that constant ratio of xi to 
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X2. However, it was noted in the previous paragraph that there is at most one 

value of xi/x2 which would be maintained as constant by an optimal policy. Thus 

the case envisaged in this paragraph does not arise. This completes the analysis 
of possible trajectories and establishes that an optimal policy is one of the three 

types described in the theorem. 

4. Concluding remarks 

The analysis of the discrete-time version of the problem appears to be more 

difficult than that of the continuous-time version, but we have found no reason to 

believe the conjecture is not true. Some of the analysis in this paper can be 

carried through to a discrete-time model. By demonstrating that a particular 
cubic equation has at most one positive root it can be shown that there is at most 

one value of p,(t) which an optimal policy would maintain as constant by sharing 
search effort between the two locations. It can also be shown that there exist 

numbers 81 and 01 (defined in terms of parameters in the discrete-time 

formulation) such that if 081 8, then it is optimal to search location 1 for 

pI(t)/p2 , 1. However, we have not been able to prove a result analogous to 

Lemma 4 or take the analysis of the discrete-time model further. 

The continuous-time model may be generalized to one in which the object 
moves amongst n >2 locations. We conjecture that there exist numbers 

rl , *2,' ', Tn (which depend upon the parameters of the problem) such that an 

optimal policy can be described as: search a location i for which iripi (t) _ 7rjpj (t), 
all ji i. 

Our model assumed that some location is to be searched at every instant. 

Suppose we widen the class of admissible policies to those which sometimes 

search neither location but do find the object in finite expected time. Then there 

may be some values of pi/p2 for which it is optimal to search neither location. At 

these values it is optimal to wait until the value of pl/p2 becomes more attractive. 

We conjecture that within this class of policies the problem can be treated by 
similar methods to those in this paper and that there exist thresholds II, and 12 

with 0 - II, I12 - 1 such that an optimal policy is the form: search locations 1 or 

2 or do not search either location as p,(t) is in the interval [2, 1], [0, II] or 

(nR, I12) respectively. For other examples of the use of optimal control theory in 

stochastic dynamic optimization problems see Nash and Gittins (1977) and 

Weber (1982). 
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