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SUMMARY 

Identical components are available for use in a piece of machinery. The number of 
components needed to operate the machine is a function of time and the lifetime of 
each component is described by a known probability distribution. Once a certain 
number of components have failed there will not be enough left to operate the machine. 
We find a strategy which for certain lifetime distributions delays this occurrence for 
as long as possible. 
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1. INTRODUCTION 

SUPPOSE that n identical components are available for use in a piece of machinery and that 
the number required to operate the machine is a function of time, r(t). Components fail 
when in use according to a known probability distribution, and once a certain number have 
failed there will not be enough left to operate the machine. We are interested in scheduling 
the use of the components so as to delay this occurrence for as long as possible. Cox (1959) 
introduced this problem in connection with women's nylon stockings and r(t) =2. It has 
been investigated by El-Sayyad (1967), Gait (1972), Nash (1973) and Glazebrook (1976). 
Cox suggested the intuitively reasonable strategy of always using those components with the 
greatest life expectancy. In this paper we show that if the component lifetime distribution has 
any monotone hazard rate then Cox's strategy is optimal in the strong sense of stochastic 
order. It maximizes for all s the probability that we can operate the machine until at least 
time s. 

Glazebrook and Nash (1976) considered the case of lifetime distributions with decreasing 
hazard rate and presented a fallacious proof of the optimality of Cox's strategy. The error 
is in a statement that is essential to the proof. It occurs in the third paragraph of p. 70 in the 
sentence which begins, "another way of stating (4) is . . .". This statement makes the false 
assumption that if two random functions xl(t) and x2(t) take values in (0,1,2), are non- 
decreasing in t (1 < t < so), and are such that P{xl(t) < z} s<P{x2(t) < z} for all t (1 < t < so) and 
z (z = 0,1,2), then realizations of xl(t) and x2(t) can be matched in pairs so that for each 
pair we have xl(t) s x2(t) for all t (1 < t < so). 

The proof in this paper uses a new technique which has been used by Weber (1978) in 
solving a problem in the assignment of customers to a number of identical parallel servers. 

2. AN OPTmAL SCHEDULING STRATEGY 
The following assumptions hold throughout this section. Time proceeds in discrete steps, 

0, 1, 2, .... "Interval t" is the interval (t, t + 1). At the beginning of interval 0 there are avail- 
able n components, cl, c2, ..., c.. During interval t the number of components required to 
operate the machine is a constant, given by the usage function r(t) (t = 0,1,2, ...). The usage 
function is non-decreasing in t. Components fail randomly during use; each has the same 
known lifetime distribution when new, but different components may have had different 
amounts of use prior to interval 0. 
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With each component is associated an age, which is the amount of usage it has received. 
The age of c* at time t is denoted by x*(t). The hazard rate for a usable component is defined 
to be the probability that it fails in its next interval of use. The hazard rate for a component of 
age x is denoted by p(x) (= 1 -q(x)). If c* is used during interval t it fails with probability 
p(x*(t)); if it does not fail then its age at time t+ 1 is x*(t)+ 1. If c* is not used during interval 
t then xi(t + 1) = x*(t). Although components will usually have integer ages we will sometimes 
allow their initial ages to take any values in [0, oo). The hazard rate function p(x) is assumed to 
be a strictly monotone (increasing or decreasing), differentiable function of the age x. 

A state of the components is the vector of their ages, denoted by x (= (xl, x2, .. .,)). 
If c* has failed this is denoted by writing * in the place of xi. A strategy is a function which, 
for any value r(t) of the usage function and any state with at least r(t) serviceable components, 
determines a set of r(t) components to be used during interval t. 

We consider the problem of finding a strategy for scheduling the components which 
maximizes the probability that the machine can be operated until some fixed time horizon. 
S* denotes the strategy which schedules for use during interval t those r(t) components 
whose life expectancies are greatest. For strictly monotone hazard rates S* can be realized 
by scheduling for use those components whose hazard rates are smallest. This follows by 
writing the expected remaining lifetime of a component of age x as 

E llq(x+j). 
i-=O j=O 

When two or more components have equal hazard rates they have the same age and so are 
statistically identical. Strategies which differ only in scheduling amongst components of equal 
hazard rate are therefore equivalent and there is no essential ambiguity in this realization 
of S*. 

Denote by PS{r(.),s,x} the probability that we can operate the machine until at least 
the end of some fixed interval s*, given that we start at time s in state x and apply scheduling 
strategy S with usage function r(.). In the special case where the scheduling strategy is S* 
we use P{r(-), s, x} in place of PS*{r(.), s, x}. Define 

P,1{r( ), s, xI}-p(xi)Pl{r(-), s, (X1, ... ., *9 ... ., X.)} + q(xi)P8{r( ), s, (X1,. , Xi + 9 1...,Xn)). 

Again we write P*{r(), s, x} in the place of P8*{r(.), s, x}. Denote by A the set of states for 
which every component either has failed or is of integer age. 

Theorem 1. Se is optimal in the sense that for any other strategy S, 

P{r( ), s,x} > PS{r( ), s,x} 

for all r(Q), s and xeA. 
Proof. The proof is by induction on s. Clearly the theorem is true for s = s*. Assume it 

is true for s = t+ 1, ...,sS*. This implies that it is optimal to follow S* from interval t+ 1 
onwards. We need to show that it is optimal to follow S* during interval t. We do this by 
considering two strategies, Si and S1, which are both identical to S* from t +1 onwards. 
During interval t, both schedule for use the same set C of r(t) -1 components. They differ 
in that the r(t)th component scheduled by Si is c*, while for Sj it is c3. We show that if 
p{x(t)} <p{x3(t)} then 

Pl,{r( ), s, x(t)} > Plj{r( ), s, x(t)}. (1) 

The result then follows, for if S is any strategy identical with S* from t+ 1 onwards then S* 
can be obtained from S by successively replacing components scheduled by S at time t by 
components of smaller hazard rate. 

9 
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To prove (1) we establish a correspondence between PSf{r(.), t, x} and Ps{1(.), t,x} for 

a suitably chosen strategy S, where 
P(t) = r(t)-1, P(s) = r(s), s = t+ l, ...,s*. 

Define the strategy S for the usage function P(Q) so that S schedules the set of components C 
at time t and is identical with S* (and hence Si and Sj) thereafter. Considering now what 
happens to ci under Si, and noting that what happens to the remaining components is the 
same for S, P(Q) and the starting state (xl, . ..,x+ 1, ..., x) as for Si, r(-) and the starting state 
(xl, ... , x..., x.), we have 

P,3qr(.), t, xi = PlI03 { 4() x. 
This says that scheduling ci and the components of C during interval t under Si, r(.) 
accomplishes the same thing as giving ci one interval of usage just prior to time t and then 
scheduling the components of C during interval t under S.,(). A similar statement holds 
for PSI{r(), t, x}, so that 

PSi{r(.), t,x}-.PS{r(.), t,x} = P{1PO), t,x}Pa {P(.), t,x}. (2) 
Now define 

Di4{r(-), s, x} = Pi{r( ), s, x}-Pj{r( ), s, x}, 
for any r(-), s, x. In Theorems 2 and 3 we shall show that if p(x) <p(x1), then 

Dar(-), s, x} > O, (3) 
for any r(.), s, x. For the moment assume this is true. Let X be the random state reached at 
the end of interval t using strategy S for P(Q). This means that for ck 0 C we have Xk = XJO, 
since S schedules only the components of C at time t. For ck e C we have Xk = * or Xk(t)+ 1 
as ck does or does not fail during interval t. Since S and S* are identical from time t+ 1 
onwards, 

Pj,9{P(-), t + 1, X} - Pa{P(-), t + 1., X} = Dj,#(-)$ t + 1, X}. (4) 
Since P(.) is identical with r(-) from t+ 1 onwards, 

Di4{P( ), t+ 1, X} = Di4{r(-), t+ 1, X}. (5) 
Since ci 0 C we have Xi = xi(t), so that 

Pj{P( ), t, x} = Ex[Pjs{P( ), t+ 1, X}], 

and similarly for Ps{r(.), t, x}. Therefore 

pj,8{P(-), t, X}-Pss{P(-), t, x} = Ex[PjS{Pfs), t+ 1, X}-PjI{P( ), t+ 1, X}]. 
Combining this last expression with (2), (4) and (5) we have 

P8{r(.), t, x}-P8i{r(.), t, x} = E [Di{r ), t+ 1, X}] (6) 
If p(xi) <p(x1), then since Xi = xi and X1 = x1, we have from (3), that whatever the other 
components of X, 

Di.,{r( t,+ 1, X} > . 
Applying this to the right-hand side of (6) the result is proved. 

Corollary. Suppose that we start at time 0 in the state x eA with n serviceable components. 
If the usage function is such that we can certainly operate the machine as long as less than m 
components have failed, i.e. r(s) (n-m+ 1 for all s, then 
(i) S* maximizes the probability that the mth failure occurs after interval s for all s, and 
(ii) S* maximizes the expected time until the mth failure. 
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Proof. 
(i) Let F(t) = r(t) (t = 0,1,2, ...,s), s* = s+ 1 and P(s+ 1) = n-m+ 1. Then Ps{f(.),O,x} 

is the probability that the mth failure occurs after interval s and is maximized when S = S* 
by Theorem 1. 

(ii) The expected time to the mth failure using strategy S is 
W 
YP{mth failure occurs after interval s using strategy S} 
8=0 

Each term of this sum is maximized for S = V. 
Theorem 1 and its corollary are the main results of this paper. To complete the proof of 

the theorem we show in Theorems 2 and 3 that for x eA and p(xj)<p(xj) we have 
Di,{r(.), s, x} > 0 for all r(Q) and s. This is a result about S* and it is the subject of the rest 
of this section. From now on we are concerned only with scheduling which takes place 
under S*. Let C{r(-), s, x} be the set of components scheduled by S* at time s when we 
start at time s in state x and the usage function is r(-). Note that C{r(*), s, x} is a set of r(s) 
components of smallest hazard rate, by the definition of V*. 

Theorem 2. Suppose that p(x) is strictly increasing in x. Then Dj,1{r(), s, x} > 0 for all 
r(*), s and any x with xi < x. Moreover if ci, c1 E C{rQ ), s, x} then 

(d/dx) Di,{r(Q), s, x} exists and is < 0. (7) 

Proof. The proof is by induction on s. Clearly the theorem is true for s = s*. Assume it 
is true for s = t+ ,...,s *. We show that this implies that it is true for s = t. Let 
C = C{r(.), t, x}, and let X be the random state of the components at the end of interval t 
when we start interval t in state x. There are three possibilities. 

(i) ci, c1 0 C. In this case Xi = xi and X1 = xX so that Dij{r( ), t, x} = Ex[Dj,{r(), t+ 1, X}]. 
By the inductive hypothesis the theorem may be applied to Di,{rQ ), t+ 1, X} and the result is 
proved. 

(ii) ci E C, c, 0 C. This case is more complicated. A mechanism is required for following 
the component which is scheduled in place of ci, when it fails or is not scheduled when it is 
serviceable. Accordingly, let k be a component of least hazard rate amongst those not in C. 
Define a random index i(X) by 

i if ci would be scheduled at time t if the components were in 
i(x= state (Xi,..., xil .. sxn). 

lk otherwise. 
Now recall the definition 

P,{r(.), t, x} = p(x)0P{r(-), t, (xl, *., xi-l, *, xi+,, *X.) 

+q(xi)P{r( ), t, (xl, ... ., xi-i xi + 1, x4i * .., x")}. 
Consider a starting state (xi, ..., x_1, *,xi+,..., xn) at time t. The components scheduled 
during interval t are the members of C except ci, which has failed, plus ci(xy) (= ck) which 
replaces ci. Thus, at time t+ 1, 

Xm(t + 1) = Xm, m * i(X), 

xi(X)(t+ 1) = * if ci(x) fails in its first interval of usage. 
Xi(x) + 1 otherwise. 

Hence 
P{r(O), t, (xl, xi_l, *, xi+,, ..., x)} = Ex[Pi(x){r(), t+ 1, X}I Xi = *1. (8) 
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Similarly, 
P{r( ),t, (Xv, *xi-,,,xi + i x,X)} = Ex[P1(x){r(),t+1,X}| Xi = xi+1] (9) 

Thus, 

Pi{r( ), , x} = Ex[Pi(x){r(Q), t+ 1, X}]. (10) 

Since c1 0 C we have (as in case (i)), 

P1{r(-), t,x} = Ex[Pj{r( ), t+ 1, X}]. (11) 

Combining (10) and (11) we have, 

Di,j{r( ), t,x} = Ex[D(x),J{r( ), t+ 1, X}]. 

Now cj E C, c1 0 C, and by the definition of k we have p(x,) <p(x;), so that Xi(Z) ? ( A'1 
with probability 1. By the inductive hypothesis therefore, Di(X),{r( ), t+ 1 ,X} > 0, with 
probability 1. Thus D,1{r(.), t, x} >0, and the theorem is proved for this case. 

(iii) cj, c1 E C. In this case (3) follows from (7) by noting that if xi = x1 then ci and c1 
are identical so Di4{r(.), t, x} = 0. 

It remains to prove that (7) holds for s = t when cj, c1 E C. Using the argument that led 
to (10) we have 

Di,{r(.), t,x} = p(xo)Ex[D(x),j(x){r( ), + 1, X}I Xi = * 
+ q(x)Ex[Dj(x)J(x){r(), t+ 1, X} Xi = xi+ 1]. (12) 

There are two cases to consider. 
(a) xi +1> xk. Then Xj+ 1> xk also, and so with probability 1, i(X) =j(X) = k. The 

right-hand side of (12) is then identically zero and (7) holds. 
(b) xi+ 1 S xk. Differentiating (12) gives 

(d/dxi) Dj4{r( t, x} = p'(xi) Ex[D(x),j(x){r(), t+ 1, X}I Xi = 

-p'(x )Ex[D(x),j(x){r(), t+ 1, X}| Xi = xi+ 1] 

+q(x)E[(d/dx) Di(x,j(x){r(), t+ 1, X}| X4 = xi+ 1], (13) 

remembering that q(x ) = 1 -p(x,) and noting that Ex[Di(x)j(x){r( ), t+ 1, X}I Xi = *] does 
not depend on xi. Now p'(x) >0 and j(X) must be eitherj or k. If j(X) = j then Xj+ 1 <Xk, 
so that in either event X9(x) < Xk. If Xi = * then i(X) = k and Xi(x) > Xj(x), so that by the 
inductive hypothesis the first term on the right-hand side of (13) is < 0: if Xi = xi+ 1 then 
i(X) = i and Xj(x) = xi+ 1 < Xj(x), so that by the inductive hypothesis the second term on the 
right-hand side of (13) is < 0; since r(*) is non-decreasing, if Xf = xi+ 1 then 

ci(x) = ci, cj(x) E C{r( ), t+ 1 X} 

so that by the inductive hypothesis the third term on the right-hand side of (13) is (0. Thus 
(d/dx,) Di4{r(j), t, x} 0 O and the proof is complete. 

Theorem 3. Suppose that p(x) is strictly decreasing in x. Then Di,{r( ), s, x} > 0, for all 
r(*), s, and x with xi > x1 and such that every component which is not amongst the r(s) -1 of 
least hazard rate either has failed or is of integer age. Moreover, if cj, c1 e C{r( ), s, x} then 
(dldx,) Di,{r(-), s, x} exists and is > 0. 

Proof. The proof is exactly analogous to that for Theorem 2. The added condition on the 
states x is necessary to enable derivation of (10) and (11) to go through. 
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3. EXTENSIONS AND COUNTER-EXAMPLES 

The class of lifetime distributions for which the results of Section 2 are true may easily 
be extended from those of strictly monotone hazard rate to those of monotone hazard rate. 
The proofs go through as before. A continuous time version of Theorem 1 follows as the 
limit of discrete time problems by approximating with arbitrarily small discrete intervals and 
then applying a continuity argument. 

The following counter-examples to Corollary 1(i() demonstrate that the assumptions of 
monotone hazard rate and non-decreasing usage function may not in general be relaxed. 

(i) Se is not optimal for arbitrary lifetime distributions. Suppose thatp(0) = O,p(l) = 0-999, 
p(s) = 0-4 (s = 2,3,4, .. .), x = (O, 2,2) and r(s) = 2 (s = 0, 1, 2,...). Then S* schedules the 
two components of age 2 during interval 0. But the expected time until the second failure is 
approximately 1/40 less under S* than under the strategy which schedules the component of 
age 0 during interval 0 and then schedules as S* thereafter. 

(ii) S* is not optimal for arbitrary r(). Suppose that p(O) =p(l) = i, p(2) = p(3) = 
p(s)- =(s = 4,5,6, .. .), x=(0,l1,2,4, 4,4,4,4), r(0)==l, r(l)=3, r(2)=1 and r(s)=6 
(s = 3,4,5,...). Then S* schedules the component of age 0 during interval 0. But the 
expected time until the third failure is 7/4096 less under S* than under the strategy which 
schedules the component of age 1 during interval 0 and then schedules as S* thereafter. 
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