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Abstract 

A series of queues consists of a number of ./M/1 queues arranged in a series 
order. Each queue has an infinite waiting room and a single exponential server. 
The rates of the servers may differ. Initially the system is empty. Customers 
enter the first queue according to an arbitrary stochastic input process and then 

pass through the queues in order: a customer leaving the first queue im- 
mediately enters the second queue, and so on. We are concerned with the 
stochastic output process of customer departures from the final queue. We show 
that the queues are interchangeable, in the sense that the output process has the 
same distribution for all series arrangements of the queues. The 'output 
theorem' for the M/M/1 queue is a corollary of this result. 

OUTPUT PROCESSES; DEPARTURE PROCESSES; SERIES OF QUEUES; TANDEM QUEUES 

1. Introduction 

Series of queues are interesting to study because they form one of the simplest 
of queueing systems and are a fundamental element in many more complicated 
queueing networks. A system of queues in series (or queues in tandem), denoted 

by -/M1/1 - /M2/1 --* /MN/1, consists of N queues of ./M/1 type arranged 
in a series order. Each queue has an infinite waiting room and a single 
exponential (memoryless) server. The rates of the servers may differ. Initially the 

system is empty. Customers enter the first queue according to an arbitrary 
stochastic input process and then pass through the queues in order: a customer 

leaving the first queue immediately enters the second queue, and so on. The 
number of customers to enter the first queue in the interval [0, t) is given by the 
random function A (t). We are concerned with the stochastic output process of 
customer departures from the final queue, and the proof that its distribution is 
the same for all series arrangements of the queues. We say that the queues are 

interchangeable, meaning that the order of the queues does not affect the 
distribution of any statistic of the output process (such as the time of the nth 
customer departure). 

Results concerning the outputs of series of queues have been surveyed by 

Received 6 June 1978; revision received 4 July 1978. 
*Postal address: Queens' College, Cambridge CB3 9ET, U.K. 

690 



The interchangeability of tandem / M /1 queues in series 

Reich (1965) and Boxma (1977). If the servers are deterministic rather than 

exponential a result of Friedman (1965) shows that the queues are interchange- 
able. This is a purely combinatoric result. For exponential servers, the 'output 
theorem' of Burke (1956) states that the stationary distribution of the output of 
an unsaturated M/M/1 queue is a Poisson process with the same rate as the 

input. This means that if the input process is Poisson, with a rate less than that of 

any server, then the stationary output of the M/M,/1 - /M2/1 -- -/MN/1 

system is the same for all orderings of the queues, being a Poisson process with 
the same rate as the input. But this tells us nothing about how the ordering of the 

queues might affect the transient output process (for example, the departure 
time of the nth customer); neither does it tell us what happens if the input 
process is not Poisson. Our interchangeability theorem holds for any input 
process and shows that the full output process is independent of the order of the 

queues. 

2. The interchangeability theorem 

It is the result of this section that, with an arbitrary input process, a number of 

?/M/1 queues in series are interchangeable. We directly prove interchangeability 
for just two queues in series; but this suffices to prove it for any number. For 

suppose two queues in series are interchangeable. Notice that the input to a 
series of two queues might itself be the output of an 'upstream' series of queues. 
So two orderings of N queues in series have identically distributed outputs if 

they differ in the interchange of one adjacent pair of queues. By the interchange 
of adjacent pairs of queues we see that N queues in series are interchangeable. It 
now suffices to show that two queues in series are interchangeable. 

Theorem. Two ./M/1 queues in series are interchangeable: for any common 

input process, A (t), the output processes of /Mi/1 -- / M2/ 1 and ./M2/1 ->/M/1 
have the same distribution. 

Proof. It is sufficient to prove the theorem for arbitrary non-stochastic input 
processes. For if the theorem is true for every non-stochastic realization of the 
stochastic input process A (t), then it is true for that stochastic input process. So 

suppose that no customers are present before time 0 and that the non-stochastic 

input process is such that the number of customers entering the first queue in the 
interval [0, t) is a (t). We say that two queues in series are in state (t, m, n), when 
the time is t, the first queue contains a(t)- m - n customers, the second queue 
contains m customers, and n customers have already departed (customers which 
arrive at time t are considered to be 'just arriving'). Throughout what follows the 

phrase, 'for all (t, m, n)', is taken as meaning, 'for all states (t, m, n) which can be 
reached from the state (,0, 0,0)'. We consider the departure times of the first n* 
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customers and show that their joint distribution is the same for both orderings of 
the queues. Consider first the system ./M1/l - /M2/1, and suppose that the first 
server has rate A and the second server has rate /, where without loss of 

generality A + , = 1. Suppose the system is in state (t, m, n) with n < n*. 

Starting from this state, let D (t, m, n) be the departure time of the jth customer 
(j = n + 1, * , n*). Define the joint Laplace transform of the departure times of 
these n * - n customers as 

FA(t, m, n) = E[exp{- O+,1DA+,(t, m, n)- -OnD...(t, m, n)}], 

On,+1,-, On, real and positive. 

Although FP(t, m, n) is a function of the variables On+ i, ,*', we omit their 

explicit mention for notational convenience. For n _ n* define F(t, m, n) = 1. 

Similarly define F (t, m, n) for the system -/M2/1 --/M1/1. 
To prove the theorem it is sufficient to show that FA (, 0, 0) = F (0, 0, 0), since 

if these two Laplace transforms are equal the joint distribution of the departure 
times of the first n* customers are the same for both orderings of the queues. 
The equality of the Laplace transforms is proved by constructing, for all (t, m, n), 
FP(t, m, n) and F (t, m, n), which tend to F(t, m, n) and F (t, m, n) respec- 
tively as k tends to oo. We then show by induction on k that F(t, m, n)= 
F (t, m,n) for all k. 

Consider the system /M1/1->/M2/1. When both servers are busy the time 
until a customer completes service in one or the other of the queues is 
distributed as an exponential random variable with mean 1 (A + ,u = 1). This 

suggests the following device. We suppose that in addition to the 'real' customers 

already considered the system contains an infinite number of 'virtual' customers 
in each queue. A server serves virtual customers whenever there are no real 
customers in its queue, but as soon as a real customer enters the queue the server 
attends to that real customer. So the presence of virtual customers makes no 
difference to the real ones. But by this device the servers are always busy and the 
time until the completion of a customer (real or virtual) in one or the other of the 

queues is always distributed as an exponential random variable with mean 1. The 

completion occurs in the first queue with probability A and in the second queue 
with probability /. By considering this first service completion, we have for all 

(t,m,n) with n< n*, 

(1) F(t, m, n) = {AFA(s, m + 1, n) + /FA(s, m - 1, n + 1)e -.+}e-(S-ds, 

with the provisions that 

(i) if m + n = a(s), then FA(s, m + 1, n) is replaced by F(s, m, n), and 
(ii) if m = O, then FA(s, m - 1, n + 1)e-?n+s" is replaced by F(s, O, n). 
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The provisions (i) and (ii) apply to cases where the first service completion is of a 
virtual customer in the first or second queue. A similar formula holds for 
F (t, m, n). 

For all (t, m, n) with n n* define F(t, m, n) = 1 (k = 0, 1,2, - ). For all 

(t, m, n) with n < n define 

tn -= - + 1 '-+ On,* 

F((t, m,n)= e-"', and for k =0, 1,2, -, 

F ,(t, m, n) 

(2) 
{AF (s, m + 1, n) +- /F (t, m - 1, n + 1)e- }e -"-ds, 

with similar provisions on the terms within the integral as in (1). Similarly define 
F (t, m, n). Clearly 0 - F (t, m, n)- FA (t,m, n) - exp ( - t). By subtracting 
(1) from (2) it is easy to show inductively that 

F .(t, m, n F (t, m, n) . -k-- 0 as k--c. ki '? k,~ - (1? O.) 

The proof of the theorem will be complete if we can show that F (0,0, 0)= 
F (0,0,0). In fact, we shall show that for all (t,m,n) and k, 

(3) S'(t,m,n)= SI(t,m,n), 

where S (t,m,n) is defined by 

m-I 

Sk(t,m,n)= A F(t, m, n)= A FA'F(t, i, n). 
i=O 

Note that S (t,0, n) = Fk (t,, n). We similarly define S (t, m,n), and then 

prove (3) by induction on k. For k = 0, (3) is true since SO(t,m,n)= 
S ((t, m, n) = exp ( - nt). Suppose that (3) is true for k; we shall show that it is 
true for k + 1. Summing (2) we have 

S l?(t,m, n) = f {A+1FF(s, m + 1, n) + aA m'F(s, m - 1 n + l)e -S 
J+ 

k 

m-i 

+ / /,i+A','FA(s,i + 1,n) 
(s 

, i -= 0 

+ Fk (s, 0, n) + A'F(s, i - 1, n + 1)ee 
+s e-"-'ds. 

By writing , P2Fk (s, 0, n) as ak (s, 0, n) - ,AS k (s, 0, n) and appropriately com- 

bining the terms within the integral we have 
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Sk+, (t, m, n)= {S(s, m + 1, n)- Sk (s,O, n) 
(4) 

+ pAS,(s, m - 1, n + l)e -+S}e- "ds, 

with the provisions that: 

(i) if m + n = a (s), then S (s, m + 1, n) is replaced by S (s, m, n), and 

(ii) if m = 0, then the last two terms in the integral are deleted. 

By the inductive hypothesis for (3) every term within the integral of (4) is 

unchanged in value when the superscript A is replaced by L. Hence 

Sk+l(tm, mn) = Sk+i(t, m, n) for all (t, m, n), and the induction is complete. In 

particular. Sk (0,0,0) = S` (0,0,0) for all k. This is just Fk (0,0,0)= Fk (0,0,0). 
Letting k -> oo we deduce that FA (0, 0, 0) = F (0, 0, 0). This completes the proof 
of the theorem. 

3. Applications 

Burke's 'output theorem' for the M/M/1 queue may be easily deduced from 
our theorem. We do this by noticing that an M/M/1 queue can be viewed as two 

?/M/1 queues in series, where the first queue contains an infinite number of 
customers. Suppose that the queue M1/M2/1 has an arrival rate A less than the 
service rate ,i. Our interchangeability theorem tells us that the output processes 
of MJM2/1 and MJMi/l have the same distribution. But M2/M1/I saturates and 
its stationary output is just a Poisson process of rate A. So the stationary output 
of M1/M21/ is also Poisson of rate A. 

It is clear that the interchangeability theorem continues to hold even when the 

input process is a function of the output process. A special case of this is a cycle 
of queues, formed by taking a series of queues and sending the output back into 
the first queue as input. In order that the cycle not saturate, we suppose that the 

process of external input, A(t), terminates at some fixed time. We deduce the 

interesting result that if a fixed number of customers circle unendingly around a 

cycle of exponential server queues, then the outputs from all the queues have the 
same stationary distribution; moreover, this distribution is independent of the 
order of the queues. 

We might reverse our model by thinking of the N servers as passing through n 
customers in series. This enables us to consider the sequencing of N non- 
identical 'jobs' through a flowshop of n identical 'machines'. We find that the 
time for all the jobs to pass through the n machines is independent of the order 
in which they are served at each machine. The mean finish time of the N jobs is 
minimized by passing them through the machines in 'shortest first' order. 

A number of ./D/1 (deterministic) queues in series are interchangeable. But 
the queues in a series of mixed I/D/1 and ./M/1 queues are not interchangeable. 
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If a -/D/1 queue is last in such a series, then there is a minimum interval between 
one departure and the next. This is not the case if a I/M/1 queue is last. Burke's 
output theorem is true for the M/M/s queue. But a number of ./M/s queues in 
series are not interchangeable, as any simple example will show. For a discussion 
of the optimal ordering of non-interchangeable queues see Tembe and Wolff 
(1974). 
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