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MONOTONIC AND INSENSITIVE OPTIMAL POLICIES FOR CONTROL 
OF QUEUES WITH UNDISCOUNTED COSTS 

SHALER STIDHAM, JR. 
University of North Carolina, Chapel Hill, North Carolina 

RICHARD R. WEBER 
Queens' College, Cambridge, England 

(Received November 1983; revisions received July 1984; September 1986; November 1987; April 1988; accepted May 1988) 

We consider the problem of controlling the service and/or arrival rates in queues, with the objective of minimizing the 
total expected cost to reach state zero. We present a unified, simple method for proving that an optimal policy is 
monotonic in the number of customers in the system. Applications to average-cost minimization over an infinite horizon 
are given. Both exponential and nonexponential models are considered; the essential characteristic is a left-skip-free 
transition structure and a nondecreasing (not necessarily convex) holding-cost function. Some of our results are insensitive 
to service-time distributions. 

The literature on optimal control of queues con- 
tains many proofs that an optimal control is 

monotonic in some naturally selected variable. (For 
surveys see Sobel 1974; Stidham and Prabhu 1974; 
Crabill, Gross, and Magazine 1977; Stidham 1984, 
1985, 1986.) For example, often it is optimal to serve 
at a faster rate or admit fewer arrivals when more 
customers are present. The proofs of these obvious 
properties, however, are often disconcertingly long, 
tedious, and without apparent grounding in intuition. 
Undeniably there are problems (notably, some involv- 
ing networks of queues: Weber and Stidham 1987) 
where careful attention to mathematical rigor-at the 
occasional expense of intuitive transparency-is not 
only necessary, but brings ancillary benefits. These 
benefits include the discovery of additional, unantici- 
pated properties of optimal policies or counterexam- 
ples to the obvious monotonicity of optimal policies, 
when not so obvious economic or probabilistic con- 
ditions are not satisfied. Still, some of the most basic 
monotonicity results cry out for proofs that are rigor- 
ous, and that exploit common sense and discard super- 
fluous assumptions. 

As an example, consider control of the service rate 
in an M/M/1 queue (Crabill 1974; Sobel 1974, 1982; 
Lippman 1975; Serfozo 1981; Bengtsson 1982; Jo 
1983, among others). Assume, as most authors do, 
that more customers in the system is worse than fewer, 
all other things being equal. (That is, the holding cost 
function is nondecreasing.) Then it seems self-evident 

that one would wish to serve at a faster rate when 
more customers are present, at least when there is no 
time preference regarding monetary expenditures (that 
is, no discounting of future benefits and costs). The 
intuition is simple: use of a given service rate produces 
larger potential benefits (savings in holding costs) 
when more customers are present, and it costs the 
same in both cases. So higher service rates should be 
reserved for times when the system is more congested. 
(Discounting can void this argument. We may then 
wish to postpone the expense of a higher service rate 
until the future, so that the present value of its cost 
will be less.) In the literature, however, most of the 
proofs of this type of result appear to make no use of 
this intuition. In addition, many proofs depend on 
what turn out to be superfluous assumptions, such as 
the convexity of the holding-cost function. Convexity 
is needed when there is discounting or more than one 
facility: see Weber and Stidham. Many monotonicity 
proofs approach the undiscounted problem via a 
sequence of discounted problems. Exceptions among 
the papers cited above are Sobel (1982) and 
Bengtsson. 

The purpose of this paper is to provide a unified set 
of simple, rigorous arguments for the monotonicity of 
optimal policies, for service-rate control problems 
among others, in a setting where there is no discount- 
ing. The driving engine of our proofs is the intuition 
expressed above, transformed into a rigorous argu- 
ment. We are able to provide proofs for many of the 

Subject classfications: Dynamic programming, semi-Markov: undiscounted costs, infinite horizon. Queues, optimization: control of queues with 
undiscounted costs. 
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service-rate control problems considered in the liter- 
ature, plus some that have apparently never been 
treated before. One of our (apparently) new results is 
the discovery that the optimal service rates are insen- 
sitive to the service-time distribution (they depend 
only on the mean) in systems where either there are 
no arrivals or a last-come, first-served, preemptive- 
resume queue discipline is in effect. Insensitivity is a 
phenomenon that has been explored thoroughly in 
the context of descriptive models of queues, but not, 
to our knowledge, in control models. 

Our approach to each of the control problems stud- 
ied takes the same general form. We first consider the 
problem of minimizing the expected total cost until 
state 0 is reached, from each possible starting state. 
(Problems in which long-run average cost is to be 
minimized are converted to this format.) Our formu- 
lation relies on ideas from dynamic programming, but 
with a nonstandard embedding of decision points, 
based on the left-skip-free transition structure of the 
models studied: to get from state i to state 0, the 
system must first pass through state i - 1. This prop- 
erty is crucial to our method of analysis. Arrivals 
are treated as temporary interruptions in the pro- 
cess of moving the system from state i to state 
i- -a treatment that is analogous to the idea of a 
superprocess in the theory of dynamic allocation 
indices (Gittins 1979, Whittle 1980, 198 1). 

In its simplest form (for control of the service rate 
in an M/M/ 1 queue: cf. Theorem 2), our proof is 
based on the following intuitive ideas. By the left-skip- 
free property, the optimal service rate in state i mini- 
mizes the expected cost to go from i to i - 1. But this 
problem is probabilistically and economically identi- 
cal to the problem of going from i + 1 to i, except 
that the holding costs are uniformly larger in the latter 
problem. Hence, the optimal service rate should be 
no smaller for state i + 1 than for state i. For systems 
with a state-dependent arrival rate, we need additional 
conditions; the proofs are less intuitive, but noncon- 
vex holding costs are still allowed. 

Section 1 studies exponential models with control 
of the service rate. First a model with no arrivals is 
discussed, primarily to introduce our methodology in 
a simple setting. Then we treat models with arrivals, 
first with the objective of minimizing total expected 
cost until the system is empty, then with long-run 
average cost as the criterion. 

The remaining sections of the paper demonstrate 
how the ideas introduced in Section 1 can be applied 
to related problems. In most instances we just sketch 
the proofs because they are straightforward modifica- 

tions of those in Section 1. Section 2 discusses expo- 
nential models for combined control of service and 
arrival rates and for control of arrival rates alone. In 
Section 3, we present some control models for non- 
exponential systems. The first is an M/G/1 model 
with a controllable service rate and a last-come, first- 
served, preemptive-resume discipline. We show that a 
continuous-time version of the analysis of Section 1 
applies to this problem. In fact, the optimal policy is 
insensitive to the service-time distribution in this 
model. The other models considered are M/G/ 1 with 
selection of the service-time distribution at the start 
of each service and service-rate control in systems with 
phase-type service. 

1. SERVICE-RATE CONTROL IN EXPONENTIAL 
QUEUES 

1.1. The Model With No Arrivals 

We begin with the problem of optimally controlling 
the service rate in a system with a single exponential 
server and no arrivals. That is, all jobs to be processed 
already are present at time zero. The problem may be 
formally stated as follows. 

At time t = 0, there are i jobs in the system, which 
are to be processed one at a time. The service mech- 
anism is memoryless. That is, the probability of a 
service completion in the interval (t, t + dt), given 
that the service rate at time t is A, equals Adt + o(dt), 
independent of the current state or past history of the 
system. Our goal is to choose the service rate A at the 
start of each service in order to minimize the total 
expected cost to process all jobs (equivalently, the 
total expected cost until the system reaches state 0). 
We assume that A must be chosen from a compact set 
A c [0, oo). There is a cost of providing service, which 
is incurred at rate c(A) per unit time while the service 
rate in effect is A. We assume that c(A) is nonnegative, 
nondecreasing, and continuous on A. (These assump- 
tions about c(z) and its domain are not essential. They 
are introduced here only for ease of exposition. See 
Remark 1 after Theorem 1.) There is also a holding 
cost that is incurred at rate h(j) while there are j jobs 
in the system, j = 0, 1, .... We assume that h(0) = 0 
and h(j) >0 for allj 3 1. 

The problem can be formulated as a finite-state 
semi-Markov decision process (Ross 1970, Whittle 
1983), with an infinite planning horizon and 0 as an 
absorbing state. Let v(i) denote the minimum 
expected total cost incurred until the first visit to state 
0, given that the system starts in state i 3 0. The 
function v(-) is uniquely determined by v(0) = 0 and 
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the recursive optimality equations (i > 1) 

v(i) = min {c() + h(i) + v(i - 1)}. (1) 

The assumptions about c(A) and h(i) guarantee that 
for each i 3 1 the minimum is finite and is attained 
by some A e A, which we shall denote ,(i). By 
convention, we shall resolve ties by choosing the larg- 
est minimizer. 

Let z(i, j) denote the minimum expected cost until 
the system first enters state j, starting from state 
i(j < i). Since services occur one at a time, starting 
in state i, the system must visit state i - 1 on its way 
to state 0. Thus 

v(i) = z(i, i- 1) + v(i- 1). (2) 

In fact, this result holds for any Markovian decision 
process that is skip-free to the left (Keilson 1965, 
Wijngaard and Stidham 1986). That is, an instanta- 
neous transition from state i to state j is not possible 
ifj<i- 1. 

It follows from (1) and (2) that 

z(i, i - 1) = min c(A) + h(i) (3) 

Thus ,u(i), the optimal service rate in state i, may be 
found by minimizing the expected cost to go from i 
toi- 1: 

g(i, i) := [c(8) + h(i)]/g. 

Theorem 1. If h(i) is nondecreasing in i, then ,(i) is 
nondecreasing in i, i - 1. In other words, it is optimal 
to serve at a faster rate when more jobs are in the 
system. 

Proof. Suppose h(i) is nondecreasing. Let A2 > ALj. 

Then 

g(i, 2) - g(i, p') 

=C(12) _ C(l) _ (i) - 1] 

which is nonincreasing in i. Letting , = ,u(i) and using 
the fact that ,(i) is the largest minimizer of g(i, A), it 
follows that 

g(i -1, A2) -g(i -1, Ai) 

> g(i, Ho) - g(i, g(i)) > 0 

for all /2 > 8(i). Hence (i - 1) - 4(i). 

Remarks 

1. The continuity/compactness assumptions about 
c(A) and A were used in the proof of Theorem 1 only 
to ensure the existence of a largest minimizer of 
g(i, A) for each i. Clearly, the conclusion of Theo- 
rem 1 applies as long as this latter condition is satisfied. 
In particular, the feasible region for A could be 
unbounded. 

2. Submodularity. Our proof of Theorem 1 was 
based on showing that g(i, g2) - g(i, A1) is nonincreas- 
ing in i for M2 > p,. A function with this property is 
said to be submodular. Submodular functions play a 
central role in the theory of lattice programming 
(Topkis 1978), where they provide a general frame- 
work for proving monotonicity of an optimal policy 
in a variety of control models. 

3. Insensitivity. Our results clearly do not apply 
just to memoryless service mechanisms. Suppose that 
at the beginning of the processing of a job we must 
choose a service-time distribution from a class of 
distributions, the members of which are indexed by 
the reciprocals of their means:,u:= (E[service time])-'. 
Once a choice of distribution has been made for a 
particular job, it must remain in effect until the job 
finishes service. Whatever the choices of service-time 
distributions, the service times of successive jobs are 
assumed to be independent. Obviously the minimum 
total expected cost until all jobs have been served, 
starting with j jobs present at time t and the service of 
a job about to begin, does not depend on t nor on 
the history of states and actions up to time t. De- 
noting this minimum expected total cost by v(j), 
j = 1, 2, .. ., we see that the optimal value function 
v(.) again is determined uniquely by the recursive 
equations (1), with v(O) = 0. The total expected cost 
depends only on the means of the various service-time 
distributions chosen. Moreover, the optimal service 
rates for this model are insensitive to the distributions 
of service time. The phenomenon of insensitivity has 
been studied extensively in the context of descriptive 
models for queues but it has been rarely, if ever, 
encountered in control models. 

4. Viewed in the context of the original problem- 
starting with i jobs present at time 0, choose service 
rates for each job so as to minimize the expected total 
cost incurred until all jobs have been processed-our 
result says that we should process at a faster rate at 
first, while more jobs are present, and at a slower rate 
later on, when fewer jobs are in the system. This 
property is qualitatively similar to the optimality of 
the shortest-processing-time (SPT) discipline for a 
sequence of jobs on a single processor (Conway, 
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Maxwell and Miller 1967). Here, instead of rearrang- 
ing the jobs so that the shortest one comes first, we 
are able to select the processing times (or at least their 
distributions) in such a way that the shortest one (in 
mean) comes first. 

5. A classical proof of the optimality of SPT 
(Conway et al.) proceeds by looking at an arbitrary 
sequence that violates SPT and showing that the total 
cost can be reduced by making a pairwise switch of 
any two jobs whose sequence violates SPT. In a par- 
allel way, in our model, one can construct an alternate 
proof that the optimal service rates are monotonic, 
based on pairwise switches of any two service rates for 
adjacent states, say i + 1 and i, that violate monoton- 
icity. (See Section 3.2 for an example of an argument 
based on pairwise switches.) More complex pairwise- 
switch arguments play an important role in the 
method of dynamic allocation indices (often called 
Gittins indices) for solving a variety of dynamic con- 
trol problems, including multiarmed-bandit problems 
and priority selection in queueing systems (Gittins; 
Whittle 1980, 1981). 

1.2. The Model With Arrivals 

Now we add arrivals to the previous model. Assume 
that new jobs arrive to the system according to a state- 
dependent Poisson process with mean rate Xi, i - 0. 
In all other respects,the model is assumed to be the 
same as already described in the previous subsection. 

We formulate the problem of minimizing the total 
expected cost to go from state i to state 0 as an infinite 
horizon, semi-Markov decision process, with state 0 
as an absorbing state. We observe the system and 
choose a service rate at each change of state (arrival 
or service-completion epoch). Let v(i) denote the min- 
imal expected total cost to move the system from state 
i to state 0, i = 1, 2, . . . (v(0) = 0). Since the costs 
between observation points are nonnegative, the prob- 
lem and its optimal cost function v are well defined 
(Strauch 1966, Schal 1975) and the v(i) satisfy the 
optimality equation (i > 1) 

v(i) = min {(X, + ,u)-'[c(A) + h(i) 

+ Xiv(i + 1) + gv(i - 1)]} (4) 

with v(0) = 0. Moreover, a stationary policy that uses 
a service rate A that minimizes the right-hand side of 
(4) whenever the system is in state i is optimal. Once 
again, we resolve ties by choosing the largest mini- 
mizer, denoted u(i). 

We shall find it more convenient to work with a 
transformed optimality equation that has the same 
form as (1). Observe that v(i) satisfies (4) for i 1 if 

and only if for all ,u 

v(i)(XA + A) < c(A) + h(i) + Xiv(i + 1) + gv(i - 1) 

or equivalently 

v(i) < [c(y) + h(i) + Xi(v(i + 1) -v(i))]/ 

+ v(i - 1) 

with equality for a value of i that achieves the mini- 
mum in (4). Thus, (4) is equivalent to the optimality 
equation (i 3 1) 

v(i) = min f[c(gi) + h(i) + X,(v(i + 1) -v(i))]/j 
p C,, 

+v(i- 1). (5) 

The left-skip-free property of state transitions again 
ensures that 

v(i) = z(i, i- 1) + v(i- 1) (6) 

where, as before, z(i, j) is defined as the minimum 
total expected cost to go from state i to state i < i. 
Combining (5) and (6) we see that z(i, i - 1) satisfies 

z(i, i-i) = min 4c(8) + h(i) + Xiz(i + 1, i) ( 

The following intuitive interpretation of (7) may be 
instructive. Consider the problem of minimizing the 
total expected cost to go from state i to state i - 1. 
Because of the memoryless property of the exponential 
service-time distribution and the state-dependent 
Poisson arrival process, an optimal choice of the serv- 
ice rate it clearly depends only on the current state i 
and not on the current time t nor on the past history 
of the system. Whatever the choice of g,: an arrival 
may occur before a transition from i to i - 1. When 
this happens, the system moves to state i + 1 and 
spends a certain amount of time in states j 3 i + 1 
before returning to state i, at which point the service 
mechanism begins to serve again at rate ,u. Each 
excursion into states j 3 i + 1 may be regarded as a 
temporary interruption to the process of moving the 
system from state i to state i - 1. 

While the state is i and the service rate is it, the 
system incurs cost at rate c(,u) + h(i). The expected 
cost while in state i before a transition to i - 1 is thus 
[c(y) + h(i)]/g. Excursions into states j 3 i + 1 occur 
at rate Xi. The expected number of excursions before 
a transition to i - 1 is, therefore, X,/I. The expected 
total cost during each excursion is z(i + 1, i). Thus, 
the expected total cost of going from state i to i - 1, 
with service rate A in effect, is [c(,) + h(i) + 
Xiz(i + 1, i)]/g, the minimand in (7). 
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It follows from (6) and (7) that the problem with 
external arrivals takes exactly the same form as the 
problem with no arrivals as embodied by (2) and (3), 
but with a modified holding cost function 

h(i) := h(i) + Xiz(i + 1, i). (8) 

Thus, as an immediate corollary to Theorem 1, we 
have the following lemma. 

Lemma 1. For the problem with external arrivals, if 
h(i) is finite and nondecreasing in i, where h(i) is 
defined by (8), then the optimal service rate ,(i) is 
nondecreasing in i > 0. 

Poisson Arrival Process 

Our first application of this lemma yields a simple 
proof of the monotonicity of the optimal service rate 
in the special case, Xi X (an ordinary Poisson arrival 
process). 

Theorem 2. Suppose that the arrivals come from a 
Poisson process with a mean rate X, and that h(i) is 
nondecreasing in i. Then the optimal service rate q(i) 
is nondecreasing in i. 

Proof. By Lemma 1 it suffices to show that 
z(i + 1, i) is nondecreasing in i. Since the arrival rate 
is constant, z(i + 1, i) and z(i, i - 1) may both be 
regarded as solutions to the same problem, namely 
that of minimizing the total expected cost to go from 
state 1 to state 0, but with different holding cost 
functions: in the former case, h(i + .), and in the 
latter case, h(i - 1 + *). Since h(-) is nondecreasing, 
h(i + *) is uniformly at least as large as h(i - 1 + *). 
Hence, the minimum expected total cost to go from 
1 to 0 is at least as large in the former case as in 
the latter, from which it follows that z(i + 1, i) > 
z(i, i - 1). 

The key idea in the proof is a generalization of the 
familiar insight that an M/M/1 queue exhibits prob- 
abilistically identical behavior in going from state 
i + 1 to state i as in going from state i to state i - 1, 
and that in both cases the behavior is probabilistically 
identical to that over an ordinary busy period (going 
from state 1 to state 0). The generalization permits 
state-dependent service rates, provided that, while 
going from i to i - 1, we use in each state j i i, the 
rate we would use in state j + 1 while going from 
i + 1 to i. It is clear that this idea breaks down when 
the arrival rates are allowed to be state dependent, in 
which case, a more intricate argument and additional 
conditions will be needed. 

State-Dependent Arrival Rates 

We give a set of sufficient conditions for the mono- 
tonicity of the optimal service rate in the general case 
of state-dependent arrival rates. The conditions are in 
the same spirit as those of Crabill for a special case of 
our problem. As in Section 1.1, we assume that A is a 
compact set, with ,_ = max{,u: A E A I < oo. 

(Cl) X :=supXi<oo and E h(i) ) < oo. 
i--) 

(C2) y(:= supj ( ) (8) , E A, }t < 

< 00. 

(C2') := sup{ C(02 ) - 
I 

A 1 

Al, t2 E A, A $2 <00- 

(C3) h(i) -> oo as i -oo. 
(C3') h(i) converges monotonically to oo as i -- oo. 
(C4) for all i ,> 1, h(i) - h(i - 1 ) ,> (Xi-, - i 

Conditions C2 and C2' are trivially satisfied when 
A consists of a finite set of service rates. If A consists 
of a closed interval, it suffices for C2 that c(,u) be 
continuous on A and that a left derivative exists at ,u. 
Likewise, if A is a closed interval, it suffices for C2' 
that c(,u) be Lipschitz continuous on A, e.g., when c(,u) 
is continuously differentiable on A. (None of these 
conditions is, in fact, very restrictive. See Remark 6 
below.) 

Lemma 2. Assume Condition Cl. Then z(i, i - 1) < 
00, and hence, v(i)c oo, for all i > 1. 

Proof. It suffices to show that z1(i, i - 1) < 00, where 
z,(i, i - 1) is the total expected cost to go from i to 
i- 1 under the full-service policy: the policy that uses 
service rate ,i in all states i > 1. Now 

Z7ji, i- 1) =tj(i, i - )c(y) + hj(i, i - 1) 

where t(i, i - 1) and h,(i, i - 1) are, respectively, the 
total expected time and the total expected holding cost 
incurred during the passage from state i to state i - 1, 
under the full-service policy. It is easy to see by a 
stochastic-dominance argument that t(i, i - 1) is 
bounded above by the expected length of a busy period 
in an M/M/ 1 queue with an arrival rate X and 
a service rate , and therefore is finite. Similarly, 
using the facts that the expected time spent in state j 
during a busy period in this M/M/ 1 queue equals 
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(1/X)(X/-)-i and that h(.) is nondecreasing, we con- 
clude that 

by Condition Cl. 

Lemma 3. Assume Condition Cl. Then, for ,u, ,u' E 

Proof. It follows from Lemma 2 that z(i, i -1) < Go. 
Then, from the definition of,u(i), for all ,u E A, 

z(i, i - 1) 

= [C(l(i) + h()]/ h(i) < [co)+ ()/o. (O 

A little algebra shows that (10) holds for 0 <,u <,u(i) 
if and only if 

c(AW)) - c(/) c(/(i)) + h(i) (i ) 
A(i) - A ( A) z(i, I91 

The proof of the right-hand inequality of (9) is 
analogous. 

Lemma 4. Assume Conditions Cl, C2, and C3. Then 
for all sufficiently large i, ((I) = ,i. 

Proof. In view of C2 and C3, we have h(i) > fr^ye for 
all i sufficiently large. For all such states i, ,u(i) =,i 
since, otherwise, -y0 < [c(C(i)) + h(i)]/p(i) V [c(y)- 

C(ui)/,-,u(i)) S -i, in view of Lemma 3. 

We are now ready to prove monotonicity of, (i). 

Theorem 3. Assume Conditions Cl, C2', C3', and 
C4. Then i(i) is nondecreasing in i o 1. 

Proof. Let k :=maxIi: ,u(i) <1.i}. (Lemma 4 implies 
k < oo.) It suffices to show that ,(i) > ,(i-1), or in 
view of Lemma 1, that h(i) 

Z 
h(i - 1), for all 

i S k. The proof proceeds by downward induction 
on i. 

We first observe that 

h(i) -h(i - 1 ) > (Xi- - X,) eC(2 ) - eCu) ( 11 ) 
- /1 

for all ,u, ,u E A, /12 > ,u. If Xi, > X,, then (11) 
foLlows from Conditions C2' and C4. Otherwise, it 
follows from C3'. 

Let i < k and suppose that h(i + 1) 3 h(i). Then 
,u(i + 1) >- ,u(i). If A(i + 1) > ,u(i), Lemma 3 and (I11) 
imply 

h(i) = h(i) + Xiz(i + 1, i) 

Xi[c(j4i + 1)) - cA) 
) (i + 1) - p(i) 

h (i -1 ) + Xi- [C(G(i + 1)) -c(AWA 
p(i + 1) - A4i 

h(i- 1) + X- ,z(i, i- 1) = h(i- 1). (12) 

On the other hand, if ,(i + 1) = ,(i) = ,u (say), then 

z(i + 1, i)- c()) + +1) 

c() + h(i) = z(i, i- 1). (13) 

Since A < ,i (by the definition of k and the assumption 
that i < k), it follows from ( 11) that 

h(i) - h(i - 1) >, (Xi- , Xi) C(8 - C(8) 

so that 

h(i) - h(i - 1) >, (Xi- - Xj)z(i + 1, i) (14) 

if X-,I > Xi. Otherwise, (14) follows from Condition 
C3'. Together (14) and (13) imply that 

h(i) = h(i) + Xiz(i + 1, i) 

> h(i - 1) + Xi ,z(i + 1, i) 

>, h (i- 1) + Xi-, z(i, i - 1) = h(i - 1). 

This completes the inductive step. To start the 
induction, we must verify that h(k) - h(k - 1). Since 
A = A(k + 1) > 8(k) by the definition of k, the 
argument is formally the same as used in the proof 
of (12). 

Remarks 

6. Consider the case where A = [0, ,i] and the 
service-cost function c(,u) is convex on A. Then 
Conditions C2 and C2' coincide and hold if and only 
if (d-jd/)c(-) < oo. In fact, any nonnegative, non- 
decreasing service-cost function c(,u) defined on [0, -i] 
can be replaced without loss of optimality by its lower 
convex envelope, C(A). Moreover, cases where not all 
service rates ,u E [0, ,i] are feasible also can be accom- 
modated by our model by replacing c(,u) by its lower 
convex envelope, c(,u), defined on the set A, the convex 
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hull of A. To see why, let 

a := [c(,(i)) + h(i)]/(i) = min {[c(y) + h(i)]//A. 

Lemma 3 implies that c(,A) : a(A) := c(,u(i)) + a(ji - 

,u(i)), for all ,u E A. Hence c(,A) - a(,u) for all ,u E A, 
since c(,) is by definition the supremum at ,u over all 
affine functions that bound c(,u) from below on the 
set A. Therefore 

c(,u) + h(i) a(Al) + h(i) c(,A(i)) + h(i) 
/1 /1 /(i) 

for all ,u E A, from which it follows that 

min c(G) + (i) =min c(A) +()} 
'"C,1 A HEC1 A 

and ,u(i) attains both minima. 
As an example, consider the case where there are 

only a finite number of feasible rates, 0 < u, < ,2 < 

. . . < , ,iT, so that c(A) is piecewise linear. It follows 
that a service rate Aj will never be used in an optimal 
policy if there exist rates A,i and A,k such that A,i < Aj < 
A,, and [c(A) - c(-ui)]I[ j -p] > [c(,;) - C(-u)]I[Ak 

/1j], since in this case, c(,u) > c(A,u) (cf. Crabill). 
It follows from these observations that Condition 

C2' is actually stronger than necessary; it suffices that 
C2' holds for the lower convex envelope, c(,u), which 
is true if and only if (d-/d,)c(,i) < oo. 

7. Without a condition like C4, the optimal service 
rate with state-dependent arrivals will not be mono- 
tonic, in general. For example, if the arrival rate 
decreases when more customers are present, then there 
may be an incentive to move to a higher state and 
lose some arrivals, as this may lead to lower congestion 
costs in the future, even with a nondecreasing holding- 
cost function. Whether or not this is the case depends 
on the relative values of h(-), c(-), and IX, . A simple 
counterexample in which C4 does not hold is as 
follows. Suppose there are two feasible service rates, 
A = 1 and ,u = 2, with c(1) = 1, c(2) = 4; XI = 1, 
X = 0; and h(1) = h(2) = 1. In this example, we 
have h(2) = h(2) = 1, and z(2, 1) = min[c(,) + 1]/,u = 
[c(1) + 11/1 = 1 + 1 = 2, so that ,u(2) = 1. But this 
implies that h(1) = h(1) + z(2, 1) = 1 + 2 = 3, so 
that z(1, 0) = min[c(,u) + 3]/,u = [c(2) + 3]/2 = 7/2, 

so that u(1) =2 > 1 = (2). 
Note that Condition C4 is trivially satisfied with 

any nondecreasing h(.) when the arrival rates Xi are 
nondecreasing in i. 

1.3. Average-Cost Criterion 

We will consider a service system operating over an 
infinite horizon. The model is the same as in the 

previous subsection, but now the objective is to min- 
imize the long-run average cost per unit time from 
each starting state i, i - 0. Throughout this subsection 
we shall assume that Xi > 0 for all i - 0. (This 
assumption can be relaxed. See Remark 8 below.) 

We shall establish monotonicity of an optimal 
policy by showing that the average-cost problem is 
equivalent to a problem in which the objective is to 
minimize the total expected g-revised cost until the 
next visit to state 0, in the sense that an optimal policy 
for the latter problem is average-cost optimal as well, 
when g = g* := the minimal long-run average cost. 
Here g-revised cost means the cost incurred by a 
system in which a constant g is subtracted from the 
cost rate at each time point. This is equivalent to 
replacing the holding-cost rate h(i) by h(i) - g in each 
state i - 0. We then can apply the results of Section 
1.2 to conclude that a monotonic policy is optimal for 
the average-cost problem. 

To prove the equivalence of the average-cost prob- 
lem and the total g*-revised cost problem, we shall 
use an argument based on the renewal-reward theo- 
rem, which makes it possible to express the average 
cost of a stationary policy as the ratio of the expected 
total cost to the expected total time elapsed between 
two successive visits to state 0. But first, we must 
establish that we can restrict attention to stationary 
policies without loss of average-cost optimality. 

Lemma 5. Assume Conditions Cl and C3. Then there 
exists a stationary policy that minimizes the long-run 
average expected cost per unit time from each starting 
state i > 0. Its long-run average expected cost g* is 
independent of the starting state and g* < oo. 

Proof. The desired result will follow if we can show 
that conditions a-g of Weber and Stidham hold. Con- 
ditions a-d and f are obviously satisfied. Condition 
Cl implies e: it is possible to go from any state to any 
other state with finite expected cost (cf. proof of 
Lemma 2). Finally, Condition C3 implies g: there are 
only a finite number of states in which the one-stage 
cost [c(g) + h(i)]/(Xi + ,u) does not exceed the average 
cost from a fixed policy, say the full-service policy. 
(Using the notation of Lemma 2, one concludes from 
the renewal-reward theorem that the average cost 
of the full-service policy is given by Ic(,u)t,(1, 0) + 
h(1, O)]/[tj(1, 0) + X-'] < oo.) 

Remark 

8. An alternate proof of this theorem uses the condi- 
tions of Sennott (1987), which are similar to those of 
Weber and Stidham. 
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It remains to show that a monotonic stationary 
optimal policy exists for the average-cost problem. As 
indicated before, we shall do this by showing that the 
average-cost problem can be solved by minimizing 
the expected total g*-revised cost until the next visit 
to state 0, and then applying the results of Section 1.2. 
Two technical issues complicate this approach. First, 
we do not know a priori that state 0 is positive 
recurrent under a stationary average-cost optimal pol- 
icy. Second, the one-stage costs in the g*-revised cost 
problem are not necessarily nonnegative, as assumed 
in Section 1.2. 

For these reasons, we shall begin by formulating a 
slightly more general version of the problem studied 
in Section 1.2. To be specific, consider the service-rate 
control problem of Section 1.2 with the following 
alterations: 1) a constant g is subtracted from the 
holding cost h(i) in each state i > 0; 2) the objective 
is to minimize the expected total (g-revised) cost until 
the next visit to a given state m > 0, starting from 
each state i > 0; and 3) the set of feasible service rates 
A(i) in state i is given by A(0) = IO}, A(i) = A for 0 s 
i s m, and A(i) = An[/, oo) for i > m, where ,> 0. 
(In other words, we require the server to operate at 
least at the rate y in states i > m.) We call this Problem 
P(g, m, ,). Note that the problem in Section 1.2 is a 
special case of Problem P(g, m, 8), in which g = 0, 
m = 0, and p = 0. 

Problem P(g, m, p) can be formulated as a SMDP 
if we replace the transitions into state m by transitions 
into an absorbing, costless state. The optimal value 
function for this SMDP is Z"( ., m), where zlt(i, m) 
denotes the minimal expected total g-revised cost until 
the next visit to state m, starting from state i, i > 0. 

Lemma 6. Assume Condition C3. Consider Problem 
P(g, m, y). Let k := max{i: h(i) < g} and assume 
that g > 0 if m < k. Then the SMDP formulation of 
P(g, m, g) and its associated optimal value function 
Zg(., m) are well defined. Moreover, Zg(., m) satisfies 
the optimality equations (i > 0) 

zf(i, m) 

- min {(X + ,u)'[c(,u) + h(i) 

- g + Xizlt(i + 1, m) + lzl(i - 1, m)]} (15) 

with zg(i + 1, m) (z-"(i - 1, m)) replaced by 0 
when i = m - 1 (i = m + 1). A stationary policy is 
optimalfor Problem P(g, m, /) if; in each state i > 0, 
it chooses a service rate ,(i) that minimizes the brack- 
eted expression on the right-hand side of(I 5). 

Proof. Since h(i) -a oo as i -- oo (Condition C3), for 
any fixed g we have k < oo. Then for all i > k 
the g-revised cost per unit time while in state i is 
nonnegative, while for states i < k, the g-revised 
cost per unit time is bounded below by -g. Under 
any policy, starting in a state 0 - i < m, the expected 
time spent in states [0, m) before the next visit to state 
m is uniformly bounded above by the expected time 
until the next visit to state m under the full-service 
policyf which is obviously finite. Similarly, if m < k, 
then, starting in a state i > m, the expected time spent 
in states (m, k] before the next visit to state m is 
uniformly bounded above by the expected time spent 
in states (m, k] under the policy that uses service rate 
j > 0 in all states (m, at), which is also finite. A similar 
argument shows that the expected time spent in states 
[0, k], starting in state m, is uniformly bounded above. 
It follows that General Assumption (G) of Schal is 
satisfied. Hence, Problem P( g, m, y) and its associated 
optimal value functions are well defined. The rest of 
the theorem follows from standard SMDP theory (cf. 
Schal). 

Lemma 7. Assume Conditions C1, C2', C3' and C4. 
Consider Problem P( g, m A), with i > 0 if m < k. For 
each i > 0, let ,(i) be the largest minimizer of the 
right-hand side of (15). Then ,u(i) is nondecreasing in 
i > m, that is, a monotonic policy is optimal for 
Problem P(g, m, t) for states i > m. 

Proof. As in the problem in Section 1.2, a stationary 
optimal policy for states i > m in Problem P(g, m, ti) 
can be found by choosing the largest minimizer in the 
following optimality equation, which is equivalent to 
(15) for i> m: 

z(i, i - 1) 

f [c(A) + h(i) - g + Xiz(i + 1, i)] (16) = mmn --j 
PEA(i) A 

Essentially the same arguments as used in Section 1.2 
imply that the optimal service rates for (16) are mon- 
otonic: ,u(i + 1) > ,u(i), i > m. In particular, neither 
the presence of a constant lower bound on ,u nor 
subtraction of the constant g from h(i) affect the 
inductive proof of Theorem 3. 

We are now ready to prove the main result of this 
section. 

Theorem 4. Assume Conditions C1, C2', C3' and C4. 
There exists a monotonic stationary policy that is 
average-cost optimal. That is, ,t*(i) is nondecreasing 
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in i > 1, where ,*(i) is an average-cost optimal service 
rate to be used whenever the system is in state i. 
Moreover, Au*(i) > O for all i > 0 and ,u*(i) = ,ufor all 
sufficiently large i. 

Proof. Lemma 5 implies that we can restrict our 
attention to stationary policies without loss of average- 
cost optimality. Moreover, a policy that has no posi- 
tive recurrent states cannot be average-cost optimal, 
as the following argument shows. 

Consider a fixed stationary policy under which all 
states i > 0 are transient. It follows from the theory of 
birth-death processes (Karlin and Taylor 1975) that 
pi = 0 for every state i > 0, where pi is the long-run 
fraction of time spent in state i. Since h(i) is nonde- 
creasing (Condition C3'), the average cost over the 
interval [0, t] is bounded below by 

h(i) * (fraction of [0, t] spent in states j > i) 

h(i) I 1-EPj h(i), as t X-->o 
j=(, 

for every i. It follows that the long-run average cost 
under such a policy is infinite. But Condition Cl 
implies that there exists a policy (namely, the full- 
service policy) with finite long-run average cost. 
Hence, a stationary average-cost optimal policy must 
have at least one positive recurrent state m. 

Let ir be a stationary policy and suppose that state 
i 2 m is positive recurrent under ir, where m > 0. Let 
z, (i, j) and t, (i, j) denote the total expected cost and 
time, respectively, until the next visit to state j, starting 
from state i and following policy 7r. Since Xi > 0 for 
all i > 0, it follows that all states i 2 m are positive 
recurrent and reach m, so that t, (i, m) < oo, for all 
i >0 . The renewal-reward theorem (Ross), therefore, 
implies that the long-run average cost under policy ir 

is independent of the starting state i and is given by 

g := zJ(m, m)lt.,(m, m). 

Let -x* be an average-cost optimal policy and let 
m be positive recurrent under lr*, with m > k = 

max{i: h(i) < g*}. For i-O , 1, . ., and Li >- O, let 
H1(i, g) denote the class of all stationary policies under 
which state i is positive recurrent and which use a 
service rate no smaller than M in all states j > i. Then, 
without loss of average-cost optimality, we can restrict 
attention to policies in ll(m, e4), with A = 0. Moreover 

z"(m, m) - g*t.,(m, m) > 0 

for all policies ir E ll(m, 0) with equality for the 
average-cost optimal policy -r*. Therefore, an average- 

cost optimal policy can be found by minimizing 
z7(m, m) - g*t(m, m) over all policies in H(m, 0). 

For any g, the quantity z,(i, m) - gt,(i, m) equals 
the total expected g-revised cost incurred until the 
next visit to state m, starting in state i and follow- 
ing policy ir. The problem of minimizing this quan- 
tity over all policies in ll(m, 0) is just Problem 
P(g, m, 0). Thus, an average-cost optimal policy can 
be found by solving Problem P(g, m, g) with M = 0 
and g = g*. It follows from Lemma 7 that this policy 
has monotonic service rates in all states i > m. 

Our next step is to show that an average-cost opti- 
mal policy uses a positive service rate in all states 
i > 0, so that state 0 is positive recurrent. For this 
result we need Condition C4, in addition to C1, C2', 
and C3'. First we show that ,u(m) > 0, where ,u(m) is 
the optimal service rate in state m for Problem 
P(g, m, g) with g = 0 and g = g*. Since ,u(m) is 
also average-cost optimal in state m (see above), it 
follows that state m - 1 is positive recurrent under an 
average-cost optimal policy. Continuing in this fash- 
ion, one concludes that state 0 is positive recurrent 
under an average-cost optimal policy. 

Consider the optimality equation (15) for Problem 
P(g, m, g) with M = 0 and g = g*. Our previous 
discussion implies that 

zg*(m, m) = z*(m, m) - g*t*(m, m) = 0. 

Suppose ,u(m) = 0. Then (15) for i = m and g =g* 
implies 

O = [h(m) - g*]/X111 + zg*(m + 1, m) 

< [c(,u) + h(m) - g* + X1,7z*(m + 1, m) 

+ lzlz*(m - 1, m)]/(X,,, + ,u) (17) 

for all ,u > 0. (The strict inequality follows from our 
convention of always selecting the largest minimizer 
of the right-hand side of the optimality equation.) We 
can use the equality in (17) to eliminate g* from the 
right-hand side of the inequality. Letting ,u = ,u(m + 
1) > 0, rearranging terms, and using the fact that 
zg*(m- 1, m) - [h(m - 1) - we obtain 

0?- I c(u(m + 1)) 
g(m + 1) 

> -h(m - 1) + h(m) + X,7zg*(m + 1, m). (18) 

But Lemma 3 implies z"*(m + 1, m) = [c(,i(m + 1)) 
+ h(m + 1) - g*]1ti(m + 1) 3, c(A(m + 1))Iti(m + 1), 
which, combined with (18), yields 

h(m) - h(m - 1) 

< (X,7Z-I - X..)c(G(m + 1))/g(m + 1) 
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a contradiction of Condition C4. Thus ,u(m) > 0, and 
we have an average-cost optimal policy in which 
,*(m) > 0, and ,u*(i) is positive and nondecreasing in 
i > m. It follows that L := min{,u*(i)} = mintt*(m), 
,u*(m + I )} > 0, so that all states i > m - 1 are positive 
recurrent. Another application of the renewal-reward 
argument shows that an average-cost optimal policy 
can be found by solving Problem P(g*, m - 1, y). 
But for this problem, Condition C4 will imply that 
u(m -1) > 0, by a repetition of the above argument 

by contradiction, with m replaced by m - 1. It follows 
by downward induction that there exists an average- 
cost optimal policy in which Au*(i) > 0 for all i > 0, 
and Au*(i) is nondecreasing in i. Finally, it follows from 
Lemma 4 that g*(i) = ,u for sufficiently large i. This 
completes the proof of Theorem 4. 

Remark 

9. The Assumption that Xi > 0 for all i > 0 was made 
for simplicity of exposition. If X,, = 0 for some n > 0, 
then the problem reduces to one with a finite number 
of states i = 0, 1, . .. , n. The proofs of this section all 
go through with minor modifications; in some cases, 
they are simplified considerably. 

2. OTHER EXPONENTIAL CONTROL MODELS 

In this section, we use the methods of Section 1, with 
minor modifications, to establish the monotonicity of 
optimal policies for combined control of arrival and 
service rates and control of arrival rates alone in 
exponential systems. We shall only study the problem 
of minimizing the expected cost until the system 
becomes empty. The extension to average-cost 
minimization proceeds along the same lines as in 
Section 1. 

2.1. Combined Control of Arrival and Service 
Rates 

In this model we are free to choose both X and ,u at 
each change of state. The feasible pairs (X, ,u) are 
indexed by a real number a which must belong to a 
compact set A. The corresponding arrival and service 
rates are denoted X(a) and ,i(a), respectively. We 
assume that ,u(a) is continuous and nondecreasing in 
a and that X(a)/,u(a) is continuous and nonincreasing 
in a. There is a cost per unit time c(a) which we 
assume is nonnegative, nondecreasing, and continu- 
ous in a. There is a positive holding cost that is 
incurred at rate h(i) per unit time while there are i 
customers in the system, i 3 1. We assume that h(.) 
is nondecreasing. 

With v(i) and z(i, i - 1) defined as in Section 1.2, 
we have v(O) = 0 and, for i > 1, v(i) = z(i, i - 1) + 
v(i- 1) and 

z(i, i - 1) 

= m [c(a) + h(i) + A(a)z(i + 1, i)]} =min (I - . (9) 
0E, t y~~(a)J 

Once again, in order to show that an optimal policy 
is monotonic (in this case, that an optimal action a(i) 
is nondecreasing in i), we need to show that g(i, a), 
the right-hand side of (19), is submodular in i and a. 
For a, > a,, we have 

g(i, a,) - g(i, a) 

c c(a2) c(a,) + h(i) 1 
A4a,) g(al) [4a2) /(aj)_ 

A(a2 ) A(al )_ 

which is nonincreasing in i if z(i + 1, i) is nondecreas- 
ing in i. But the argument for this is essentially the 
same as in the proof of Theorem 2. 

Note that the requirement that c(a) be nonnegative 
may be relaxed if ,(a) : 8 > 0 for all a E A, since this 
assumption by itself guarantees that the optimization 
problem (19) is well defined and that the minimum is 
finite. 

A variant of this model is considered by Serfozo. 

2.2. Control of the Arrival Rate 

The model of the previous subsection includes control 
of the arrival rate alone as a special case. Suppose the 
service rate is fixed at ,u> 0, and we are free to select 
the arrival rate X at each change of state from a feasible 
set L c [0, oo). Whenever the arrival rate is X, we incur 
a cost at rate c(X), which is nonincreasing. As usual, 
there is a nondecreasing holding cost rate h(i). If we 
set a := -X, c(a):= c(-a), ,(a) := A, then the 
assumptions of the previous subsection are satisfied 
and we conclude that the optimal arrival rate is non- 
increasing in i > 1. 

Note that because A > 0, we do not have to require 
that c(X) be nonnegative. Thus, the model includes 
the case where a reward is earned at rate r(X), where 
r(X) is a nondecreasing function. Most of the arrival- 
control models in the literature can be put into this 
format, sometimes after an appropriate change in the 
decision variable. See Stidham (1985) for a further 
discussion. 
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3. SERVICE-RATE CONTROL WITH 
NONEXPONENTIAL SERVICE-TIME 
DISTRIBUTIONS 

In this section, we consider some models for the 
control of service in systems with general service-time 
distributions. In each case, we shall only study the 
problem of minimizing the total expected cost until 
the system becomes empty. The extension to average- 
cost minimization proceeds along the same lines as in 
Section 1. 

3.1. M/G/1 Queue With LCFS-PR Queue 
Discipline; Insensitivity 

In Section 1.1, we observed that the optimal policy 
for control of service rates in a system with no arrivals 
is insensitive to the service-time distribution. We shall 
show that the insensitivity phenomenon extends 
to systems with arrivals, provided that the queue 
discipline is restricted to be last-come, first-served, 
preemptive-resume (LCFS-PR). 

Under this discipline, a job that arrives when the 
system is in state i - 1 goes immediately into service 
and continues in service as long as the system is in 
state i. If an arrival occurs before the job in question 
finishes service, it is preempted and resumes service, 
where it left off, at the next time point when none of 
the jobs that arrived after it are still in the system, that 
is, when the system next enters state i (necessarily 
from state i + 1). It follows that the service time of 
such a job coincides exactly with the total time spent 
by the system in state i between a transition from 
i - 1 to i and the next transition from i to i - 1. Thus, 
in the system with exponential service-time distribu- 
tion, selecting the service rate to be in effect while the 
system is in state i is equivalent, in the case of the 
LCFS-PR discipline, to selecting the service rate to be 
used throughout the service of each job whose arrival 
initiates a time interval spent in state i. 

Consider a system with a state-dependent Poisson 
arrival process operating under the LCFS-PR disci- 
pline, but suppose that the service-time distribution is 
no longer restricted to be exponential. Specifically, 
assume that the work requirements of successive ar- 
riving jobs are i.i.d. as a random variable X with 
mean 1. The server works at deterministic rate t, 
where we can choose u from a compact set A c [0, oc), 
with - = maxtu: u E A < oo. In all other respects the 
system is as described in Section 1. The objective, as 
in Section 1.2, is to move the system to state 0 at 
minimum total expected cost, from each possible 
starting state. 

Since the service-time distributions are no longer 

exponential, the optimal service rate conceivably 
could depend on the remaining work required by each 
of the jobs in the system, as well as the number i of 
such jobs. Let xl, . . ., xi denote the remaining work 
of the jobs in the system, numbered in order of arrival, 
and let x' := (xl ..., xi) be the new state variable. 
Because of the Poisson property of the arrival process, 
the system clearly has the Markov property with re- 
spect to the state variable x'. The problem can be 
formulated as a continuous-time Markov decision 
process (Doshi 1978). 

Let v(2?') denote the minimum total expected cost 
until the system first becomes empty, starting in state 
x'. Because the queue discipline is LCFS-PR none of 
the i - 1 customers, with remaining work xl, 
xi-,, will resume service until after the next time point 
at which the system has i - 1 jobs (or fewer) present. 
It follows that the system has a modified left-skip-free 
property: starting in state x' = (xii, xi), the system 
must pass through state xi- ' on its way to becoming 
empty. Therefore, we can write 

v(x= z(, x-i) + v(x?'') 

where z(xyi, x'- ) := the minimum total expected cost 
to move the system from state x' to state x'-'. (Note 
that this definition only makes sense when x' and xi-' 
are compatible, in the sense that x' = (=i , xi).) Thus, 
to determine the properties of an optimal policy for 
moving the system from state xi to state 0, it suffices 
to study the problem of moving the system from state 
x' to state x-'. 

Lemma 8. For all i > 1 and all x' = (x' xi), 
z(.yi, xi- .) = xiz(i, i - 1), where the function 
z(i, i - 1) satisfies the optimality equation 

z(i, i - 1) 

Min[c() + h(i) + Xiz(i + 1, i)] (20) 
- mmn i)]} 

20 

The optimal service rate for each state xi depends only 
on i, the number of customers in the system, and not 
on xl, ..., xi, the remaining work requirements of 
the customers. It may be found by choosing the (larg- 
est) minimizer, 1u(i), of the right-hand side of (20). 

Proof. Consider the problem of moving the system 
from state x' to state xi-' at minimum total expected 
cost. It follows from the modified left-skip-free prop- 
erty that this problem may be formulated as the 
following deterministic control problem Di. The sys- 
tem starts in state x< = (xi, . . ., x,) at time t = 0. Let 
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xi(t) denote the state of the system and it(t) the service 
rate in effect at time t 3 0. 

Problem Di 

r0 
z(xi, xi -) - min J c(u(t)) + h(i) 

+ XiE[z((sQ(), X), si(t))]} 

l(xi(t) > 0) dt 

subject to 

xi(O) x 

(d/dt)xi (t) (d/dt)xi- l (t) = 0 

(d/dt)xi(t) = 

8(t) E A, t E [0, oo). 

Since the queue discipline is LCFS-PR, the cost in- 
curred by any policy going from a state (xi, x) to state 
x' is independent of x'. Hence z((xi, x), Si) is inde- 
pendent of x'. Let z(i + 1, i) := E[z((Y(t), X), xi(t))] 
and h(i) := h(i) + Xiz(i + 1, i). 

It follows that Problem Di is a special case, with 
x = x, and K = h(i), of the following generic deter- 
ministic control problem: choose T, 0 - T < oo, and 
lty(t), tGE [O, T] I to 

Problem D 
T 

minimize f [c(p(t)) + K] dt 

subject to 8i(t) dt = x 

8(t) E A, t E [0, T] 

where K > 0, x 2 0. Problem D has the following 
interpretation: There are x units of work to be pro- 
cessed. We are free to choose the time interval [0, T] 
during which the work will be processed and process- 
ing rate 8(t) for each t E [0, T]. We incur a service 
cost at rate c(,u) while the service rate is , and a 
penalty at constant rate K throughout the interval 
[0, T]. Since the cost rate in Problem D does not de- 
pend on the quantity of work remaining, there is no 
incentive to serve one unit of work at a different rate 
than another. Therefore, we expect that the optimal 
service rate ,u(t) will be constant and chosen to mini- 
mize the cost per unit of work: [c(tt) + K]/,t. A 
rigorous proof follows. 

Let ,u* attain the minimum in 

min [c(At) + KIAt. 
p C, I, 

Then Problem D has optimal solution ,(t) = * for 
all t < x/u*, u(t) = 0 for t > x/, *. Suppose that u(t), 
t E [0, T3, is a feasible solution to D. Then 

7(t (gu(t)) K 
jj [c(G(t)) + K] dt= { }dt 

o g~~~(t) d 

> {()* + } f A (t) dt 

= [c(u*) + K](x/j*) 

which is the total cost of processing work at constant 
rate ,4* 

Returning to Problem Di, we conclude that the 
optimal service rate u(i) to be used when i customers 
are present does not depend on x' and can be found 
by choosing the (largest) minimizer of the right-hand 
side of (20). It follows that z(yi, xi-') = x,z(i, i - 1), 
where z(i, i - 1) satisfies (20). 

Since (20) is identical to (7), Lemmas 8 and 4, and 
Theorem 3 imply the following. 

Theorem 5. The optimal service rates for the LCFS- 
PR queue with state-dependent Poisson arrival process 
depend only on the number of jobs in the system, i, 
and are the same as those for the system with expo- 
nential service-time distribution. That is, the optimal 
service rates are insensitive to the service-time distri- 
bution. If Conditions Cl, C2, and C3 hold, then the 
optimal service rate ,u(i) = jfor all sufficiently large i. 
If Conditions Cl, C2', C3', and C4 hold, then the 
optimal service rate ,(i) is nondecreasing in i > 1. 

3.2. M/G/1 Queue With Batch Arrivals and 
Nonpreemptive Discipline 

Consider a single-server queue with a compound Pois- 
sion arrival process. That is, batches of jobs arrive 
according to an ordinary Poisson process; the sizes of 
successive batches are i.i.d. random variables. At each 
service completion, if the queue is not empty, a job is 
removed from the queue and placed into service. We 
are free to choose the service-time distribution for this 
job from a class of distributions indexed by the service 
rate ,A chosen from a compact set A E [0, oo). The 
choice of service-time distribution remains fixed until 
service is completed; services cannot be interrupted 
nor preempted. Service times of successive jobs, con- 
ditional on their indices, are independent. Special 
cases of this model, with individual arrivals, have been 
considered by Schassberger (1975) and Gallisch 
(1979). Let S(,u) denote a generic service-time random 
variable from the distribution indexed by ,A. Then 
E[S(A)] = IIg. We assume that A < A' implies that 



Monotonic and Insensitive Policies for Control of Queues / 623 

S(,t') is stochastically smaller than S(,t); that is, 
PrJS(tt') > tj < PrJS(tt) > tj for all t - 0. As in our 
previous models, we assume that there is a cost rate 
c(,i) incurred while service rate ,t E A is in effect, and 
a holding cost incurred at rate h(i) while the system 
is in state i, where c(*) is nonnegative, nondecreasing, 
and continuous on A, and h(.) is positive and non- 
decreasing in i > 1. 

The system clearly has the Markov property with 
respect to the state variable i when observed at the 
beginnings of successive services. If we let v(i) denote 
the minimum expected total cost until the system first 
reaches state 0, starting from state i at the beginning 
of a service, then using the left-skip-free property of 
state transitions as in the previous models, we have 
(with v(O) = 0) 

v(i)= z(i, i -1)+ v(i -1), i >l 

where z(i, j) minimum total expected cost until 
the system first reaches state j, starting from state i at 
the beginning of a service. Moreover 

z(i, i - 1) 

min { + f(i; it) 
p Ei1 j it 

+ E[z(i + K(8) - 1, i -1 

wheref(i; ,A) is the expected total holding cost incurred 
during the service time S(,) that begins with i jobs in 
the system, and K(yt) is the number of arrivals during 
the service time S(,u). The assumptions that arrivals 
are from a compound Poisson process and that service 
times are independent guarantee that K(,t) is inde- 
pendent of i and the history of the system before the 
beginning of the service. 

We shall exploit these properties to prove that the 
optimal service rate is monotonic in i. In contrast to 
our previous proofs, we shall give a proof based on 
pairwise switches. 

Consider a policy that is not monotonic. Specifi- 
cally, suppose that the service rate in state i + 1 is L,I 

and the service rate in state i is t2, where /L2 > Mi. Let 
us start the system in state i + 1 with a service about 
to begin and consider the total expected cost until the 
system next enters state i - 1. (The minimum of this 
total expected cost is z(i + 1, i - 1) = z(i + 1, i) + 
z(i, i - 1).) Now consider the effect of a pairwise 
switch of the service rates so that /,u is used in state i 
and/2 is used in state i + 1. Since S(,t) is stochastically 
decreasing in i, f(i + 1; /2) Sf(i + 1; 8i). Moreover, 

K(,2) is stochastically smaller than K(AI). The total 
expected savings during the passage from i + 1 to i is 

f((i + 1; AI) - f(i + 1; A29) 

+ E[z(i + K(,Au), i)] - E[z(i + K(A2), i)]. (21) 

Similarly, during the passage from i to i - 1, we incur 
additional expected costs because of the switch, which 
are equal to 

f(i; AI) - f(i; A2) 

+ E[z(i + K(,u)-1, i-i)] 

-E[z(i + K(u2) - 1, i- 1)]. (22) 

We shall show that the net savings, namely (21) minus 
(22), is nonnegative, so that the expected total cost 
from state i + 1 to state i - 1 is not increased by the 
pairwise switch, thus establishing the optimality of a 
monotonic policy. 

It suffices to show that 

f(i + 1; A,) -Afi; A0, 

> f(i + 1; 1L2) - f(i; g2) (23) 

and 

E[z(i + K(g1), i)] - E[z(i + K(,u) - 1, i- 1)] 

> E[z(i + K(AA), i)] 

- E[z(i + K(2) - 1, i-1)] (24) 

Note that f(i + 1; tL) may be viewed as the total 
holding cost during a service time S(,u) that begins 
with i jobs in the system, but with holding-cost func- 
tion h(j) :h(j + 1). Since h(.) is nondecreasing, it 
follows that f(i + 1; ,u) -.f(i; A) = E['P(S(,t))], where 
'P(t) is nondecreasing in t. Then (23) follows from the 
fact that S(A,) is stochastically larger than S(G12). To 
prove (24), note that 

E[z(i + K(,u), i)] - E(z(i + K(u) - 1, i - 1)] 

A-(H)- I 

= E (z(i + k + 1, i + k) 

- z(i + k, i + k - 1))1 

It can easily be shown that z(i + k + 1, i + k) 3 
z(i + k, i + k - 1), for all i > 1, k 3 0. (See the proof 
of Theorem 2; the proof is essentially the same for the 
system at hand.) Thus (24) follows from the fact that 
K(A I ) is stochastically larger than K(A2 ). 
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3.3. An M/PH/1 Queue With Nonpreemptive 
Discipline 

Customers arrive to a single-server queue according 
to a Poisson arrival process with a mean arrival rate 
X. The work requirement of each job consists of m 
phases, numbered k = 1, 2, ..., m. Phase k contains 
an exponentially distributed amount of work, with 
mean l Ir,. The units in which work is measured are 
normalized so that 

l/r, + ... + Ihr,,1 = 1. (25) 

The server completes work at a deterministic rate t,u 
where we are free to choose ,t from the compact set 
A E [0, oo). Thus, given that phase k is in progress and 
service rate ,u is in effect, the probability that phase k 
is completed in the interval (t, t + dt) is ,tr,kdt + o(dt). 
Moreover, (25) implies that the expected duration of 
a customer's service is 1/,u if the service rate ,u is in 
effect throughout the service. There is a service-cost 
rate cl, (,I) incurred while service rate ,u is in effect 
during phase k. Holding cost is incurred at a rate h(i) 
while i customers are in the system. As usual, we 
assume that c(.) is nonnegative, nondecreasing, and 
continuous on A, and h(.) is positive and nondecreas- 
ing in i - 1. 

The system has the Markov property with respect 
to the state variable (i, k), where i is the number of 
jobs in the system and k is the index of the service 
phase currently in progress. Let v(i, k) denote the 
minimum expected total cost until the system reaches 
state 0 (becomes empty), starting from state (i, k). Let 
z(i, k; j, 1) denote the minimum expected total cost 
until the system reaches state (j, 1), starting from state 
(i, k), where j < i. The system must pass through state 
(i - 1, k) on its way from state (i, k) to 0, from which 
it follows that 

v(i, k) = z(i, k; i - 1, k) + v(i - 1, k), 

i 1, 1 k m 

where state (0, k) is identified with state 0. Turning 
our attention to z(i, k; i - 1, k) and reasoning in 
much the same way as in Section 1, we conclude that 

z(i, k; i - 1, k) 

im {[c,;(z) + h(i) + Xz(i + 1, k; i, k)]} (26) 
EUA rk,,J 

for all i > 1, 1 < k < m. Let ,u(i, k) denote the optimal 
service rate in state (i, k), specifically, the largest 
minimizer of the right-hand side of (26). It follows 
from essentially the same argument as used in the 

proof of Theorem 2 that ,u(i, k) is nondecreasing in i, 
for each fixed k. 

In general, we cannot say anything about how 
,u(i, k) varies with k (cf. Jo and Stidham 1983). How- 
ever, in the case where both c,(,i) and r,do not depend 
on k, it can be shown that ,t(i, k) is nonincreasing in 
k for each i 3 1, with ,t(i, m) , ,u(i - 1, 1). Perhaps 
the easiest way to show this is to use the state trans- 
formation j = (i- 1)m + m - k + 1, so that the new 
state j measures the total number of work phases in 
the system, and then use a batch-arrival extension of 
the results in Section 1. (The new holding-cost 
function h'(j) defined by h'(im - k + 1) := h(i), for 
all i , 1 and 1 - k - m, is nondecreasing in j if h(i) 
is nondecreasing in i.) 

Jo and Stidham studied a generalization of this 
model, in which the number of phases required by a 
job is a random variable. They assumed that h(i) was 
convex as well as nondecreasing and proved the mon- 
otonicity of the optimal service rate first for the dis- 
counted problem, then for the average-cost problem 
by the usual Tauberian arguments. A random number 
of phases is not allowed in our approach because one 
loses the modified left-skip-free property that the sys- 
tem must pass through state (i - 1, k) on its way from 
state (i, k) to state 0. 

Phase-type service distributions, such as the ones in 
this model and in Jo and Stidham, can be used to 
approximate general service-time distributions. When 
the total number of phases is a random variable, one 
has a generalized Erlang distribution; it is possible to 
approximate any distribution of a nonnegative ran- 
dom variable arbitrarily closely with a distribution 
from this family (Schassberger 1973). With a deter- 
ministic number of phases, however, it is possible only 
to fit distributions with a coefficient of variation less 
than or equal to one. 
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