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Chapter 1. Introduction to Examples and the General Formulation

Optimal stopping problems are concerned with the control
of random sequences in gambling and statistical decision. Often
one desires to know the optimal instant to break off playing a
game or tq stop sampling in an inference problem,
A general theory that could give some insight to such
problems was not seriously investigated until the last decade,
beginning with E.B, Dynkin (1960). However several optimal stopping
problems are quite famous for both their long history and
attractive form. As an introduction to a subject which is firmly
rooted in intuition we describe three problems. The first is an
example in decision theory, the second in statistical sequential
inference, and the third in the statistical design of experiments.
The chapter concludes with a formulation of the general optimal

stopping problem on random sequences.

1.1 Three Problems of Optimal Stopping

1e141 The Secretary Problem

The Secretary, or Dowry, Problem -has a long hiatory, first
appearing as a subject for discussion in a "Scientific American®
article of 1960. Its solution was suggested there and then proved
optimal by Dynkin in 1963. |

The préblem concerns that of'an employer who must hire a
secretary fram among a group of n girls. At each interview he is
only able to discern how the girl being interviewed compares with
those whom he has seen previously. At the interview he must
decide to hire the girl or reject her without any possibility of

recall. His objective is to maximize, by some choice policy,



the probability that he will select the best ot the n girls.

1e1.2 The Sequential Probability Ratio Test

In 1947 A. waid investigated the problem of hypothesis
testing by sequential sampling. Suppose that Xy1Xppeee BTe
independent, identically distributed samples from a distribution
with density £. We wish to test the simple alternatives,
Eo: £ = fo against H1: f = f1. Costs are incurred for taking each
sample as well as for ultimaiely teking an incorrect decision.

The desire is to take as few samples as possible while
choosing between Hb and H1 with the best confidence possible.
The search is essentially for a time, t, which tells us when to
stop sampling and a decision rule; 8, which then tells us how %o
choose. Such a palr, (§,%t), is called a sequential decision
procedure. The calculation of 6§ given t is only a standard hypothesis
test. It is the choice of the stopping time %, wvhich may depend

on EypecesXyy that is an optimal stopying problem.

14143 The Two-Armed Bandit Problem

Beyond considering the control of just onz stochastic
sequence, one might hope to control several simultaneously. The
two arms, (1,2), of a two-armed bandit produce prizes or not
when pulled. Arm i will produce a prize with probability Py and
will return nothing with probabilty 1- Pys i=1,2,

The interesting problems arise when one or both of PysD,
are unknown and so must be infered firom sampling on the arms.
We are faced with trying to decide when to stop playingon one arm
and play the other. Of course the desire is to maximise the
total number of prizes obtained, either as an average number per
play or as a total nunmber when discounting operates with time.

The problem was first discussed by H. Robbins in 1952, but



the form of the optimal rule for the case of unknowm P, and D,
was only described as recently as 1972 by J.C. Gittins and D.M. Jones.

These three problems will be discussed in the course of this
essay as applications of the theory developed. We begin now by
setting forth the general context and notation for optimal stopping

problems,
1.2 General Formulation

We give definitions for random sequences, stopping times,

and their associated rewards as considered in the essay.

1241 Definition
A stochastic sequence {=z n’Fn} is defined by:
(1) (@ ,F,P) is a probability space.
(11) {Fn}T is an increasing sequence of sub o - algebras.
(1ii) {zn}°1° is a sequence of random variables where z is F_
measurable, and takes values in (~ e, o ],

(iv) Ez;1 < for all n.

1.2.2 Definition

The non-negative, integer-valued random variable t is said
to be an extended stopping time (variable or rule) if the event
[t =n] is in F, 211 n. It i3 said to be a stopping time (variable
or rule) if in addition P(t <= ) =1, ie. t takes the extended
integer value < with prébahilty Zero.

Given a stochastic sequence {zn,Fn}, for the stopping problem

on this sequence define:

6 = { stopping times t : Ezj << }
G = { extended stopping times t : ﬁz; <o } where E is defined by
Bz, = E(z 3 t <e ) +E(%_igzn: t = o )



Note that the restriction to times such thét Ez;-<cm is only
for convenience. TFor if t is any time, by letting +' ='{ ? as
E(ztlF)< z, then th,eg Ez1 < and Ez., > Ez,.. So
there is a t'eC for which the expected value of the stopped
sequence is at leaslt us large as that stopped by t.

That E is the appropriate operator within G will become clear
in Chapter 3. But if {z } were -1,-1,-1,... clearly we don't
want to take z = O for then sqp?(y +2) = 1 does not equal.
:gcﬁzt +2 =2, In fact B 1stpreclsely the operator that keeps
22§E(z +a) = ggghz + a.

1:2.3 Definition
Given a stochastic sequence {zn,Fn} its value over G or G

is defined by & = supBz, or 8§ = sqgﬁz respectively.
teC T %€C

e

A time te C or C satisfying th~ 8 or Eat— 8 respectively
i3 called a (0,s) or (0,8)-optimal rule.

A time teC is called (c;s)-optimal if Bz, >8 - &,

Observe that without loss of generality the reward for
stopping {zn,En} at n is taken as z . If it were actually some
function, fn(z1,...,zn), then a simple redefinition of z  would

cast the problem in the appropriate form.
1.3 General Problems of Optimal Stopping

Under the above formulation of the stopping problem on a
stochastic sequence, the purpose.of this essay will be to answer
the following questions:

(a) What is 8 (8) ? Can it be computed given {zn,En} ?
(b) Do (0,s), (0,8), (g,8) or (e,8)-optimal tines exist ?
(¢c) VWhat is the form of an optimal stopping rule when it exists ?_

We will answer these questions in two restricted contexts



before stating the general results. Thereby it is hoped to
make clear the way in vhich intuition might guide to develop

-the general theory from scratch.



Chapter 2, The Optimul Bounded Stopping of Random Sequences

In this chapter we formulate and solve the optimal stopping
problem within the class of stopping times which are bounded by
a fixed integer N, This inroad to the general problem proves to
be a fruitful'beginning. Not only does the bounded problem have
a complete solution of interest in itself, but also, as we shall
see in Chapter 3, its limiting form as N -+ «© does in a sense
describe the behavior of the general problenm.

Many problems are of the bounded type in their own right.
Phe Secretary problem of 1.1.1 is one such and its solution is

derived.

2.1 Solution of the Bounded Problem

2,1.1 Definitions

Consider stopping times restricted to an interval and let

Gﬁ ={tsC s n<t<N } sg = Supy Ezt « For convenience
N_ N N_ N veCy
write: C° = 01 and 8" = 8, .

Clearly the only stopping time in Cg is t = N, An
intuitively likely construction of tg optimal in Cg would take

t2 = n unless the expected reward of taking another step and

n
applying the rule tﬂ;1 were greater than the present reward, 2z

.

n
We show that this "backward construction" does produce the

optimal rule,-

2.1.2 Theorem [ ref., Chow, et al, p. 50 ] .
. N
Define: Yg =z end Yg = max{ z_, E(Yn+1|Fn) }
Let t§=min{ i:i>nand 2z =Y]§ }.

i
N . N N _ -
Then tn is optimal in Cn and 8, = BY = Eth .



proof: ( by backward induction on n )
N

True when n = N, Assume true for n and let teCn~1, .Aan 19
t' = max(n,t). [ we omit dP in the following integrals ]
1
Z, = z + z
A An(t=n-1) " L -[An(t > n) b
= z_ + B(B(z,,|F )P
J An(t=n-1) 21 IAn(tzn) 5r1%)17)
< | z__ + J B(YN|F_ )
J An(t=n-1) P~ A(t =n) B o
3 N ‘
< Y
= J A. n"'1
while | =N =
d A n-1
I N Zn-i + I N E(YgiFn-J)
An(z,_, > B(YIF ) An(z,_, < B(Y |F__,))

_ N o N
- jA max { Zp-1 ? E(YnIFn-'1) b= jA Yn-1

- N _ LN '
Unfortunately the computations Y = max{ z_ , B(Yn+1|Fn) }

are nct going to be easy to carry out, We can make a simplification
when YE is a random variable depending only on Zs rether than

on all the past history Fn' The optimal tg will then choose to

gtop or not on the basis of only looking at the current state,

Such memoryless or Markov nature is a feature of very many optimal

stopping problems,

2.2 Solution of the Bounded Problem: Markov Case

2,2.1 Definitions

The stochastic sequence {zn,Fn} is said to have a
stationary Markov representation if there exists a Markov sequence
{xn} with state space B and transition probabilities P such that
F, = B(xn) and z_ = g(xn) where g is F - measurable, all n,

We write: Exg(x1) = !Eg(x1) dP(x,x1) = IEg(x1) dP_ .



Consider Punctions f mapping E ~ R and dafine:
= { Borel-measurable f : - o < £(x) < co end Exf“(xn) < o
for all n and xeB }
To restrict attention to only those g which are in I does no
more than simply ensure that the stopping time t = n is in C,
With this formulation Theorem 2.1.2 can be neatly restated, ~

2.2,2 Lemma |
Define an operator Q:IL -~ L by QOf(x) = max{ g(x) , Exf(x1) }

If 2z, = g(xn) in a Markov representation and gel, then with the

notation of 2,1.2, Tng g(x, ).

proof: direct from the definitions

2.2,% Lemma [ ref., Shiryaev p. 23 ] .
Define an operator Q:L - L by Qf(x) = max{ £(x) , Exf(z1) }

Then Qlg(x) = Q%g(x) for a2ll n and xeB.

proof: } .

True for n = 1, Proceed by induction: E Qf(x ) =E f(x1) hence

Q%g(x) = max{ Qg(x) , B Qg(x) } = max{ g(x) , E.Qg(x) } = Q 2e(x) ete.

2,2.4 Theorenm
Suppose x1,x2,....is a Markov random sequence and gel.

Then sM(z) = :ugN B g(x,) = Mg(x) = mex{ g(x) , B, st~ 1(x ) }

and £V - min{ 1 : 1 €N and SN—n(xn) = g(xn) }

proof: a consequence of the lemmas and definitons

This is just the statement that starting in state x and
restricted to not more than N steps the optimal rule will
choose the better of the two options:

(i) Stop now - receive g(x)

(ii) Take another step — receive on average Est'1(x1).



2.3 Solution of the Secretary Problenm

Consider n objects indexed by 1,2,...,n permutated randomly
with all permutations equally likely. Although observation of
the objects does not reveal their true indices, comparison between
two will disclose vwhich is better. Examining the objects one by
one we wish to stop at a t such that P(+P object examined has index 1) .-

is maximized,

2,3.1 Theorem [ ref. Shiryaev pp. 46-48; Chow et al, pp. 51-52;
Dyrkin (1963) pp. 628-629 ] |
The optimal rule for choosing the maximum of n objects as
described above is to pass over the first k(n)-1 objects and then
to choose the first to appear which is better than all the previous

objects, where: 1

1
AT Y RSV SET Y et EEeT
and so k(n)~ n/e
proof:

Let X = 1 and Xy 41= the position in the observed sequence of the

+1

first object which is better than the object in position x5

(eg. if we were to see 10 objects as: 2,6,4,1,7,3,10,9,5,8, then

.

x,=1 %;=2 %,=5 %5=T.)
Clearly the sequence Ry terminates at some 1'K n, so let xi=0
for all i > 1i', (eg. %y=%g=...= 0 in the above)
Now suppose Xy= bi. Then the first bi—1 objects are simply
arranged in one of the eqﬁally—likely random permutations of
bi-1 ordered objects. So we can deduce that they will have no

effect on the distribution of x and can write:

i1
P(xyq= by gl ==y, x5 =% 45ee0s xy=b; ) =
P( 4= byl xg=10; ) = P(x,4=b;,, end x;= by )

P( x;= by )
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th

P( bj+1 and by objects are the 1st and 2nd bLest of the first b )

P( b? object is the best of the first b, )
- 1/bi+1(bi+1‘ 1) _ bs
1/b; 0544 (Dypq= 1)

This shows that Xor Xy oo is a Markov chain with transition
probabilities: P(0,0) = P(x,y) =0 when x>y

1
P(x,0) =§- P(x,y) = Er-(?x:?')' when x<y

n
. =1 - b = =X
[ note: P(x,0) =1 > 3G-17 = & ]

x+1
Then P( Xy 1is the position of the best object )

n
= 20 FRlxg=ylx=1) = Bt
y=1 : n

So in the formulation of the optimal stopping problem for
a Markov random sequence, we are trying to maximize E1g(xt)
where g(x) = x/n [eL]. Since z;= 0 for all i > n the optimal

rule will lie in C®. Hence Theorem 2.2,4 applies and

31(x)—-max{— ;SE‘, ‘L}-max{ > PR }
- n? VS ,/Iy-1 n ' nx n-1

= x/n if x = k(n) :
vhere k(n) is defined as above.

> x/n if x < k(n)
Continuing the construction it is clear that si(x) ; x/n as x % k(n)
i=1,2,3... and the optimal stopping time is:

4= min{ 1 ¢ ™ i(xi) = xi/n } = min{ i s Xy = k(n) }
n-1

-1
Note: 1~—-+... + j 1/x dx = log (&——)
| ( 5 k(n) e‘k(n)
so k(n)~n/e and the probability of success is

n
E X =1 kn“1.1.3=1ﬁ(..)_.1 “_l_ml_f_(ﬂllog(n-1 )
-, Z o~ el i
~tl =~
P = 0,368

Hence we have the rather remarkable fact that no matter how
large the total number of objects it is always poasible to choose
the best with a probability greater than 0,368
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Observe further that the prohability that we are forced to
take the last object unsuccessfully is P( best object is among the
first k(n)-1 examiried ) = k(n)=1 ., 1 . So that if we were
interested in say choosing thenbest zife, our chances of doing so
would be about the same as our chances of never marrying,

Suppose that potential mates appear uniformly between the
ages of 18 and 40, Then n= 22 and k(22)= 9. So we should marry
when, for the first time after our 26th birthday, we meet a girl who
is better than any other we have met before. [ ref., Gilbert
and Mosteller (1969) for tabulations of k(n) ]

Of course it is unrealistic to assume that choosing the
second best has no value vhatsoever, If instead, the reward
for choosing the object with order index i is n~i, then by a
similar treatment to the preceding, the expected reward under
optimal choice ~ n - 3,8695 for large n. [ ref. Chow, Mortiguti,
Robbins and Samuels (1964) ] '
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Chapter 3, The Optimal Stopping of Markov Random Sequences

The optimel stopping problem has been solved for stopping
times in the class CN. In the Markov case it hes been observed
that the value, sN(x), has the simple construction QNé(x). In
this chapter ﬁe now exploit +this form by examining its limit as
N = o to deduce results for the optimal stopping of Markov random
sequences in C and G, Theorems are proved to show under what
conditions sH(x) -~ 3(x) and £V - g (0,8)~optimal 1+,

The main technical lemma 3,1,5 appears in Shirvyaev ( pp. 29-31 ),
as do the most of the proofs in this chapter, But I have
rearraﬁged the arguvement leading up to the fundamental theorem 3,.2.1
so a8 to use the results of Chapter 2, Not only does this
treatment obtain 3.2,1 with subgstantially less bother, but it also
demonstrates the significance of first treating bounded sfopping
in CN. Having discarded many of Shiryaev's lemmas, I am forced
to an independent proof of theorem 3.3.3.

The chapter concludes in showing that the Sequential
Probability Ratio Test has a Markov representation and its

optimal character is proved,

e 1 BExcessive Funciions

3.1.1 Properties of Lim sN(x)
N-+co

We begin with an example:
Suppose Xy1Xnpeee is a gymmetric random walk on the integers
0,1,.;.,8, where O and 8 are absorbing., With g(x) as shown,

‘81(x), sz(x) are constructed as:



. 3 0]
It would appear that ag Il = e , g (x) - the smallest concave
function lieing above g (green line), MNore precisely we note

the following:

V- A .. .
(i) QI+1g(x) >0 (3; monotonic increasing. So lim QNg(x)
I-r0
exists and equalg, say, s#*(x) = I*(_»c)
N"“oo

(i1) QVa(x) = -g () and Qa(x) > > " g(x,). Ascuming that
gel, Exg"(x1) < e , by monotone convergence:

g*(x) 2>ETB*(X1) and s%(x) > g(x).

(iii) Suppose feI, £(xz) > g(x) and £(x) ;sﬂxf(x1) for all xeE,
Then Qf(x) = max{ £(x) , ? 1) } = f(x) 8o that
£(x) = Q'(x) = Qg(x) = o¥(x) ie, £(x) 2 s%(x).

The existence of lim g’ ( z) and its properties (ii) and (iii)
motivate the definiﬁioﬂjulmven helow,
3.1.2 Definitions
| f ig gaid to be an excessive function ( write fe &) if
fel and f(x) ;=Exf(x1) for all xeR.

Given a function g, the funtion f is said to be an excessive
nmajorant of g if fef& and £ 2= g.
(n.b., The excessive nature of a function is defined in terms of
‘a particular Markov chain and trangition probabilities, It is
always assumed that this is the chain of the optimal stopping

problem, )
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From 3.1.1 (ii) and (iii) it is clear thot s* is an
excessive majorant of g and that if f is any other excessive
majorant of g then £ > s*., VWe call s* the smallest excessive
majorant of g (s.e.m.).

The basic properties of excessive funtions are included in

the following lemmas. [ ref, Dynkin (1963) p, 627 ; Shiryaev pp. 22,29 ]_

3.1.3 Lemma
Let f,g €& . Then:
(i) constant funtions are excessive functions,
(i1) «f + Bg is excessive for all «,8 = O. .
(iii) Ex(f(xn+1)lxn):s £(x,) ie. {f(xn),B(xn)} is a2 super-martingale.
(iv) the exact lower bound of non-negative excessive functions
is a non-negative excessive function,
(v) if sxpExf_(xn)-<<» then %izlf(xn) exists P_- a.s. (possibly +4wo),
proof:

(1) - (iv) are immediate consequences of the definitions,

(v) is the super-martingale convergence theorem.

3.1.4 Lemma

Suppose t,s € CN

with t+ > 8 P - a.s.; then Exf(xs) >Exf(xt).
proofs
To begin, suppose t-s is just O or 1. Then:

N
(2(x,) = £(xy,q)) Py

-

B L £(x) - £(x.) ] =2

x 8 K 0 (s=n)a(t > n)
>0 since (s=n)n(t>n) e F and B f(x ,) <Bf(x)) ina
super-martingale. Now let t = min(t,s4n) for n = 1,2,...,N,
The t, is a valid stopping time and ¢, -~ tn is just O or 1,

-So Exi’(xs) > Exf(xt1) = eee ;.Exf(xtm) >Exf(xt) .
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As a summary of the state of knowledge so far, we know that
SN(X) - g*(x) = s,e,m, of g and that sN(x) < s8(x) ( this is
the key use of the link %o Chapter 2 ). Therefore
s*(x) < s(x) € 8(x).

also, ?s'(:'c) = tmé%'ﬁ,g(zt) sup, B s*(xt) So if it were
possible to show that s*(x) > sup B s*(xt) then we would have
that s*(x) = s(x) = S(x). This follows from a final lemma,

3.1.5 ILemma [ ref, Shiryaev pp. 29-31 ]
Let fef such that Ex[supf"(xn)] <e , Let t,8 € G with
n
t > 8. Then Exf(xs) > Exf(xt).
So in particular, if Ex[sgpg—(xn)] < o, then &*(x) z'ﬁxs*(x
for all ted,

)

proof:

By 3.1.3 (v): 3._1'.1_n' f(x ) = lim f(x ). Assume that £ <KX ( f bounded. )
and let s mln(s n); %= mln(’r,,n) Omitting dP_ throughout,

by 3.1.4: jf(xsn) = ~jf(:ct ) or

n

(s < n)f(xs) * (s zn)f(xn) > j(

802

£(x,) + j( Lty

J (s <°°)f(xs) * ap(s m)f(xn) * I(né s <w)[f(xn) - #lxg)] =

(% <oo)f(x’°) Tl (4 = w)

li

[£(x,) - 2(x;))

f(xn) + j

(n<g t <)

but since £ is bounded the 3rd term on both sides - 0 as n = =, and so

x,) > j L F(xy) + 1in Lt NS

f(xt) + J(t lim f(xn)

= oo)\(g = o

j(s<°°)

/

J (t < )
by Fatou's lemma and the remark that Lim f(x n) = lim £(x,).
. . P + -~ f
This last line is just N f(x ) =B Llxe).
For a general f, let £l min(f,m) which is clearly excessive,
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£f(z) - £(x) and J:zm(hrnim(“ )) = 1im f(x_) siuce if
oo -vo n-co n .
1im f(x ) = @ <o then for large m lim(min(m,f(xn)) = «, and if

1im i’(x ) = o +then l m(min(m :f(vc )) =m, TLook at:

m
J(s PEICICRIE § )+ j(t e - oyl )

and let m - « to complete the proof.

In the particular case of 8 = 1, f(x) > b} f(x ) zﬁxf(xt)

3.2 The Characterization of Value

The fundamental theorem about the value of the optimal

stopping problem on a Markov random sequence may now he stated,

3e2.1 Theoxrem
If Ex[sup g"(xn)]-<¢» then s¥%(x) = s(x) = §(x).

proof: +the direct consequence of lemma 3,1.5.

The result is that there is no reduction in the waluoe of
the sequence when attention ia restricted from extended stopping
rules in C to those in C or even U (}N

Some comment should be made aboub the condition

B [sup g (x )] < ( which we shall write henceforth as g e L(a”) ).

It was used in the proof of 3.1.5 to ensure the conditions of
3.,1.3 (v), Fatou's lemma and Jf"(xn) bounded so that with

P < X we could got [f(xn) - f(xt)] - 0,

j(n < t < o) .

An example shows that it cannot be dropped, For let {xn}
be a symmetric random walk on the integers with g(x) = x. Then
the martingale theory of gambling systems or simpiy the
recurrence s (x) = min{ x‘ , %[SN""(xH) + gN-1 (x-1)] } gives
sN(x) = X, While if 'l;(N)= min{ n : x= N }, then t(N)s C and
Exg(xt(N)) = N. Hence o = s(x) # s*(x) =



17

At best we might hope for 3,2,1 to hold when 3.1.5 is true.

To make this precise one can cook up the following definition.

3242 Definition

A function f is said to be a regular excessive majorant
of g if £ > g and f(x) z'ﬁxf(xt) for all xeE and teC ( ie. for
all t such that E g (x,) <= ). |

Lemma 3.1.5 established that if gc L(A”), then the excessive

majorants of g are regular, Let s; be the smallest regular
excessive majorant of g, Then argueing as before from the
definitions: s;(x) > -?é& ﬁxs§(xt) > %gg ﬁxg(xt) = 8(x).
The reverse inequality is also true even though it can no longer
be obtained by appealing to lim sN(x) = g%(x), since in general
g¥*(x) < s;&(x).

The actual proof is lengthy. So for completeness ve

conclude this section by simply stating the resul.t,

3.2.3 Theorem [ ref. Shiryaev pp. 50-56 ]
If ( as always ) geL then .s§(x) = 8(x) = 8(x).

eg. In the example above, s? >8g =0, S0 s;‘; = 8,

3.3 The Characterization of Optimal Times

Thus far we have been concerned ﬁith determining the value
of a Markov random sequence, essentially through looking at
the limit of sN(x) ag N =+ o, To do this, the neat recurrence
construction of Theorem 2,2.4 was exploited,

However, 2.2,4 also gave an explicit construction for the
optimal tiuwes, tN. It is natural to ask whether there are
stopping rules in C or € which actually attain the value, s(x),

and whether these can be related to the limit of tN.
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It will now be shown that within O this is the case.

3.3.1 Lemma [ ref. Shiryaev p. 34 ]
Suppose that the value, s(x), is such that s(x) <e for
all xeB, Define % = min{ n g(xn) = s(xn) }. Then,

s(x) = s(xy ) dp, + J(t }N)S(XN) dP, for all N.

o sm

proof:
Clearly, s(x) = %%8 Exs(xt) = Exs(x1) since s(x) is the
smallest regular excessive majorant of itself, Hence:

s(x) = j(to= 1)3(151) dP, j(t°> 1)ls(x1) aP_.

But on the set (to> 1), s(x1) >,.g(x1), go that s(x1) = Ex1s(x2),

Thus, s(x) = j - 1)S(xto) dp_ + j(‘bo?; 2)s(xz) dP_
(ete.) = j(t - N)as(x ) P, j(to> N)s(xN) d)?"c

The stopping rule % o Seems to be the obvious candidate for
the limit of tN as given in theorem 2.2,.4, Note that in fact,

L t*, say, exists.

7 > 4N 80 14m 4
As previously, define the conditions

geL(A”) o mean B [sup g"'(x )] <o for all xeB, and

geL(AT) +to mean E [sup g+(x )] <o for all xeE.

The next theorem relates +* and t to the opt:x.mal rule,

3.3,2 Theorem [ ref, Shiryaev pp. 57,58,62 ]
(1) if geL(A"), then % is (0,8)-optimal,

| (1) 1f geL(A*)AL(A7), then t_ = t* = 1in N,
proof:
325;.)3.3.1 8(x) = { (t - N)ss;(x ) aP_ !(toé N)S(XN) dP,
j ('l: - N)g(x ) aP, ](t S N)naﬁ g(x ) dP
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from the definitions of % and s(xN). Now apply 11m to the

\...w
above using Fatou's lemwa and the condition geL(A ) to deduce:
8(x) < [ gl{x, ) ap_ + J:Lm g(x ) dP_

DR ICX T M =) B
E_alx, ).
X to

(ii) For the first inequality we 8t111 only assume geL(a™),

- — > ] o N_.
t* <t : If t#= n then there exists an N such that 4t =

So
g(x;) < 8" (x,) for i =1,...,n-1. This then implies that
g(xi) < s(xi) for i = 1,...,n~1, and hence that t = . |

If t*= o then for a given k there exists an N such that
g(xi) < sN"'i(xi) for 1 = 1,...,k. But sN"i(xi) < s(xi) then gives
g(xi) < s(xi) for i = 1,...,k. True all k. 8o t_ must equal =,

To prove the reverse inequality we need geL(A™).

t* >t ¢ If t =n then o'(x.) < s(x ) i‘or.i = 1,..0yn~1, Under

gzL(AT) a¥ - 5 and so g(x ) < s l(x

N

i) fori = 1’aot’n“1 and
large 2znough N, Hence t° 2 n and so t# = n.
If t = o then g(xi) < s(xi) for all L = 1,... Therefore,

given an n, tN = n for large enough N. Hence t#= o ,

3,3.3 Corollary [ ref. Shiryaev p. 58 ]
If geL(AY) and 1im g(x ) = -~ P - a.s., then
N0 n x
t, is (0,8)-optimal,
proof:
If Px(t0= © ) >0 then 8(x) = -, But 8(x) 2g(x)>-w.
So Px(to= o ) = 0 and we have the existence of a (0,s)-optimal rule,

In general, a (0,s)-optimal rule may not exist, For
example, if B = { O 1,..,... }, ..\.c = i+1|xn_1= i) =1, and
g(x) = x/(14x), then s(x) = 1, The time t#*= o 4is (0,3)- optimal,
but there is cléarly no (0,s)-optimal rule,



20

The best that can be achieved in C is often just a rule
arbitrarily close to » (0,s)-optimal one. The Tollowing theorem

states the conditions for a (g,s)-optimal rule.

3.3.4 Theorem

If geL(AY)AL(A™), +hen the stopping time defined as
b, = min{ n 3 g(xn) ;,;%(xn) ~ ¢} is (e,s)-optimal.
proof:

Clearly t >1;€, so that by 3.1.5:

Exg(xte) }ﬁxs(xte) - € >"E'xs(xto) - € )ﬁxg(xto) - &g = 8(x) - e.
This shows that %, is (e,%)-optimal. Also, s(x) >§xs(xt ) >

~ )
Exg(xto) = 8(x) gives:

EL g(xto) :t,<e] + E[Tmeglx) :4,=0] =

El s(xto) 1t <w] 4 E,K[ lim s(x,) ¢ t, =« 1.

Here the first terms on either side are equal and certainly
1im s(xn) >1im g(xn)a The conditions imply that
Px(]-.-fm s(xn) =% ) = 0, Hence we deduce that
Px( t,= and 1in s(:cn) > Iia g(xn) ) =0,

Now t,= e implies that <+ = and that g(xn) < s(xn) - €
for all n, ie. that Tim g(xn) < 1im s(xn). Therefore,

Px( b= o ) =0 and t, is {e,8)~optimal,

Note that in the line above showing t_ %o be (e,8)~optimal,
we could deduce Exs(xt ) - € = 8(x) - € without assuming geL(A™).
e
This can be done by vroving lemma 3.3,1 and theorem 3.%.2 (1)

for te in exactly the same way as they were proved for to.

This now concludes the characterization of the solution

of the optimal stopping problem on a Markov random sequence.
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3.4 The Optimal Character of the Sequential Probability
Ratio Test

Assume that ¥ysXppees are independent, identically
distributed samples from some density f£. We wish to decide
between the h&potheses, HO: f = fo and H1: f = fi' using a
sequential decision procedure as outlined in 1,.,2.2, The cost of
taking each éample i3 1 and the cost of an incorrest decision is:
a when Ho is true and we choose H1 and
b vwhen H1 is true and we choose HO‘

Using the procedure (6,t), let a;(8,t) = Py ( reject Hi) i=0,1,

Assume further that we know HO o he true with prior
probability ® so that r(x,56,t) = n[aao + Eot] + (1-ﬂ)[ba1 + E1t]

is the expected logs which we desire to minimize.

3.4.1 Theorem [ ref. Chow pp. 46-49,105; Shiryaev pp. 124,125 ]

'ﬂfo(11 )"‘fo(xn) =
ﬂfo(x1)---fo(xn) + (1-n)f1(x1)oo-f1(xh)

Let T, =

the posterior probability of Ho given Xy 9XpseeesXpo Then the
sequential decision procedure (6,%) which minimizes the risk,
r(n,8,t) is described by: .

t =min{ n : n e [0,z]U[%,1] } where 0<zr<T®<1 and
.accept Hy if ma > (1-1ct)b

accept H, if =8 < (1~ﬂt)b.

The procedure is to continue sampling until the posterior
probability of H0 is sufficiently close to 0 or 1 and then to
chooge the hypothesis vhose rejection risks the greater loss
under this probgbility.
proof:

For fixed t the form of 6 is easily found. The part of

the loss depending on & is naey + (1-n)ba1 =
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( omit dx;e++dx ~ in %the following integrals )

(s ] . s
= 2,4 ma j folxg)eoof (x,)°  + (1-n)b £4(x) ooy (x,)
n=1 {t+ = n; accept H1} {t = n; accept Hy}

>-;:1\ tmin{-nafo(x1)...fo(xn) » (1-m)vf, (x,)e0-2,(x,) }
=.§§ [mln{ T8 (!—n Yo }][nfo(x )...fo(x ) + (1-n)f (x )eoo (x, )]
n=1 J{¢ =

H =
naa, + (1-—1:)boc1 for the & which accepts H? G (1~nt)b.

Now un = nn—1f0(xn)
o T Bolxy) + (w01 (x)

’

80 ®,M,,%,,... 18 a stationary Markov sequence; Fné B(x1,..,xn).
The loss is Eﬂ[min{ amy , (1~nt)b} ~ %] and so in the notation
of the chapter we can take:

(n,O),(n1,1),(n2,2),... a stationary Markov sequence with state
space E = { (n,n) : 0<n <1 andn =0,1,.,. }. Then,

g(r,n) = <h(n) - n where h(n) = min{ an, (1-n)b }. And we are
interested in finding iup E(n O)g(nn,n) = 8(n,0). [ note

that lim g(nn,n) = - c precludes t which take the value e )

Since geL(Af), theorem 3.3.2 states that a (0,8)-optimal
t exists and is given by t = min{ n : g(n,,n) = s(n ,n) }. This
optimal t is the least n such that:
=h(m ) - n.>-g§8 By n\g(nn+t,n+t) =
mpmm[m(aa+B(MM)—(%nMab+D(tmﬂLor
tﬁg 1gast n such that: _
h(nn) %gg igf [n (ega + Egt) + (1-m )(eyb + B t)] = r(i, ), say.
Not surprisingly, this is just to say that the optimal %
stops sampling when for the first time the expected loss of
stopping now is less than the expected loss of all procedures

which continue.



25

The quantities, aO,al,Eot,E1t, are determined for fixed
6,t, and are therefore independent of mn, Ve deduce that
r(n) is the infimum of linear functions of % and hence is
concave on [0,1]. Concave functions are continuous. The

graphs of h(n) and r(n) appear as:

r(=n)

h(xn)

i
| ]
| |
| |
! |
' |
| i

1 n

©
ay

Clearly, t = min{ n
t

h(TCn) < r(nn) } is equivalent to
n ¢ [0,2]u(%,1] L

min{ n
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Chapter 4. The Optimal Stopping of Random Sequences

Having characterized the solution to the optimal stopping
problem on Markov random sequences, we have a good idea of the type
of theorems which are likely to prove true when considering the
problem on geﬁeral stochastic sequences.

Given a stochastic sequence, {zn,Fn}, we might define

X, = (z1,22,..,zn) and g(xn) = z_. So that in a sense, every

n
stochastic sequence hus a Markov representation, even though
the state space and transition probabilities may be far too complex
for direct treatment. This thought suggests that the results of
Chapter 3, such as " s =8 " or " a (0,8)-optimnl time exists ",
should carry acrosgs to general sequence results, for they
contain no statemenlts about the form of the Markov sequence
involved. This chapter describes the form taken by the tﬁeorems
of Chapter 3 when extended to the general context.

The Two-armed Bandit Problem of 1.1.3 i’ an example in the
sequential design of experiments which can be solved through
the use of optimal stopping times. As in many of the more complex
problems, general theory lends only the first insights, while
deeper investigation proceeds with reference to the specific
features of the problem, The solution to the Bandit Problem is

a nice example of the way stopping times feature in one area of

contemporary research.

4.1 The Characterization of Value
N~eo

4.1.1 Properties of Lim YN

Just as in 3.1 we examined the limit of sN(x) ag N - oo,

so here we look at the limit of the random variable, Yﬂ, defined
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in Theorem 2,1,2, Ve note the following:

(1) Yg is the pointwise supremum of the set of random variables,
{ B(z,|F,) 1 tec) }, except poseibly for a set of point with
probability zero, This is contained in the proof of 2.1.2. Ve

write: YN = ess supy u(Z |F ) [ essential supremum 1.

n taC
(ii) Yg > Yg—1 monotonic incresing. So lim YN exists and
N-oco
equals, say, Yg.

(iid) Yg = max{ z_ E(Yn+1|F ) } so that by monotone convergence,

Y#* = max{ z I'.(Yn+1|F ) }, ie. Y* >z and {v# Fn} is

a supermartingale,

(iv) Suppose that {ﬁn,Fn‘} 1s a supermartingale such that B >z
for all n. Then, By > zy ‘Yg = max { Zy1 'E(YglFN 1) } <
max { BN#1 ’ E(BNIIN 1) } = ﬁN T Continuing the induction, we

N

£ind Yn < Bn for all N. So _Y; < Bn.

It is now clear what should take the place of excessive

functions considered in Chapter 3.

4,1.2 Definition X

The super martingale {B F } is said to dominate the
stochastic sequence {z ,F } if B, > 2z, a.s. for all n. If all
other supermartingales which dominate {zn,Fn} also dominate
{ﬁn,Fn}, then {Bn%Fn} is said to be the smallest supermartingale
dominating {zn,Fn}.

By (iii) and (iv) above, Y* is the smallest supermartingale

dominating Z,- We also define:

Y. = ess sup E(ztIF ) and Y _ = ess sup E(ZtIFn) where it

n n
teC teCn

is assumed that z, ‘takes the value 1im z, on the set (% = o),
oo
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~ an
Clearly wsyY, s Ve If E[sgp zn] << then we will show that

where the last inequality follows

Y. < ess su B(yz|r ) < v»
n te'g t'"n n

n .
from the lemma below, exactly paralleling 3.1.5.

4.1.3 Lemma

Let {Bn,Fn} be a supermartingale satisfying the condition.
A”: E[sup. Byl <o . ILet t,s e'c‘:‘ with t > s. Then
E(BtIFn) < ﬁ'(ﬁ ]F ) So in particular, if B[sup z ] <eo
then v )E(Y*IF ) for all trc .
proof:

Temma 3.1.4 becomes: 1if t,8 €Cy with t > s, then
E(Bt|FN) < E(ﬁSIFN) by an exacily analogous proof.

Assume Bn is a.8. bounded above. The supermartingale

convergence theorem shows that lim B

exists a.s. if supEﬁ; <o ,
1~*c0
which is implied by A™.

n

Let AeF . Then as in 3%.1.5 we can get'

Jo <oms®e | (b <ant™ [ 106 = ornto = o1t

* j(N <t <“)nl(lBN - Py) I(N <s <°°)nA(ﬁN - Bs)

Apply lim to both sides. ILook at the integrals on the right hand side.
N-oo
The second is > lim j > f lim B since
InA °n [ Jod = X
A” implies (BN) uniformly integrable, which implies Fatou's lemma.

The third is > -1lim J B;I -~ 1lim J Bt « Both limits
( )nA ( Jnk

here are zero since B}} and B'_; are both bounded by variables with
finite expectation (ie. %-r < sup B;) and P(N t <) - 0,
4

The fourth is > -lim j B; - lim j B~ . Again both

( oA ( )ad'®

limits are zero.

As these results hold for all AeF , L.(s |F ) = E(BtIF ).

The boundedness assumption is relaxed just as in 3.1.5.
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The result to parallel 3.2.1 follows immediately: if.

n
Note that for t,s ecn the lemma may he proved under the

- e Y = ¥ : =3
E[sgp zn] <e then Yp=Y =Y and hence s = 3.

weaker condition lim J B“I 0.
(t>N) 7

In order to include all stocastic sequences in one theorem
the appropriate class of supermartingales is defined. The general
characterization of value then follows.

401 04 Definition
The supermar‘l;ingale {B ,F } is said to be regular if for all
teC ﬁﬁt exists and E(BtlF ) < B, on the set (t >n).

4.1.5 Theorem [ ref. Chow pp. 66,75-76,81 ]
It Ez" <e alln (as assumed) ‘then:
(1) Y = Y the smallest regular supermartingale dominating Z,
(11) v = max{zn, E(Y 4 (%)}
(iii) s = 8 = EY1
proof: -
(1) see Chow pg. 81 (Theorem 4.7)

(ii) Tet teC . By definition E(z |7 - <Yn+1 on (t >n). So
E(ztIFn) s B(Y 4 IFn) on (t >n)
= z, on (t =mn). Thus Y, max{z B(YnH]F )}

Conversely, Y > E(z;|F,) for all teC ., . Take t, such that
E(ZtiI.FnH)"YnH' Then Y, > E(B(z, |Fn+1)|Fn)/E(Yn+1|Fn) by
- monotone convergence. Clearly Y n®

(iii) immediate

4.2 The Characterization of Optimal Times

The two conditions which again play an important role are:

A*: Blsup zz] <o and A7: E[sup z;} <o . The results which
n n
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can be proved mimic 3.3.2 and 3.3.3. In summary:s

4.2.1 Theorem [ ref. Chow p. 82 ]
0=y } <then
(1) if A% holds then t » i8 (0,%)-optimal

(ii) if A* and 4~ held then = min{ n : zn.;aYg'} - to 8.5,

Let t = nin{ n : z

proof:

W m= ]

.
o (t.> 1)

2 E F =
j(to==1)1 * j(toaz (2l%)) J(*co=1)z1 ! I(t 2)2

veo = j(to<IN)ztO + !(t

<llmj sup z2. = Ezt.
. o

> N)nzN o

+
~~
ct

(t,< N) %o
(11) thptx say
If +t¥= n then there exists N such that tN= n. z£<'Yi i=1...n-1

80 2, <Y; i =1...n~1. Thus %> n. (similarly t®= = implies = o)

i
If t = n then z2s<Y¥; i =1...n~1. By A~ there exists large N so

2,<Y; i=1..0-1. Thus t¥>n. (similarly t = implies t*= co)

4.2.2 Corollary

If A" nolds and lin z = - o then %, is (0,8)-optimal.

As a parallel to 3.3.4 we state a theorem on (e,s8)-optimal
times. For variety it can be put in a form where the condit-ons

do not explicitly mention AY or A”.

4,2,3 Theorem
It ¢ is (0,8)~optimal and 8 <% then t = min{ n : z>Y - € }
is (e,s)~optimal. .

proof:

J] J Y :s
By s I(t€= 1)(Z1 te) ¥ j(tg 1) !
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I(ts< 1)(Z1+ ©) I(t = 2)E(Y2|F1) s !(’c < 1)(z1+ e) + j( Y2

~
g~ € c

€ 0o } (z, + ) +

Y
: J
(t,<N) -Ye (2 W) N

S B(z, ¢ t <o) + eP(_ <) + B(Iim Y, : t.= o) Putting € = O
te” € € o N €

B s 5) 3] = % bt 3
we get LY, § LYtO as z, Yto on (t < ©), But Ev, },EYto since
{Yn} is its own smallest dominating regular supermartingale.
Hence Tz, = BEY,= BY, <. This implies that Tim Y. > Iim z_ only
to 1 to n n
on a set of probability zero. However to= * whenever t.= o and
zn< Yn- € all n implies 1lim z, < lin Y, Thus te= © ywith
probability zero and the above line gives s = 'EY1 < Bz + e
e

The characterization of the solution to the optimal stopping
problem on general stochastic sequences is now compieteo The
problem differs on Markov sequences and general sequences only
in that the latter requires knowledge of the entvire past. We

summarize the answers to the questions posed in 1.3:

(a) & alvays satisfies s = max.{ Zy zgg Ezt } and undex
E[sgpz;] < can be computed as the lim:?.t of the value on the
bouxided problem, sN.

(v) (0,8) and (e,s) times exist when 8 < and E[s%pz;] <o
and a (0,s)-optimal time exists if in addition z, ® - .

(¢) ™Te nature of (0,8)-optimal rules are always " stop when
for the Pirst time the reward attained by stopping is greater
than the best that could be expected to be obtained from going

on ",

4.3 Solution of the Two-~firmed Bandit Problem

Suppose we have the option of playing one of two bandit

arms at each time instant. Arms 1 and 2 pay 1 unit with



30

probabilities o, and p, or O units with probabilites 1--p1 and
1-p2 respectively.

In order to keep the expected payoff finite we discount at
a rate o where 0 < a < 1. This may be thought as equivalent to the
situation where there is a probability 1- « ‘that an arm will
at any time instant become inoperable, never again available for
rlay. The expected reward we desire to maximize is then
E{§a1-1xi}, where x; is the reward received from the arm that
is ;hosen and played at time i.

Of interest is the optimal design of play vhen one or both
of Pysp, are only known to have been chosen from some prior

distribution. We examine the two cases in turn.

4.3.1 Theorem

If p, is Xmown and p, has prior density f_ on [0,1] then
(i) There is an extended stopping time +* such that the optimal
play is: pull arm |1 for 1,...,t*=-1 and then pull arm 2 at all
times t* and beyond.

1
(1i) The expected reward is n{nﬁﬂ -1, 4 o151,
1 F-g 2
(1ii) %* can be written as t* = min{ n s v(fn) S po } vwhere £,
-«
is the posterior density of By after n plays on arm 1 and is

a function satisfying »(f) = f;x;.g Ef{ %ai'i xy + ot 2{£)}.

proof:

(1),(311) As in the discussion of the sequential probability ratio
test it is easily seen that {fn} is a Markov chain. If the
optimal policy ever recommends playing arm 2 it must continue to
do so ever after since that decision is taken by looking at fn
and play of arm 2 leaves f fixed. Hence we wish to maximize
E‘tﬁa x; + %:'.ai "o, = E{tﬁ_j i- 1x +_o£___p} in G.

Theorem 4.2.1 (i) applies so that an optlmal t* does exist.
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;
Vict

(141) Tet s (£) = sup B,{ F etz + ab p}, vhere the x1'a
€0 1 T- 1

are taken from play on arm 1 (with prior density f for p1)° As
the supremum of lincar increasing functions of P, sp(f) is

convex, continuous ardincrea sing in p on §0,1]. Clearly

so(f) = f{zai 1x } = 1 where §1= jou £(u) du. Also,

8,(£) = .1_1_ . Pictorially this looks like:
Hf-a

1
| 1-¢ expected reward achieved
— by play on an arm with

success probability p.

expected reward achieved
by play which plays a%t

»(£) least once on arm 1 (p,
g has prior density f£),
1-a| %nd tnen optimally goes
- — > 0 play on an arm with
0 (1-a)»(£) P 1 success probability p.

Hence there is a unlque (P) such that 8(4 a)v(f)(f)

sup Ef{:Z}ai -1 1 + a? (£)} = 2(£). It is olso clear from 4.2.1
ggg the plcture that it is optimal in the two-armed bandit
problem to stop vlay on arm 1 if - zsd(f ) and to go on for

at least one more play on 1 if P2 <:p(f ). Then

= min{n:'v(fn) P2} 18 (0, s)- optimal.
Fp—r

. 44342 Definition

The function defined by being the unique solution of
v(t,) = B, {zai "xg + «Pw(£)} and t*= min{nsa(z,) S w(£,)},
is called uhe dynemic allocation index (DAI) of the bandit arm
(from which the x; are obtained). The DAI, »(£), of an arm
whose success probability has prior density £ may be thought to
be the success probability of a second arm against which optimal

play would give no preference as to which of the two arms to play;



32

It is rather an amazing fact that the optimal policy for
playing two arms for which neither Py or p, is known can also

be described in tcrms of the DAIs of the arms.

4.3.3 Theorem { vef. Gittins and Jones; Gittins and Nash ]
Suppose that Py and p, are known to have prior densities.

" i .
fl and 1’(2) respectively. Let f; be the posterior density of Py

after n plays have been made on arm i. Let 2131' = v(frji). VIf
then at time n there have n, and n, plays on arms {1 and 2
reépectively (where ny+ n,= n-1), then it is unquely optimal %o
make the nth p»ull on the arm for which vii is greatest.
proof:

Ve will refer to the above described playing. policy as
the "DAI strategy". The proof follows several stages:

(1) Given e >0 No such that for all N ;.No

for n=N+1,... and optimally subject to this constraint for
n= 1 gevey

. jreward of the strategy that plays according to the,'DAI strategy

> E(reward of any other strategy) - &, This 1is because

Zal ~1 < e for large enough No.
NO
(2) Let t- min{n > 13 2 <pm} then by 4.3.1

<
z &, {Z}ai1 +oc,u.} as)A;' Y.

(3) Let m= mgx{'z%} and let ti= mni.n{n>0:'1l§‘1 <pm}. Let By 4 be
the expected reward of the strategy which plays arm i for times
1,00.,4%, then arm § for times ti+1,...,41+tJ, and the DAT strategy

thereafter. Call this strategy si;]’ Thens
: 1 2

t 1 % ~.
E,, =E{Z ar"1xl, + ab Z‘. a8“1x§} + B(reward beyond 14 1;2-9-1)
12 5 ]
By, = E{Z a3'1x2 + ab 41,, 5 o 1} + B(reward beyond 2+ % 1)

Since the values of v1 and :)2 at ‘t1+ tzare the same when 812 has
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been played as vhen 8?1 has been played, the final terms in
the two expressions above are equal. Hence E12~-E21 =
t2 <

1
2 t 1
b r-1_1, _ Ty, 8-1_2, S
B{(1-a )%ﬁa xr} B{(1-ax )..1/_.& xs} =

i
©

2 1 1 2
E{(1-a® )(1-.(3zt e} - B{(1=® )(1-a® ) pu} as

1= > 2
YV, M=V, by (2) arove.

i, 812 and 321 are both simply the DAI strategy.

(4) Vhen 7)2, =P
Hence (3) implies that it doesn't matter which arm is played first.
Otherwise, interpretation of 812 and 321 tells us that the
strategy which plays the arm with smaller DAI once and then the
DAI strategy thereafter is strictly bettered by the strategy
which plays the arm with larger DAI first until its DAI is less
than its intial vélue, then the other arm once, and the DAI strategy
thereafter.
From not more than NO applications of this obsexrvation
linked one after another in the obvious fashion we deduce that
E(reward of the DAT strategy) > B(reward of any other strategy) - €.
The DAT strétegy is optimal hecause € 1s arbitrary. It is
uniquely optimal because the inequalities which hold in the

above arguement are always strict.

Note that the proof is easily generalized to the case of

finitely many arms (the Multi-Armed Bandit Problem).
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