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INEQUALITIES AND BOUNDS IN STOCHASTIC SHOP SCHEDULING* 

MICHAEL PINEDOt AND RICHARD WEBERt 

Abstract. In this paper, stochastic shop models with m machines and n jobs are considered. A job has 
to be processed on all m machines, while certain constraints are imposed on the order of processing. The 
effect of the variability of the processing times on the expected completion time of the last job (the makespan) 
and on the sum of the expected completion times of all jobs (the flow time) is studied. Bounds are obtained 
for the expected makespan when the processing time distributions are New Better (Worse) than Used in 
Expectation. 
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1. Introduction. Consider a shop with m machines and n jobs. Any given job 
requires processing on each one of the m machines and all jobs are available for 
processing at t =O. The manner in which the jobs are routed through the system is 
predetermined and fixed and depends on the particular shop model under consideration. 
The processing time of job j on machine i is a random variable Xij with distribution 
Gij. The joint distribution of the random variables X1ll , Xmn may have one of the 
following two forms: 

(i) The mn processing times X11, *, Xmn are mutually independent. 
(ii) The m processing times of a job on the m machines are identical, but the 

processing time of any given job on a machine is independent of the processing time 
of any other job on that machine, i.e. X1j= . = Xmj= X with distribution Gj for 
j=1, r , n and Xi and Xk are mutually independent if j 1 k. 

In what follows, these two cases are called, respectively, the independent and the 
equal case. In this paper, the effect of the processing times' variability on the expected 
completion time of the last job (the makespan) and on the sum of the expected 
completion times of all jobs (the flow time) is studied. 

Four shop models are considered, namely flow shops with an unlimited storage 
space in between the machines, flow shops with no storage space in between the 
machines, job shops and open shops. A short description of these models follows. 

(I) Flow shops with unlimited intermediate storage. The n jobs are to be processed 
on the m machines with the order of processing on the different machines being the 
same for all jobs. Each job has to be processed first on machine 1, then on machine 
2, etc. The sequence in which the jobs go through the system is predetermined; job 
1 has to go first through the system, followed by job 2, etc. There is an infinite 
intermediate storage in between any two consecutive machines; if machine i + 1 is busy 
when job j is completed on machine i, job j is stored in between machines i and i + 1. 
Preemptions are not allowed and a job may not "pass" another job while waiting for 
a machine. 

(II) Flow shops with no intermediate storage. This model is similar to the previous 
model. The only difference lies in the fact that now there is no intermediate storage 
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in between the machines. This may have the following effect: Job j, after completing 
its processing on machine i, may not leave machine i if job j-1 is still being processed 
on machine i + 1. Job j + 1 cannot start then its processing on machine i. This 
phenomenon is called blocking. 

(III) Job shops. Only job shops with two machines are considered. Some of the 
jobs, say jobs 1,... , p, have to be processed first on machine 1 and afterwards on 
machine 2 (job 1 going first, followed by job 2, etc.). The remaining q ( = n- p) jobs 
have to be processed first on machine 2 and afterwards on machine 1 (job p + 1 going 
first, followed by job p + 2, etc.). There is an unlimited intermediate storage in between 
the two machines, so no blocking will occur. The policy under which the jobs are to 
be processed on the two machines is predetermined and under this policy jobs 1, . . , p 
(p + 1, *. , n) must have completed their processing on machine 1 (2) before any one 
of jobs p+1, * *, n (1, * . , p) is allowed to start on machine 1 (2). It is clear that if 
p is either 0 or n, this job shop reduces to a two machine flow shop with unlimited 
intermediate storage. 

(IV) Open shops. Only two machine open shops are considered. The order in 
which a job is to be processed on the two machines is now immaterial. There is an 
unlimited intermediate storage, so no blocking will occur. Only policies are considered 
which always give priority to jobs which have not yet received processing on either 
one of the two machines. 

In the literature these models have been dealt with extensively. The research in 
the past has been aimed mainly at finding job sequences and policies that minimize 
criteria such as the expected makespan and the expected flow time. For a survey of 
these results, see Pinedo and Schrage (1982) and, more recently, Pinedo (1983). Milch 
and Waggoner (1972) studied the two machine job shop where the two processing 
times of any given job are independent exponentially distributed with mean one and 
obtained a closed form expression for the expected makespan. 

A summary of the results follows. Section 2 discusses a form of stochastic domin- 
ance based on variability ordering. The effect of the processing times variability on 
the expected makespan and on the expected flow time is studied for the first, second 
and third models described above. In ? 3, closed form expressions for the expected 
makespan are presented for the first three models when the processing times of any 
given job on the various machines are i.i.d. exponential with mean one. Further- 
more, bounds are obtained for the expected makespan when the processing times 
of any given job on the various machines are independent and NBUE (NWUE) 
with mean one. Section 4 repeats the work of ? 3 for the equal case. In ? 5, the 
equal and the independent cases of the two machine open shop are considered. 
Again, closed form expressions are obtained when the processing time distributions 
are exponential with mean one and bounds are obtained for when they are NBUE 
(NWUE). 

The following notation and terminology is used. S m,c,k denotes a shop. If the S is 
an F, the shop is a flow shop; if it is a J a job shop, and if it is an 0 an open shop. 
The subscript m denotes the number of machines. If the c is an i (e), then the processing 
times are distributed according to the independent (equal) case. The k indicates the 
size of the intermediate storage; it is omitted if the shop is an open shop or a job shop. 
The time job j leaves the system is denoted by Cj; the makespan and the flow time 
are respectively denoted by Cmax and L Cj. The time epoch at which job j leaves 
machine i is denoted by Tij. The makespan and flow time of shop Sm,c,k are denoted 
by Cmax(Sm,c,k) and L Cj(Sm,c,k), respectively; if it is clear from the context which shop 
is being considered, the argument Sm,c,k is omitted. When all processing time distribu- 
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tions are exponential with mean one, this is indicated by an asterisk, e.g., C*ax(Sm,c,k) 
or Cmax. 

2. Preliminaries. The random variable Y1 with distribution F1 is said to be more 
variable than the random variable Y2 with distribution F2 if 

h(x) dF1(x) 100 h(x) dF2(x) 
0 0 

for all functions h that are increasing convex. This form of stochastic dominance has 
been used repeatedly in the literature (see Bessler and Veinott (1966), Stoyan and 
Stoyan (1969), Niu (1981), Whitt (1980) and their references) and is written as 
Y, > Y2. If E( Y1) = E( Y2), then Y1 is more variable than Y2 if and only if 

h(x) dF1(x) { h(x) dF2(x) 

for all functions h which are convex, not necessarily increasing. 
A random variable Y1 is said to be NBUE (NWUE) if 

E(Y1-tl Y1> t)'--(i')E(Y1) forall t_-:O. 

NBUE (NWUE) stands for New Better (Worse) than Used in Expectation. 
LEMMA 1. Let E( Y1) = E( Y2) and let Y1 be an exponential random variable. If 

Y2 is NBUE (NWUE), then Y2 < ) Y1. 
Proof. See Marshall and Proshan (1972). 
LEMMA 2. Let Yi, Zi, i = 1, , n be independent random variables. Then Yi < Zi 

for all i = 1, * * , n if and only if h( Y1, * Yn) < h(Z1, , Zn) for all increasing 
convex functions. 

Proof. See Bessler and Veinott (1966). Consider the shop Fm,c,k, m = 2, 3,.*.*, c - 
e, i, k=0, 1,2, * * *, and the shop J2,, c=e, i. 

LEMMA 3. In the shops Fm,c,k and J2, the time epoch Tij, the makespan Cmax and 
the flow time lCj are functions which are increasing convex in Xi1. 

Proof. Consider first Fm,i,o. For the first job that goes through the system the 
following holds. i 

Til =LXn1, i = 1, * ,m. 
1=1 

This is clearly an increasing convex function. For job j, j = 2, , n, the following holds. 

Tij = max (Tl,j-_1 + Xlj, T2,J_1), j=-2, * * *, n, 

Tij =max (Ti-1j +Xij, Ti+,,j-,), i=2,* *,m, j=2,***,n. 
It follows by induction that for Fm,i,o the time epoch Tij, the makespan Cmax (= Tmn) 
and the flow time E Cj are functions which are increasing convex in Xij. The proof of 
the lemma for Fm,e,o is similar. 

The result for Fm,i,k can be shown by assuming k dummy machines in between 
any two real machines. The processing times of the n jobs on a dummy machine are 
assumed to be zero. Note that with n jobs the shop Fm,i,n-I behaves just like the shop 
Fm i,oo. The proof for Fm,e,k is similar. 

In J2,i job j, j = 2,.*. , p, starts its processing on machine 2 at max (T1j, T2,j1). 
Therefore 

T2j =max (T1j, T2,J11)+X2j, j=2,***. p. 
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Note that T1 = X11 and 
n \ 

T21 = max (X11, YE X2j +X21. 
j=p+l 

A similar expression can be formulated for the departure times of jobs p+ 1, , n 
from machine 1. It follows then by induction that T2j, j= 1, * , p, and T1j, j= 
p + 1, * * *, n, are functions that are increasing convex in Xi1. Now Cmax = max (T2p, T n) 
This proves the lemma for J2,i. Again, the proof of the lemma for J2,e is similar. 

Now, consider two shops of the same type, the type being one of the Fm,c,k shops 
or one of the J2,, shops. A distinction is made between these two shops through the 
use of a prime and a double prime, for example, F',i os) and F'j,i,o. The processing time 
distributions in one shop are not identical to the processing time distributions in the 
other shop: The processing time of job j on machine i in the first (second) shop is 
denoted by Xt' (X'5) and its distribution by G{, (G'l). All other quantities of interest 
in the two shops receive a prime and a double prime as well. In the subsequent theorem 
and corollaries shops Fm,c,k and J, are compared with shops F'm,c,k and Jn2c respec- 
tively. The results follow immediately from Lemmas 1, 2 and 3, and are therefore 
presented without proofs. 

THEOREM 1. If 

Xtl < Xl', i-1,* ,m j= 1,* ,n 

then 

Tl' < T'l, i=l ,m. j=l ,99..n, 

C' <C" max max 

and 

E C><Z C'. 

COROLLARY 1. If 

E(X1-) = E(X') 

and 

X ,< 
" .. 

=* 9. .9 9 9. . n 

then 

E(C' ax) E(C" ax) 

and 

E ( C,) _- E (E Cl). 

Now, let all the processing times in Fm,c, k and J2,c be exponentially distributed 
with mean one and replace the prime by an asterisk, i.e. F*,c,k and J2,c Let the 
processing times in F'm,,,k and J2,, have mean one and be either all NBUE or all 
NWUE; these NBUE (NWUE) processing time distributions which all have mean one 
do not necessarily have to be the same. The following corollary follows immediately 
from Corollary 1 and Lemma 1. 

COROLLARY 2. If theprocessing times X' have mean one and are NBUE (NWUE), 
then 
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and 

E(Z C,') _ (')E( Cr). 

A lower bound for E(C'ax) and E(C') when the Xi1 are arbitrarily distributed 
with mean one can be obtained by considering the case where all the processing times 
are deterministic and equal to one. 

3. Flow shops and job shops: the independent case. In this section two machine 
flow shops with unlimited intermediate storage, two machine flow shops with no 
intermediate storage and two machine job shops are considered. The mn processing 
times are assumed to be independent and exponentially distributed with mean one. 
The results stated in the following theorem are mainly due to Milch and Waggoner 
(1972). 

THEOREM 2. 

(i) E (C * ax (F22=2n[U) E (n +2-2n 2n1)] 

(ii) E (CM*ax(F2Ji,0)) = 2 +(n-1) 
3 
2' 

Cii ECax (h,Ji) = 2n [() E(i)+2 ( +p)( +q) 

n \2 i=n+p+l i n \2 i=n+q+l i/ 
Proof. (i) See Milch and Waggoner (1972). 
(ii) When job j, j = 2, * * *, n, starts its processing on machine 1, job j- 1 starts 

its processing on machine 2. The expected time that job j, j = 2, * * *, n then occupies 
machine 1 is the maximum of two independent exponentially distributed random 
variables, which equals 3. Moreover, the expected time that job 1 occupies machine 
1 is 1 and the expected time that job n occupies machine 2 is 1 as well. The result 
then follows. 

(iii) See Milch and Waggoner (1972). 
By combining Theorem 2 with Corollary 2 bounds can be obtained for the expected 

makespan in case the processing time distributions Gij have mean one and are NBUE 
(NWUE) and the processing times of a job on the two machines are independent. 
These processing time distributions do not necessarily have to be the same (there may 
be up to 2n different distributions). However, all of them must have mean one and 
be NBUE (NWUE). Closed form expressions can now also be obtained for 
E(Z C:(F2,i,-O)), E(Z C(F2,i,O)) and E(Z CN(J2,)). To obtain an expression for 
E(Z Cj*(F2,i,-O)), replace in the expression for E(CMax(F2,i,o)) the n by an I and sum 
over I from 1 to n. 

4. Flow shops and job shops: the equal case. In this section first Cmax(Fm,e), 
Cmax(Fm,e,0) and Cmax(J2,e) are determined as functions of the processing times 
X1, * * , Xn of the n jobs. Afterwards, closed form expressions are obtained for 
E (CMax(Fm,e,oo)), E (CMax(Fme,0)) and E (CMax(J2,e)). 

THEOREM 3. 

n 

(i) Cmax(Fm,e,o) Z Xi + (m-1) max (X1, * , Xn). 
j=1 
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m n 
(ii) Cmax(Fm,e,o) = E max (Xl, , Xj) + E max (Xj_m+l, Xj-m+2, , Xj) 

j=l j=m+l 

m 

+ E max (Xn, Xn,.*. Xn-m+i). 
i=2 

(iii) Cmax(J2,e) = max (Xi - - . Xp. E Xj) +max (Xp+1, l Xn, E Xi 

Proof. (i) It suffices to show that 

- ~~~~~Tij= Xk +(i -1) max (Xi, , Xj). 
k=1 

The proof is by induction. It is clearly true for j= 1, i= 1, ,m and for i= 1, j= 
l, k*,n. Assume it is true for j= l- 1 and i = 1 , m. So 

1-1 

Ti,1_1 =' E Xk + (i - 1) max (xl,**, X-0l 
k=1 

=T1,_ _+ (i - ) max (Xl, * X-_0 

Two cases have to be considered, namely the case where XI < max (Xl, , XI-) and 
the case where X > max (Xl, * , XI-). When XI < max (Xl, * * *, XI-), job 1 must 
wait for machine i + 1, i = 1,* *, m - 1, after it has completed its processing on machine 
i, since job I - l leaves machine i + 1 a time period max (Xi, , XI-) after job I - l 
leaves machine i. So in this case 

Ti,,= Ti,-1 ++X1. 

When XI > max (Xl, , XI-), job 1 can immediately start its processing on machine 
i + 1 after it has completed its processing on machine i. So in this case 

Th,= T1,1+(i-l)X1. 

Combining these two cases, it becomes clear that 

Ti=T,1 +(i-1) max(Xi,. * , XI). 

(ii) First it is shown that the time job j, j = 1, * , m, spends on machine 1 is 
max (Xi, Xi-,, * * *, Xi). Let job I be the job with the longest processing time among 
jobs l, ,j, i.e. 

X= max (XJ, Xj-, , X). 

Because of the zero waiting room between the machines, it is clear that when job I 
starts on machine 2, job I+1 starts on machine 1; when job I starts on machine 3, 
job l+1 starts on machine 2, as XI+, <Xi, and job 1+ 2 starts on machine 1. Con- 
sequently, jobs j, j- 1, * * *, I+ 1 always move when job I does. Furthermore, jobs 
1- i, 1- 2, * * *, 1 will not impede job I since their processing times are less than Xi. 
So the time job j, j = 1, , m, spends on machine 1 is max (Xj, Xj_1, , Xi). In the 
same way it can be shown that the time job j, j = m + l , n spends on machine 1 
is max (Xj, Xj_i-,. , Xjm+1) and that the time job n spends on machine i, i= 
2,. * * , m, is max (Xn, Xn-1, * * *, Xn_n+i). The result follows. 

(iii) Note that if neither one of the two machines ever remains idle in between 
the processing of jobs, the two machines finish with their processing exactly at the 
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same time, as the amount of processing to be done, Z i Xj, is the same. If 
n 
E Xi max (Xi, Xp) j=p+l 

no idle periods occur on machine 2, and if 

p 

E Xj '-:-max (Xp+l,***, Xn) 
j=1 

no idle periods occur on machine 1. This implies that idle periods can only occur on 
one machine. Consider the case where 

n 
Z Xj - max (X1,, Xp). i=p+l 

In this case the two machine job shop can be regarded as a two machine flow shop 
with unlimited intermediate storage and p+2 jobs: one job, say job 0, has to go first 
and has zero processing time on machine 1 and a processing time of j=p+1 X, on 
machine 2; jobs 1, * * *, p follow job 0, going first through machine 1 with processing 
times X1, , * * ,Xp and afterwards through machine 2 again with processing times 
X1,i**, Xp; one job, say job n + 1, goes last, with a processing time of E n=p+1 Xj on 
machine 1 and zero processing time on machine 2. An argument similar to (i) shows 
that the makespan then equals 

n n n 
EXj+max X1 ,p E _EXj. 

j= 1 j=p+l j=p+l 

In this expression the third term is subtracted because job n + 1 has zero processing 
time on machine 2. The total time machine 2 remains idle in between the processing 
of jobs is 

n n 
max XI,. * ,Xp, Xi X- EXi j=p+l j=p+l 

which is positive under the condition stated before. In a similar way, it can be shown 
that the total time machine 1 remains idle is 

P P 
max Xp+I, .. ,Xn, E Xi - Xi. j=I j=I 

The makespan is the sum of E n X, the idle time on machine 1 and the idle time on 
machine 2. At least one of the last two terms in this summation is zero. The result 
follows. 

E(Cmax(Fm,e,oo)) and E(Cmax(Fm,e,0)) can now be computed for various processing 
time distributions, e.g. the Uniform, the Exponential. To compute E(Cmax(J2,e)) for 
the various processing time distributions is slightly more complicated. 

THEOREM 4. 

(i) E (CMax(Fm,e,o)) = n + z m . 
j=1 J 

m-i 1 j nm 1 
(ii) E(CMax(Fm,e,0))=2 E E -+ E 

j=1 k=i k j=m k=i k 

p n-p 
(iii) E(CMax(J2,e)) =n+ EAi,p+ A Ain-pq 

i=l i=l 
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where 

Ai,p = - {1(-1)i iP)[1- (l/(i + 1))n-] I 

Proof. Parts (i) and (ii) follow immediately from parts (i) and (ii) of Theorem 3. 
Part (iii) is more complicated. Note that max (X1, , Xp, E =p+ Xj), where 
x1,i* , Xn are independent exponentially distributed with mean one, has the same 
distribution as max (ZP=1 Yi, Z=p+1 Xj), where Yj is exponentially distributed with 
mean l / (p + l - j). Observe that 

E(max( , E 
Xj)) 

E 
.+E(max(O, 

E XjN-E Yj 
j=1 j=p+l j=1 j=p+l j=1 

Now 
/ / ~n pn-p /P+j p P+j+1 

Etmxt-i Y = z (n-p-jx < Yi. E X. 
i=P+l j=1 j=o i=p+l i=1 i=p+l 

Let f (t) denote the probability density function of p Yi. By induction, using the identity 

PE (- 1) i+l (P i =(- 1)Ppp 

it can be shown that 

f() (-l)'+' (i )e it, t_O. 

So 

/P+j p P+j+l co~ tie-t p 

p1 X p x Jo f(t) dt= E i(-1)i+lV?I/(i+l)i+l. 
\p+1 1 p+i / o = 

After some straightforward, but tedious, manipulations it follows that 
n-p /P+j p P+j+/ 
fi (n-p-j)Pt f Xi_L Yi < i Xi 
j=o P+1 1 P+ O 

= (l)+ p E (n -p- j)/(i +l)j 
i=1 j=0 

= E (li+l( n-p_()(1- 1 
)-) 

i=1 

=(n-p)- E _1+(P(( ) ) 

Thus 

E max jL Yj, E Xj))=(n-p)+ L {--)+()1( ) ] 

p 

T(n-p)l+eoAe,p. 
i=l 

This completes the proof of the theorem. 
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Just as in ? 3, bounds can now be obtained for the expected makespan in case the 
processing times of job j, j = 1, , n, on the n machines are identical and distributed 
according to a distribution Gj which has mean one and is NBUE (NWUE). 

5. Open shops: The equal and the independent case. Pinedo and Ross (1982) 
considered the two machine open shop with the processing times of any given job on 
the two machines being independent and exponentially distributed with mean one. 
Furthermore, they assumed that jobs which have not yet received processing on either 
one of the two machines have priority over jobs which already have received processing 
on one of the two machines. 

THEOREM 5. 
2n-1 /k\ /1\ 1 

(i) E (CMax(02J))=2n- kE- n 
+ 

2 2 
k=n 

n 2 2 

(ii) E(C*ax(02,e))= n + + E - () -() 

Proof. For part (i) see Pinedo and Ross (1982). 
(ii) It is clear that 

n 

Cmax(02,e)- E Xi. 
j=1 

If both machines work without interruption and no idle periods occur in between 
the processing of jobs on either one of the machines, then the makespan is equal 
to the R.H.S. in the above expression. However, an idle period can occur on one of 
the machines, say machine 1, when this machine has completed the processing of n- 1 
jobs and has to wait for the last job, say job j, because this last job is just then being 
processed on machine 2. After job j completes its processing on machine 2, leaving 
machine 1 idle for a time T which is exponentially distributed with mean one, it 
switches over to machine 1. Machine 1 then processes job j and completes this 
processing a time T after machine 2 completes all its processing. What remains to be 
computed is the probability that such an idle period occurs. When job j, j> 2, starts 
its first processing j- 2 jobs have already completed their first processing. Assume job 
j starts its first processing on machine 1. For job j to cause an idle period, it has to 
outlast n -j+1 jobs which have to complete their first processing on machine 2. It 
also has to outlast the second processing of those jobs that have completed their first 
on machine 1 before job j started its first processing; this amount of time, which is 
equal to the amount of time between t = 0 and the time when job j initiates its first 
processing, is distributed according to a convolution of j- 2 exponential distributions, 
each one having rate 2. So the probability that job j causes an idle period is 

p = ( n-j+l (2) j-2 j=3 ,n 

It can be shown easily that 

P = P2 = (2)fl1 

Therefore 
(1) n-1 n (1) n-j+1 (2) j-2 

and the result follows. 
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Unlike the situation in ?? 3 and 4, Theorem 1 cannot be used to establish bounds 
for the expected makespan when the processing times are NBUE (NWUE). In order 
to obtain bounds the effect of the idle period on the expected makespan has to be 
investigated. The following corollary follows immediately from the results of Pinedo 
and Ross and from Theorem 5. 

COROLLARY 3. (i) If the processing times in 02,i are NBUE and have mean one, 
then 

n _ E(Cmax(02,i)) <2n - E n ( )(-)+1. 

If the processing times are NWUE and have mean one, then 

2n-1 /k\1\k 
2n- E n ( <E(Cmax(02,i)). 

k=n n 2 

(ii) If the processing times in ?2,e are NBUE and have mean one, then 

n _ E(Cmax(02,e)) < n + 1. 

If the processing times are NWUE and have mean one, then 

n <E( Cmax(02,e)) . 

6. Additional remarks. (i) Lemma 3 and Theorem 1 can be generalized easily in 
the following way. Consider a flow shop with no storage space in between the machines 
and let 

Xij =fij( y1, , Yk), 

where Y1, , Yk are independent random variables and fij is a function which is 
increasing convex in Yl, , Yk. Now, making the random variables Y1, , Y , more 
variable causes the random variables Xij to become more variable and therefore also 
the makespan and the flow time. Through an appropriate choice of functions fij a flow 
shop with finite (and positive) intermediate storage between the machines can be 
constructed. This indicates that Theorem 1 does not only hold for flow shops with no 
intermediate storage and flow shops with infinite intermediate storage; it also holds 
for flow shops with finite and positive intermediate storage. 

(ii) Lemma 3 and Theorem 1 also hold for m machine job shops where for each 
job the machine sequence is determined in advance and where for each machine 
the job sequence is determined in advance as well. 

(iii) Lemma 3 and Theorem 1 fail to hold when the following situation is allowed 
to occur in a shop: A machine is allowed to start processing any one of a set of jobs 
dependent upon which one arrives first at this machine. The reason why Lemma 3 and 
Theorem 1 do not hold then lies in the fact that the minimum of a set of random 
arrival times has to be determined. This minimum is not an increasing convex function. 
This is also the reason why Lemma 2 and Theorem 1 do not hold for open shops. 

(iv) The results in this paper indicate that a greater variability increases the 
expected makespan as well as the expected flow time. This is, however, not always the 
case in stochastic scheduling. Pinedo (1984) considered the case of m machines in 
parallel and n jobs. Each job has to be processed on one of the m machines; any one 
can do. It turns out that a greater variability indeed increases the expected makespan, 
but on the other hand, decreases the expected flow time. 
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