
NOTES 

Therefore, if A andB are the two least valuable items, then bA* + bZ < M where bA* 
and b* are the winning bids on items A and B. In this case any bidder can obtain 
greater profits by bidding bA* + E on A, b* + E on B, and 0 on all other items. This 
contradicts the Nash assumption, so the theorem is proved. Q.E.D.8 

8The author gratefully acknowledges helpful comments on earier drafts by Kim Border, Ronald Braeuti- 
gam, Robert Forsythe and Roger Noll. 
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ON THE MARGINAL BENEFIT OF ADDING SERVERS 
TO G/GI/m QUEUESt 

RICHARD R. WEBERt 

The mean queueing time in a G/GI/m queue is shown to be a nonincreasing and convex 
function of the number of servers, m. This means that the marginal decrease in mean queueing 
time brought about by the addition of two extra servers is always less than twice the decrease 
brought about by the addition of one extra server. As a consequence, a method of marginal 
analysis is optimal for allocating a number of servers amongst several service facilities so as to 
minimize the sum of the mean queueing times at the facilities. 
(QUEUES; MULTISERVER; DESIGN OF QUEUES) 
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1. Marginal Allocation 

As in a paper by Rolfe [3], we consider a service system made up of N facilities. 
Each facility behaves like a G/GI/m queue; it consists of a number of servers which 
operate in parallel and serve customers in the order of their arrival. The arrival and 
queueing processes at the N facilities are independent. Customers arriving at the ith 
facility have independent and identically distributed interarrival times with mean 1 /Xi. 
Their service times are independent and identically distributed with mean l/yi. A 
customer's "queueing time" is the time it has to wait before beginning service, and a 
facility's "mean queueing time" is defined as the expected steady-state (stationary) 
queueing time at the facility. We suppose that each facility has enough servers to 
ensure that the mean queueing time there is finite. 

Additional servers are to be allocated amongst the facilities so as to minimize the 
sum of the mean queueing times at the N facilities. We show that the optimal 
allocation can be achieved by using an algorithm of "marginal allocation." This 
algorithm constructs the optimal allocations of 1,2, . . ., M additional servers one by 
one. The optimal allocation of M servers is obtained by optimally allocating M - 1 
servers and then allocating the Mth server to that facility where its addition produces 
the greatest decrease in mean queueing time. Suppose that after optimally allocating 
M - 1 servers the number of servers at facility i is mi (i = 1, .I. , N). Let Wm, denote 
the mean queueing time at facility i. The method of marginal allocation is to allocate 
the Mth server to a facilityj such that 

W! - W += max f Wm, - ' mV +1 

In some cases the quantities Wm, can be calculated from an explicit formula; in other 
cases they can be estimated by simulation. If the marginal allocation algorithm were 
not optimal then it would be necessary to calculate or estimate as many as NM such 
quantities to find the optimal allocation. But because marginal allocation is optimal, 
only N + M - 1 such evaluations must be carried out. 

It is easy to show (see Fox [2]) that the marginal allocation algorithm is optimal if 
the mean queueing time at each facility is a nonincreasing and convex function of the 
number of servers at the facility. Suppose we drop the reference to a particular facility. 
The statement that a facility's mean queueing time is a nonincreasing and convex 
function of the number of servers is the statement that for all m such that Wm is finite, 

Wm- Wm+ I > Wm+ I Wm+2 >O (1) 

Rolfe proved (1) for a facility that behaves like a M/D/m queue by direct calculation 
with an explicit formula for Wm. He was unable to carry out a similar calculation for 
any other queue, but conjectured that (1) should hold for interarrival distributions 
other than exponential, and for generally distributed service times. Dyer and Proll [1] 
subsequently proved Rolfe's conjecture for a facility that behaves like a M/M/m 
queue. The following theorem establishes Rolfe's conjecture for any arrival process 
and any independent, identically distributed service times. It thereby verifies the 
general applicability of marginal analysis to the allocation problem. 

2. Convexity of the Mean Queueing Time 

THEOREM. The mean queueing time in a G/ GI/ m queue is a nonincreasing and 
convex function of m. 
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PROOF. We shall prove the theorem in discrete time. It is merely a technicality to 
deduce the theorem in continuous time by approximating continuous distributions by 
appropriate discrete ones (Weber [5] gives an example of the sort of argument 
required). So without loss of generality we assume that the service and interarrival 
times take only integer values. Consider the first k customers to arrive. The theorem is 
proved by using induction on k to show that the total expected queueing time of these 
k customers is a nonincreasing and convex function of m. It follows that the k 
customers' average expected queueing time is also a nonincreasing and convex 
function of m. Provided that the queue is nonsaturating, the number of customers at 
the facility will return to zero infinitely often. The returns to zero are regeneration 
times, and standard results for regenerative processes (see Ross [4]) ensure that as k 
tends to infinity the limit of the k customers' average expected queueing time equals 
the mean (expected steady-state) queueing time. 

As it happens, the proof does not depend on the nature of the arrival process. The 
customer interarrival times need be neither independent nor identically distributed. 
For convenience in notation and exposition we begin by assuming that the system 
initially contains exactly k customers, which are as yet unserviced, and that no 
additional customers arrive after the start. Later we shall see that we might as well 
have permitted some customers to arrive after the start. 

Suppose that the service times of the k customers are given by the independent, 
identically distributed and integer-valued random variables Y1, .. ., Yk. As the system 
evolves in time we denote its state by (X1, . . . , Xn; n). The random variable Xi is the 
remaining service time of the customer currently assigned to the ith server, and n is the 
total number of customers in the system. Starting from this state, and conditional on 
XI, . . ., XX taking the values xl, . . ., xm, we denote the expected value of the total 
remaining queueing time by Wm (x , ... , xn; n). 

Now let xl, ... , xn be any nonnegative integers (which we shall permit to be 
arbitrarily large, even if the Yi's are bounded). We shall show that for all nonnegative 
integers, x', .x . , xm, with xl > xl, x2 > x2, and m > 0, 

Wm+2(Xl x2,X.. ., Xm+2 ; n) - Wm+2(XI, x2,I , Xm+2 ; n) > 0 (2) 

and 

{ Wm+2(Xl,x2, ... , Xm+p2; n) - Wm+2(xl, x2, xm+2; n)} (3) 

{Wm+2(X,X2, X* *Xm+2;n)- Wm+2(XI,X2.... I Xm+2;fn)} > 0. 

Suppose for the moment that (2) and (3) are true and k > m + 2. Let Yi = 0 for i > k. 
From (2) we can deduce that 

Wm+2(Xl I Yi I ..., ym+1; k + 1)- Wm+2(xI I YI,..., Ym+ 1; k + 1) > O. (4) 

Note that if k < m + 2 then (4) is equal to 0, since there are then no customers waiting 
for sevice. We now let xl ox and xl -0 in (4) to get 

"lMx Wm + 2(X'l I Yl I YM + l; k + I )- limO WM+2(Xl X YI y Ym + l; k + I ) 
xj -* oo x1-*O (5) 

= Wm+I(YI, ... , Ym+I; k)-Ey[W+2[ Wm+2(AY,* , Ym+2; k)]. 

When the system has m servers we denote the expected total queueing time of the first 
k customers by Wm (k). Taking an expectation over Y1, . . ., Ym+I in (5) we conclude 
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that 

Wm+I(k) - Wm+2(k) > 0. (6) 

This shows that Wm is nonincreasing in m. Similarly we can put (Y,, ..., Ym) in place 
of (X3 , .. . , Xm + 2) in (3), put n = k + 2, and then let xl , x - oo and x 1, x2 - O to 
deduce that 

{ Wm(k) - Wm+i(k)}-{ Wm+ I(k) - Wm+2(k)} > 0. (7) 

This shows that Wm is convex in m. 
It is helpful to think of xl, xl, x2 and x2 as lengths of time for which servers l and 2 

are prevented or "blocked" from serving customers in the queue, because of the 
customers they are currently serving. Rather than directly compute the differences in 
queueing times amongst queues with m, m + 1 or m + 2 servers, we have considered 
queues that have m servers for a certain length of time, and then m + 1 or m + 2 
servers at later times, as queues 1 or 2 become unblocked. By letting the lengths of the 
blocked times tend to 0 or ox, queues with different numbers of servers are compared. 

It only remains to prove statements (2) and (3). The proof is by induction on n, and 
will be sufficiently illustrated by carrying it through for the case in which m = 1 (3 
servers). In this case (2) and (3) are clearly true for n < 4, since there is at most one 
customer waiting in the queue. Assuming that (2) and (3) are true for 1, . . . , n - 1, we 
shall show that they are true for n, where n > 4. Consider a state (xl , X2, X3; n), and let 
x = min(x I, x2, x3) be the time until the next customer in the queue begins service. 
Suppose that the service times of the next two customers to begin service are given by 
the random variables Y' and Y". Notice that it is sufficient to prove (2) and (3) for 

xl= xl + 1 and x2 = x2 + 1. This is because for any xl > xl and x2 > x2 we can write 
(2) and (3) as (8) and (9) respectively. 

xl-I 

W { -3(i + 1, X2, X3 ;n) - W3(i, X2, X3 ;n)} > 0 (8) 

x'-I - x'-I 

2 2, { WA(i + 19i,j+ 1,X3;n) -W3(i,j + 1,x3;n)} 
j=X2 i=X1 

{Wm+ 3( + 1, ,x3; n)- Wm>+ A, j,X3; n)) 0. (9) 
i=xl 

We therefore suppose that xl = xl + 1 and x2 = x2 + 1. The expectation operators that 
appear below are with respect to Y' and Y". There are essentially three cases to 
consider, depending on whether x is the time until there is a customer service 
completion (i) in queue 3, (ii) in just one of queues 1 or 2, or (iii) in both queues 1 and 
2 (but not in 3). 

(i) X = X3. In this case (2) and (3) become (10) and (11) respectively. 

E{ X3 + WX3(X, X2 X3 + Y'; n - 1)}- X3 + WX3(x, X2, X3 + Y';n - 1)}]. (10) 

E[{x3 + W'3(xIIX2,X3 + Y';n- 1)} - {X3 + W3(X1,X2,X3 + Y';n- 1)}] 

-f{x3 + WJV3(,X2,x3 + Y';n-1)}-{X3 + WJX3(xIX2,X3 + Y';n- 1))]]. (11) 
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By applying the inductive hypotheses that (2) and (3) are true for n - 1, (10) and (11) 
are nonnegative, and the inductive step is established for this case. 

(ii) x = xI < x2,x3, or x = x2 < xl,x3. Suppose x = xl < x2. In this case (2) and (3) 
become (12) and (13) respectively. 

E[{x+ W3(x+Y, X2, X3; n -1)}-{ x + W3(x + Y', x2,x3;n-1)}]. (12) 

E[[fx' + W3(x, + Y',xI,x3;n- 1)}-{x + / + Y'x2,x3;n/ 

f{xl + W3(xl + Y,x2,x3;n-1)}-{x, + W3(x + Y',x, x3;n-1)}]] (13) 

By applying the inductive hypotheses that (2) and (3) are true for n - 1, (12) and (13) 
are nonnegative, and the inductive step is established for this case. 

(iii) x = x= x2 < X3. In this case (2) and (3) become (14) and (15) respectively. 

E[ {x2 + W3(XI,X2 + Y',x3;n- 1)} (14) 

- {X2+ W3(x1,x2+ Y',x3;n- 1)}]. 

E[[ {xl+ x2 + W3(x + Y',x2 + Y", x3; n-2)} 

-{xl + x2 + W3(x1 + Y',x/ + Y",x3; n-2)}] 

- {xl + x2 + W3(xl + Y",x2 + Y',x3; n-2)} 

-{xl + x2 + W3(x + Y',X2 + Y",X3; n-2)} ]]. (15) 

At this point we use the fact that Y' and Y" are identically distributed. By interchang- 
ing their appearance in the third term of (15) and applying the inductive hypotheses 
that (2) and (3) are true for n - 1 and n - 2, (14) and (15) are nonnegative and the 
inductive step is established. This completes the proof of the theorem when there are 
no arrivals. 

A system in which some customers arrive after the start can be treated in the 
following manner. The proof is really the same except that the notation for a state of 
the system becomes more complicated, and we have to check what happens when a 
customer arrives. Suppose that the interarrival times take only integer values, and 
recall that customers are served in the order of their arrival. We are interested in 
showing that the expected queueing time of the first k arrivals is nonincreasing and 
convex in m. So suppose that the state (xl, x2, X3; t, n, i) denotes the fact that at time t 
there are n of the first k arrivals yet to complete service and that i of these n customers 
are yet to arrive (i < n < k). Let T(n', i') denote the statement that the result is true for 
all i < n < n', and also for n = n' with i < i'. To establish T(n, i) it suffices to show 
that T(n', i') implies T(n', i' + 1) and T(n', n') implies T(n' + 1, 0). Let the integer z be 
a realization of the time until the next arrival and let x = min(x I, x2, x3, z). The 
implications are proved by considering cases in which x is equal to xl, x2, X3 or z, 
along the same lines as above.' 

'The author would like to thank the referees for a number of comments that have helped to improve the 
clarity of this paper. 
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SIMPLE INEQUALITIES FOR MULTISERVER QUEUESt 

MATTHEW J. SOBELI 

Simple inequalities are obtained for some operating characteristics of multiserver queueing 
models. "Loss system" and "delay system" results are presented. 
(QUEUES; MULTISERVER; INEQUALITIES) 

1. Introduction 

It is difficult to obtain explicit formulae for operating characteristics of queueing 
models with more than one server. When formulae can be obtained, often they are 
complicated and depend on particular probability distributions. The results below are 
nonparametric and simple in form. Simplicity typically implies that an inequality is not 
sharp (cf. Kingman [6]). However, one of the principal inequalities below is simple and 
sharp. See Brumelle [2], [3] and his references for other inequalities for multiserver 
queueing models. 

In a "loss system" with a Poisson input process, i.e., an M/G/c/N model (so 
arriving customers are refused entry when there are N customers already inside the 
facility), let p denote the "traffic intensity" and let B denote the long-run probability 
that the facility is full. A principal result below is 

(1 - 1/p)+ < B < 1 - l/(p + 1) 

for all c and N. For c > 2 and p > 1.5, 1 - I/p seems very close to B. 

*All Notes are refereed. 
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