CHAPTER 13

MONOTONE OPTIMAL POLICIES
FOR LEFT-SKIP-FREE MARKOV
DECISION PROCESSES

Shaler Stidham Jr. and Richard R. Weber

13.1 Introduction

In a previous paper (Stidham and Weber [9]), we considered a variety of modcls
for optimal contro] of the service rate in a queucing system, in which the objective
is to minimize the limiting average expected cost per unit time. By standard tech-
niques, we showed how to convert such a problem into an equivalent problem in
which the objective is to minimize the expected total (undiscounted) cost until the
first entrance into state zero. Under weak assumptions on the one-stage (service
plus holding) costs and transition probabilities, we showed that an optimal policy is
monotonic, that is, a larger service rate is used in larger states. In contrast to previ-
ous models in the literature on control of queues, we assumed that the holding cost
was nondecreasing, but not necessarily convex, in the state. A common assumption
in all the models was that services take place one at a time, so that the state tran-
sitions arc skip-free to the left: a one-step transition from state i to a state j < i — 1
is impossible. Many queuecing models have this property, including all birth-death
models, as well as a variety of M/GI/1-typc models, including models with batch
arrivals, phase-type service times, and LCFS-PR queuc discipline.

Julian Keilson introduced the concept of skip-frec transitions in a Markov process
in [2,3]. (He used the terms skip-free in the negative (positive) direction where we
use skip-free to the left (right).) In these pionecring works, he cxploited the skip-
free property in the context of descriptive models for both discrete-state and
continuous-state Markov processes. Exploitation of the skip-frec property in control
models (that is, Markov decision processes) may be found, for example, in Wijn-
gaard and Stidham [11], who developed efficient algorithms for calculating optimal
policies in right-skip-free MDPs, in addition to the already-mentioned paper by
Stidham and Weber [9], which focuses on left-skip-free MDPs.

The significance of left-skip-free transitions in the queueing control models of {9]
is that the problem of optimally moving the system from state i to state () can be
decomposed into two separate problems: first, to move the system optimally from
state / to state i — 1, and then to move the system optimally from state i — 1 to state
0. This decomposition was exploited in two ways in [9] to prove monotonicity of an
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optimal policy: (1) to facilitate simple coupling or pairwise-switch arguments in the
casc of additive transitions; and (2) to construct a proof based on downward induc-
tion on the state variable in the case of nonadditive transitions.

In the present chapter, we extend the analysis in [9] to a general class of Markov
decision processes with left-skip-free transitions. We focus on the problent in which
the objective is to minimize the expected total cost until the first entrance into state
zero. The equivalence to the minimum-average-cost problem follows by arguments
similar to those in [9] and will be left to the reader. Our basic results are presented
in the next section, followed by applications in Section 13.3.

13.2 The Model

Consider a discrete-time Markov decision process on the state space S = {01, ...}
The action space is A = [0 @], where a < eo. When the process is in state 7 € S and
action a € A is taken, the process makes a transition to state j with probability p,(a).
We assume that transitions are left skip free. Thatis.p (@) =0,0<j<i—1.ae A.
There is a one-period cost (i, a). We assume that (i, a) is nonncgative and that
p,(a) and c(i. a) arc both continuous functions of « ¢ A for cach 0 <i <j+ 1.The
objective is to minimize the expected total cost until the system first reaches state
0, from cach starting statc i > 1.

Let v(i) denote the minimum expected total cost until the system first reaches
state O, starting from state i,7 > 1. Then it follows {rom the general theory of Markov
decision processes (cl. [7.6,1]) that v satisfies the following optimality equation
(i>1;v(0)=0)

\'(i):mii1{(‘(i, a)+ 21)1,(41)\'(]')} (13.1)

j=i

Morecover, a stationary optimal policy may be constructed by choosing in state 7
(i>1) an action a € A, denoted a(i), that achicves the minimum in (13.1).To resolve
tics. we shall select the largest such action a.

Our goal is to find sufficient conditions under which this optimal policy is
monotonic, that is, a(i) is nondecreasing in i > 1. We shall find it convenient to
work with an equivalent transformation of the optimality equation (13.1) that
exploits the left-skip-free transition structure. To this end, let z(J, i) denote the
minimum cxpected total cost until the system first enters state i, starting {rom
state j,j > 72 0. (Again, z(j,1) is well defined, since the costs are non-negative.) Thus
z(7,0) = v(j), and it follows from the lcft-skip-free transition structure of the system
that

v(j) = 2(j k) + k), >k =2 0. (13.2)

(Because the transitions are left skip free. the system must visit each state & <j on
its way from state j to state 0. An optimal policy must thercfore minimize both the
cost to go from j to k and the cost to go from k to 0.) Now subtract v(i — 1) from
both sides of (13.1) and use (13.2) to obtain
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i i—1)= ll’lri/lﬁl{(f(i. a)+ip,,(a)z(j. [— 1)},

=t

which in turn is equivalent to

Wi i-1)= Tri/p{c(i, a)+ Y gi(@z(j.j—- 1)}. (13.3)
=i
where gi(a) := Zi_; pi(a). Note that the optimal action a(i) for sate i also attains the
minimum on the right-hand side of (13.3).
Recall (see [9,10]) that a function f(i.a) (i 2 0,a € A) is said to be submodular
in (i, a) if f{i,a;) — f(i, @) is nonincreasing in i 2 0, for each a, € A, a, € A.such that
a-> > a,. The largest minimirzer,

a(i)= max{a e A:f(i.a(i) = mri4n fa. a)},

of such a function is nondecrcasing in i. Thus, to show that a(i) is nondecreasing in
i, it suffices to show that the quantity in brackets on the right-hand side of (13.3),

J(i,a)=c(i,a)+ i gil@z(j.j-1),
J=l

is submodular. Below we present a lemma which gives sufficient conditions for the
function J(i. a) to be submodular. We shall use the following conditions:

(C1) c(i. a) is submodular in (i, a).
(C2) gi..m(a)is submodular in (i, a), for each m = 0.
(C3) giima) is non-increasing ina € A foreachi>1,m > 0.

Lemma 13.1. Assume Conditions (C1)-(C3) and suppose z(k, k — 1) is nonnegative
and nondecreasing in k > 1. Then J(i, a) is submodular in (i. a) and hence a(i) is
nondecreasing in i > 1.

Proof. Let f(i.a) := X7,g,{a)z(j,j — 1). Let a; > a,. Then

flioa)~ G a) =S (g (@) - g (a )zl j— 1)

= D (Guim(@) = grim(@Nz(i+m i+ m=1)

m=0

2 Z(gwl‘uhm([b ) — Hiv i ltrrx(al))z(i+ m. i+ n— 1)

m=0

2 Z(E’m_u o (@) = avinon (@ )2+ L+ m, i+ )

m=0

=fli+l,a)- f(i+1,a)
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The first inequality follows from (C2). since z(i + m, i + m — 1) 2 0. The second
inequality follows [rom (C3),sincc z(i + mi, i +m = 1) < z(i+ | + m. i + m). Thus,
f(i.a) is submodular. Submodularity of J(i. @) now follows form (C1), since the sum
ol submodular functions is submodular. W

In what follows we shall assumc that (C1)—(C3) hold and makc lurther assump-
tions on ¢(i. a) and g,(a) that will enable us to prove that z(j.j - 1) is nondecreas-
ing. (Nonnegativity of z(j. j — 1) follows immecdiately from the assumption that
c(i.a) 20 for all i, a.) [t should come as no surprise that monotonicity of ¢(i. a) in
i will be a basic assumption.

(C4) c(i.a)is nondecreasing ini > 1 foralla e A.

Our first result is for the special case of additive transitions. In this case, a simple
coupling argument cstablishes monotonicity of z(j.j — 1). To this end we introduce
the following condition, which is a strengthening ol (C2).

(C2) There exists a function ¢, (a) such that p, ..(a) = g.(a). independent of 7>
I foralm>=0.ae A.

Additive transitions, of course, are characteristic of many models of queuces and
inventories, in which state transitions are duc to inputs and/or outputs of, for
cxample. customers, work 1o he done. or work in process.

Theorem 13.1. Assume (C1). (C2). (C3). and (C4). Then J(i. ay s submodular and
hence a monotonic policy is optimal: that is. a(i) is nondecreasing in 7 2 .

Proof. Tor a stationary policy . let 2%(i. i — 1) denole the expected total cost to go
from state i to state i — 1 following policy m. Then z{i.i - 1) = min, J"(i.i — 1). Now
consider an arbitrary i 2 | and suppose mis optimal. That s, mtakes action a(j) when-
cver the process is in state j.j > 1. Let &7 be a stationary policy that takes action
a(j + 1) whenever the process is in state j.j > 7. It follows [rom (C27) that we can
couple cach sample path starting from state 7 + |, following . with a correspond-
ing sample path starting from state 7. following 7’ in such a way that the former
sample path is in state j + 1 if and only if the latter sample path is in state j (j 2 7).
Since mtakes the same action in each state j + 1 (namely, a = a(j + 1)) that & takes
in state j, and ¢(j + 1.a) 2 ¢(j. a) by (C4). it Tollows that the total cost along the
former sample path is at least as large as the total cost along the latter sample path.
and hence (i + 1.0) 2 z"(i.i — 1). Thercfore, we conclude that

i+ L=+ 2" i-D2zii-1).

thus establishing that z(i.i — 1) is nondecrcasing in 7 2 1. Since (C2’) implies (C2),
the theorem now lollows from (C1)-(C3) and Lemma 13.1. N

Now we turn our attention to the more general case of nonadditive transitions.
Here we shall establish monotonicity of z(i. 7 — 1) by a downward induction on i.
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To this end, we shall find it convenient to work with another transformed optimal-
ity equation that is cquivalent to (13.1) and (13.3).
First obscrve that z(i,i — 1),i 2 1 satisfies (13.3) il and only if, for all a € A,

(@i i-N < cli )+ Y g (@2, j - 1).

el

or equivalently,

Wi i-N< [('(i, a)+ 2 gilayzj, j— 1)]//),‘,_ (a).

p=is !

with cquality for a value of ¢ € A that achicves the minimum in (13.3). (Here we
interpret the right-hand side of the incquality as being cqual 10 +eo il (@) = 1)
Thus (13.3) is cquivalent to the following optimality equation:

Wii~1)= min{ﬁ(i. a)+ Z g.la)z(j. j— I)}‘ (13.4)

acd vt
where ¢(i. a) = c(i. a)lp,, . (a) and g (a) = g,(a)p,, {(a). Once again, the optimal
action a(i) for state i also atiains the minimum on the right-hand side of (13.3).
Note that, in contrast to (13.3). (13.4) expresses z(i, { — 1) recursively in terms of
c(i+ b, z(i+2,i+ 1), ..., which makes it ideally suited for a proof by downward
induction that z(i.i — 1) is nondccreasing in /.
We shall usc the following condition:

(CS5) Therc exists a nonnegative function b(j),j 2 1. such that

ci.ay=cli=1.a)> i(é voa) =g (a)) b(j). fToralliz2 ae A

Jeict

Remark. By itself, (C5) is innocuous. [t is satisfied, for example. by g(j) = () when
¢(i.a) = (i — 1.a) 2 0. In our applications. however, we shall also require that
D(j) be an upper bound for z(j.j ~ 1) (cl. Lemma 13.2) below). in which casc (C5)
becomes nontrivial. In that context. it is the key to our proof that z(j.j— 1) is monot-
onic. [t may thus be viewed as a weak sufficient condition for a generalization of
stochastic monotonicity of the transitions, since z(/.j ~ 1) is a (cost) generalization
of the mean first passage time from state j to j — I.

The following lemma will form the basis for the inductive step in our (proof that
z(i.i = 1) is nondecrcasing in /.

Lemma 13.2. Assume (CS). Let i 2 2 be given and suppose 0 < z(j.j— 1) £ b()) and
dj+ L2z, - forallj2iThen z(i,i— 1) = z(i = 1.7 -2).

Proof. Since 0 < z(j.j - 1) < (). (C5) implies that
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cica)~i=1,a)= ELQFH,UU—RAHD'JL/—V

J=ivt

Z (8, (@) =g, (aNz(j. j= 1) I

for all a € A. Setting a = a(i) and using the fact that (. j - )2 z(j - L.j - 2) lor
all j 27+ 1.1t Tollows from (13.4) thal

iD= i(ia)+ Y gl j—1)

jon

C(i 1) Zu cola)z(foj =)

il

c(i—-1l.a)- Zg,,,lu) 2)
=c(i=l.a)+ ZQ,,H) -0

2z —'2).

thus cstablishing the desired result. W
To complete the inductive proof, we need to accomplish two tasks:

1 (ind a function h(+) satisfying (CS) such that bh(j) 2 z(j,j - 1).j2 1. and
. find a state i = k& at which to start the downward mduc(lon.

To be uscful in applications. the upper-bounding function h(j) must be casy to
calculate a priori and be as tight as possible. Similarly. the starting state & for
the downward induction must have the property that we can establish a priori that

2+ 1)) = z(j,j— 1) forall j 2 k. To a large extent, the methods for accomplishing
these tasks tend to be specific (o the application. We shall give itlustrative ecxamples
for problems with certain types of specific structure. focusing on processes with
asvmptotically additive transitions:

(C6) There exists a function g, (a). m = 0, and a positive integer & such that, for all
izl.ae A pa)=q ,(a) forall j 2 max{i - 1 k).

Note that under (CO). pin(a@), m=-1.0.1,2..... ts independent of 7, for i 2 k.
Note also that (C6) implics that g, (a) = X3, .q.{a). for j 2 max|i - 1. k].

Using the same coupling argument as in the proofl of Theorem 13.1. we can prove
the following lemma.

Lemma 13.3. Assume (C4) and (C6). Then z(j+ 1. j) 2 z(j.j— 1) Torj > k.

Thus, when (C4) and (C6) hold, we can start the downward induction at i = k. 1t
remains to find a function h(j) such that z(j. j ~ 1) < b(j).j < k. For polynomially
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bounded onc-step cost functions, this can be done utilizing the asymptotically addi-
tive transition structure. To keep the exposition simple, we shall present this
approach in detail for the case of a lincarly bounded ¢(i, @), and then sketch the
extension to polynomially bounded ¢(/, a).

(CT) There cxist nonnegative constants ¢ and & such that ¢(i, @) < ¢ + h-i. for all
iz2l.ae A.

First note that z(k.k — 1) < £"(k. k — 1). when T is a policy that uses the maximal
acltion a in cvery state j 2 k. Let

“ - (13.5)
G = qu(@).m20, = ZHI(],,,‘ B= Zmzq,,,.
=it ()
PP l 3 (13.6)
20l —a)
Define the function h(j).j = k. by
h(d+j-1
b(jy= CH =) (13.7)

I -«

Lemma 13.4. Assume (C6) and (C7). Suppose < 1 and S <eo. Then 2(j.j— 1) <
h(j) < e forall j 2 k.

Proof. Since z(j.j— 1) < z7(j,j - 1), it sulfices to show that z%(j.j — 1) < b(j) for all
j = k. To this cnd, we treat j — | as a costless absorbing state and nolc that (C6)
implies that. starting in state j 2 k& and following policy 7. the state of the system
cvolves as a left-skip-free DTMC, X, n 2 0}, with transition probabilitics

Pu= G 27— 1, (13.8)
as long as i 2. It Tollows rom (13.8) that
Xoa =X, =14V, (13.9)

where Y, is independent of X,. with P(Y, = m] = q,,. as long as X, = j. This
recursion is identical to that for an M/GI/1 qucue, obscrved at service-complction
epochs, in which Y, represents the number of arrivals during the sth service time.
Now suppose we incur a one-stage cost ¢ + /i-i whenever {X,,, n 2 0} visits state
i 2 j. For obvious reasons, we shall refer to /i as the per-unit holding cost. Let
¢(j.j - 1) denote the total cost incurred until X, enters the absorbing state j — 1.
given that it starts in state j. Then (C7) implics that z%(j.j — 1) < ¢(j.j - 1). Now

cjj=-D=c-t(j. j-D+h(j j-1,

where «(j,j— 1) and hi(j.j— 1) are. respectively, the expected number of transitions
and the cxpecled total holding cost incurred until the first entrance into the absorb-
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ing state j — L. starting from state j. It follows from classical results for this system
(cf..e.g..[4]) that

jj=-D=0-a)  h(j j-D=0=-a)'h-(d+j-1).

which implics that ¢(j.j — 1) = b()). This complctes the proof. W
We are now ready to state our main resull. For convenicent reference we restate
(CH-(CT7) here.

(CD) (i, a) is submodular in (i, a).

(C2) gi...(a)is submodular in (i. a). for cach m > 0.

(C3) gi,..(a) is noninereasing ina e A lor cach i 2 1.m 2 0.
(C4) c(i,a)is nondecreasing ini > 1. foralla e A,

(CS) “There exists a nonnegalive lunction b(f).j = 1. such that

Cliva)=cli=1.a)z Y (&, () =g, () b(j). Toralli>2 ae A

;oo

(C6) There exisls a function ¢, (). m 2 0, and a positive integer & such that. for all
izl.ae A.pa)=q . la) forall j = max{i — | k}.

(C7) There exist nonnegative constants ¢ and /i such that ¢(i.a) < ¢ + h-i. for all
i2l.ae A

Theorem 13.2. Assume (CH~(C7). with a< 1. i < o0, and h(j) defined by (13.7) for
JZkoand b(j) := b(k) for j < k. Then a monotonic policy is optimal. i.c.. a(i) is non-
decreasing in i 2 1.

Proof. It follows lrom Lemma 133 that z(j+ 1.7) 2 2(j.j - 1) lor all j > k. Lemma
3.4 implics that

Wk ok~ Dy k)= @R
I -«
Now let 7 < & and supposc (as an induction hyvpothesis) that z(j. j - 1) < b(j) and
i+ L)z - Y forall j 24 Then Lemma 13.2 implies that (7.7 ~ 1) 2
(r = 100 = 2). which inturn implies that z(i = 1.7 = 2) < h(iy = b{k) = b(i — |). thus
completing the inductive step. It follows by downward induction on i that (i + 1.7)
2 z(i.i = 1) forall 1 2 1. Monotonicity of an optimal policy is then a conscquence of
(CH)-(C3)and Lemma 13.1. N
Now supposc the one-stage cost is polynomially bounded:

(C7’) There exist nonnegative constants ¢ and /1 and a positive integer n such thal
cli,ay<c+h-i"forallizl.ae A.

The proof of Lemma 13.4 can be modified to derive an appropriate bounding
function b(j) in this case. again using the M/GUI-type recursion (13.9). Of
course, we still have (. j— 1) = (1 — )", but now the cxpression for Ai(j, j — 1) is
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an nth-order polynomial in j, which involves the first 7 moments of the stecady-state
distribution of {X,.n 2 0], and hence the first 7 + 1 moments of {q,,. m 2 0}, all of
which must therefore be assumed finite. We leave Lhe details to the reader.

13.3 Special Cases and Applications

In this section we show how (C1)-(C7) can be verified in special cascs and give
some applications to control of queues.

13.3.1 Control of Downward Jumps

Supposc p;,.i{a) = a. That is, the control variable in cach state is itself the probabil-
ity of a downward jump. Then (CS) simplilies considerably. [First note that in this
casc the incquality in (C5) holds if and only il

c(i.ay-cli=1.a)2 Z (g 1, (@) =g, (@) b()).

jerel

Now suppose (C1) and (C2) hold, so that
cli.a)=cli—-1,a)y2clia)-c(i-1,a).
g,.u_,.l(ﬂ)—g;/(ﬂ)ﬁ g,-.n_,'.u(ﬁ)—g;,(t_l)‘

forall 1 €i<j.ae A Thus we can replace (CS) in Theorem 13.2 with the follow-
ing simpler condition:

(C&) There exists a nonnegative function b(j), () 2 1. such that

ci.ay-cli-1.a)z 2 (g, (@)=g @) h(j). foralliz2. :

=il
13.3.2 An Example with Additive Transitions

(This example is taken from Stidham and Weber [9].) Consider an M/Gl/1 queuc
with batch arrivals and nonpreemptive discipline. Batches of jobs arrive according
to a Poisson process; the sizes of successive batches are i.i.d. random variables. At
cach scrvice completion, if the queue is not empty, a job is removed from the queuce
and placed in service. We choose the service-time distribution for this job from a
family of distributions indexed by the scrvice rate i chosen from the compact sct
A = [0. 1]. Services cannot be interrupted. Service times of successive jobs, condi-
tional on their indices. are independent. Lel S( i) denote a generic service time from
the distribution indexed by p. We assumce that g > g’ implies that S(') is stochas-
tically smaller than S(u’). There is a cost rate ¢(u) incurred while scrvice rate g is
in ¢ffect and a holding cost incurred at rate A(7) while i customers are in the system.
where ¢(+) is nonnegative, nondecreasing. and continuous on A, and /(*) is nonneg-
ative and nondecreasing in i > 1.

We observe the system at the beginning of cach service. The one-stage cost func-
tion is given by
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c(i, ) =——"+f(i; u),i2 1, ue A,

c(p)
u

and the transition probabilities by
i)y =Pli+ K —-1=jL1<i<j+ 1l pe A,

where f(i; 1) is the expected total holding cost incurred during the service time S(u)
that begins with i jobs in the system, and K(y) is the number of arrivals during the
service time S(u). The objective is to minimize the cxpected total cost until the first
entrance into state 0, from each starting state i > 1. One can readily verify that (C1),
(C2").(C3), and (C4) are satisficd, so that Theorem 13.1 applies and hence a monot-
onic policy is optimal.

13.3.3 An M/M/s Quene swith Batch Arrivals and Controllable Service Rate

In this example, batches of customers arrive according to a Poisson process with
rate A. Successive batch sizes arc i.i.d. and distributed as a nonnegative integer-
valued random variable, M, with probability mass function p(m) = P{M = m}, m >
1. There are s memoryless servers, cach with mecan service rate a, fed by a single
quecue. The control variable (action) is the service rate a. to be chosen from the inter-
val A =[0,al, where a < o. There is a service cost c(a) per unit time while the service
rate is a. We assume that ¢(+) is nonnegative, nondecreasing, and continuous on A.
There is a holding cost, which is incurred at rate /(i) while there are i customers in
the system. We assume that ii(7) is nonnegative and nondecreasing in /> 1. The objec-
tive is 1o minimize the expected total cost until the first entrance into state 0, from
cach starting state i > 1.

We use uniformization (cf. [5,8]) to formulate the problem as a Markov decision
process. The system is observed at the events of a Poisson process with mean rate
A+ sa. The expected cost until the next observation point. given that the current
state is / and the current control is a, is given by

cla)+ /z(ﬁ
A+sa

c(i,a)=

The imbedded transition probabilitics are

s (@) = (i/\s)ﬁ
Piia -—l“}-sﬁ s
P,_,.m(a):ml_—), n>1,
A+sa

pola)y=1=p(a)= Y ponla)

med
sa—(insa
A+sa
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To simplify these expressions, assume (without loss of generality) that the time unit
has been chosen so that A + sa = 1. Then we have

c(i, a) = cla)+ h(i).

iim(a) = &Zp(m), m=>1,

k=m

gilay=1=p,, (a)=1-(i A s)a.

[t is easy to see that (C1)—(C4) arc satisfied. Condition (C6) is satisfied with k = s,
and

gola)=s-a,

q(a)=s(a -a),

gn(a)=Ap(m—1), m=2.

Now suppose (C7) holds. With q,,, m > 0, . and S defined by (13.5), d defined by
(13.6), and b(j) defined by (13.7), first note that & < | if and only if

p::i/u:[‘ ] <l
sa

Now let us examine (CS). For i > s, (C5) reduces to

y

A Hhl) @ thi=1) ) $ (lf?(/’"-f) Al ) o)

i)=0,
sa sa

sa sa fapsl
which holds since /(i) 2 h(i — 1). For i <s, (C5) holds if and only if

= ,, 1

h(iy—h(i-1)

where f(i) = Z5..p(m)b(i + m).
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CHAPTER 14

OPTIMAL ROUTING CONTROL IN
RETRIAL QUEUES

H. M. Liang and V. G. Kulkarni

Dedication. One of the earliest papers in retrial queues is by Keilson. (Gozzolino,
and Young [6]. Retrials queues has grown into an important area of rescarch over
the last decade, as evidenced by the survey papers by Yang and Templeton [11].
Falin [3], and Kulkarni and Liang [7]. However, as far as the authors are aware, there
are no results on the control of retrial queues. In this chapter. we try to fill this gap.

14.1 Introduction

A single server retrial queuc consists of a primary queue, an orbit, and a server
serving the primary queue. Customers can arrive at the primary queue either from
outside the system or from the orbit. If an arriving customer is blocked from enter-
ing the primary queue, he joins the orbit and conducts a retrial later. Otherwise, he
enters the primary queue, waits for service, and leaves the system after being served.
The main motivation for this model arises from the phenomenon of retrials in tele-
phone and telecommunication systems.

In this chapter, we study dynamic routing control of the retrial queue. A con-
trolled retrial queueing system consists of a system controller, a primary scrvice
facility, and an orbit (sec Figure 14.1, where the system controller is represented by
a circle with a question mark). Customers can arrive at the system controller either
from outside the system (according to a Poisson process) or from the orbit (accord-
ing to a rate that depends upon the number of customers in the orbit). The system
controller decides whether to route the customer to the primary queue or to the
orbit, bascd on the state of the system. All customers arc admitted to the system,
and no customer can leave the system without receiving service in the primary
queue. The capacities in the primary qucue and in the orbit are both infinite. A
holding cost h(i, j) is incurred per unit time whenever there are i customers in the
primary queue and j customers in the orbit. Our goal is to characterize the optimal
routing policy that minimizes the expected total discounted cost over an infinite
horizon.

(We would like to point out the fact that we study the socially optimal policics
here. i.e.. the cost to the system is minimized. The problem of computing individu-



