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ABSTRACT

For certain scheduling problems with pre-emptive processing, a
dynamic programming formulation reduces the problem to a sequence of
deterministic optimal control problems. Simple necessary and
sufficient optimality conditions for these deterministic problers
are obtainable from the standard results of optimal control theory,
and sometimes lead to analytic solutions. Where this does not
happen, then as with many dynamic programming formulations,
computational solution is possible in principle, but infeasible in
practice. After a survey of this approach to scheduling problems,
this paper discusses a simplification of the method which lcads to
computationally tractable problems which can be expected to yield
good, though sub-optimal, scheduling strategies. This new approach
is based on the notion of sequential open-loop control, sometimes
used in control engineering to solve stochastic control problems by
deterministic means, and is not based on dyramic programning.

1. INTRODUCTION

The basic tools of most of optimization theory are optimality
conditions obtained by variational methods. A fundamental
difficulty with scheduling problems is their combinatorial nature,
which usually nakes their solution by wvariational ftechniques

impossible. Thus for most scheduling problems, first- and
second~order optimality conditions analogous to  those of
mathematical programming are unavailable. For one class of
problems, namely those 1in which scheduling 1s completely

pre-~emptive, this 1s not the case. In such problems, processor
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effort can be regarded as infinitely divisible at each point in time,
and the allocation of effort as instantaneously variable. Under
these conditions, variational methods can be applied. As a bonus,
we find that when we formulate such problems appropriately, they can
be approached by completely deterministic methods.

In this paper, we outline a method whereby scheduling problems
of this type can be reduced to deterministic optimal control
problems. The application of the maximum principle to these problems
leads to necessary conditions for optimality of a schedule, while the
Hamilton-Jacobi-Bellman equation for the problem gives a
corresponding sufficient condition. For a number of cases, these
conditions enable one to derive the optimal scheduling strategy.
This is most easily done for static single-processor problems, and
becomes increasingly difficult as fthe structure of the problem
becomes more complex. Extending results from the static to the
dynamic case requires more complicated notation and proofs, and when
we examine the paral’el-processor case, the arguments needed to
produce analytic results become very delicate 1indeed. The
formulation is based on a particular dynamic programming approach,
and when analytic results are not obtainable, solution by direct
computation 1s not a practical proposition. Without going into
formal proofs in detail, we indicate the features of the problem
which make its solution difficult, and these lead us to propose the
investigation of what control engineers call sequential open-loop
strategies.

To apply an sequential open-loop strategy to a scheduling
problem, we compute an allocation of processor effort for all future
times, by optimizing an objective functional on the assumption that
the chosenallocation will be followed -~ even to the extent of leaving
resources idle -~ dirrespective of the realizations of the job
completions. This allocation is followed for the duration of some
review period (possibly random), then a new allocation is computed
in the same way, after updating all the probability distributions.
This new allocation is put into effect during the next review period,
and S0 on.

Such a strategy will be sub-optimal, but it will approximate to
optimality in some cases. In particular cases, indeed, such a
strategy 1s optimal if the review times are suitably chosen. Where
we can have some hope that such a strategy will perform well, it has
considerable advantages: 1t can be obtained analytically at least as
often as the optimal closed-loop strategy, while being relatively
easy to compute even if not so obtainable.

The next section describes the reduction of the scheduling
problem to a problem in deterministic optimal control, and reviews
some of the results that can be obtained from this formulation. The
exposition will be brief, as this material has appeared elsewhere
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[5], [6], [8]. In the following sections, we examine sequential
open-loop schedules for a number of examples and compare them with
known optimal strategies.

2. AN OPTIMAL CONTROL FORMULATION

For simplicity, we consider first the single-server problem
with no arrivals. At time t=0 there are n jobs waiting to be
processed. Processing effort is available at a constant rate, which
may be taken to be unity. The amount of processing needed to complete
job 1 1is a random variable whose distribution is known, and has
distribution Fj with density fj. We define

Pi:1—Fi, pi:fi/Pi' i=1 ,2, ese,N,

the survivor functions and completion rate functions respectively.
On completion of each job, a reward is received which depends on the
Job and on the time of its completion. The reward received if job
i is completed at time t is ry(t). (We assume that the functions Fy,
fi, pi and ry are all well behaved.) We seek to allocate processing
effort between jobs over time so as to maximize the expected total
reward.

The state of the set of jobs at time t is described by the pair
(F(t),X(t)), where I'(t) is a list, possibly empty, of the indices of
the Jjobs that have been completed by time  t, and
X(£)=(Xy(t),Xo(t),...,X(%)) is a vector whose i'th component is the
amount of processing received by job i during (0,t). A scheduling
strategy U is a rule which determines, for any state (T,X) and time
t an allocation U(I',X,t) of the total processing effort. We use
I(t]0) and X(t{U) to denote the components of the process (I'(t),X(t))
when a fixed strategy U is used.

A crucial feature of the controlled semi-Markov process
(r(t),x(t)) is that for any fixed strategy U, the evolution of X(t|U)
is completely deterministic between jumps in r{tiv). Any strategy
U can therefore be implemented in the following way. Define, for each
(r,X) and %,

ul(X, £58)=U(r,xT(X,t;8),s), t<s<oo,
where x[(X,t;s) is determined by

X, t38)=ul'(X,t;s), tes<o, xI'(X,t;t)=X.
Let C¢,C},0.+,Cpy denote the initial time and the times of the first,
second, etc. job completions. Let I'g,I';,...,I}, denote the lists of

completed jobs initially and at times just after the first, second,
etc. Jjob completions. Then U is implemented by using the allocation



388 P. NASH AND R. R. WEBER
uFO(X(CO),CO;s)

at all times s up to the first job completion, then using the
allocation

ul'1(x(cy),Cq58)

for all times between the first and second completions, then
switching to

ul2(x(to)Co58),
and so on.

This idea allows us to write the following recursive expression
for expected total reward obtained using strategy U and starting at
time t in state {I,X):

AR R (R EXECRIDI RS
LED yep

+VF’i(xF(X,t;s)),SIU)}fi(xg(x,t;s))ug(x,t;s)]ds,

with the obvious terminal condition that the expected value in states
with no uncompleted job is identically zero. This makes it clear that
for any initial state, the scheduling problem can be viewed as one
of choosing an optimal sequence

{uli(x(c;),c 58): 170,1,2,...,n-1}
of deterministic controllers. If we apply the dynamic programming
optimality principle to this sequence of choices, we see that U is

optimal if and only if each such controller u (X,t;s) solves a
deterministic optimal control problem

PF(X,t): Maximize [ ( ) hg(x(s),s)ui(s))ds
Yyl
subject to =x(s)=u(s), t<s<=, x(t)=X,
Tu, (8)=1, t<s<»,
!
where we define for each T',x,s
r = T, i
hi(x,s) {(kgiPk(xk))ri(s)+V 1(x,s=U)}fi(xi).
kel

Not only is this problem deterministic, but it has a
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particularly simple form, especially in its dynamics. We quote two
theorems which show that thi$ simplicity leads to equally simple
necessary and sufficient conditions for optimality. Let P1 be the
problem

P1(X,t): Maximize j:[% hi(x(s),s)ui(s)]ds

subject to i(s)=u(s), t< s, x(t)=X,
Zui(s)=1, tg<s<», u(s)EQ, O<s<w.
i

Theorem 1. A necessary condition for the optimality of u in P1 is
that , for each time t,

= ﬁ?é {%wift(gHij(x(s),s)uj(s))ds=0,

Lw. =1
where “i
bhj(x,s) 6hi(x,s) 3
Hy 5(x,8)= - +—(h.(x,8)-hy(x,8)).
éxi bxj 5s Y

This condition i1s just a statement of the maximum principle for P1,
after integrating the co-state equations to give the co-state
variables in terms of the states and controls. The details are in

[5].

Theorem 1 is a necessary condition, and relates to open-loop
controllers, that is controllers specified as functions of time for
particular sets of initial data. We can ask for a closed-loop or
feedback controller, which assigns to each state a control action.
The open-locp controllers are then just the implementations of the
closed-loop controller on trajectories with particular initial data.
By using dynamic programming on Pl, we obtain a necessary and
sufficient condition for optimality of a feedback controller. Let
V(x,t:u) denote the value of the objective functional in P1 starting
from state x and time t, using control u.

Theorem 2. A necessary and sufficient condition for the feedback
controller u(x,t) to be optimal for P1 is

(x,tiu)

ov
Tu.(x,t){—
iul( ) { o

|
+hy(x, 1)} = Loy { oV, tiu) +hy (x, 1))

i i
axl

for all weR such that Zwi=1, for all x and t.
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Again, the proof of this result is a straightforward application of
the[t?chniques of optimal control theory. The details can be found
in [8].

The deterministic problem PI(X,%) is of the same form as P1, and
theorems 1 and 2 may therefore be applied to it to obtain necessary
and sufficient optimality conditions. To solve the scheduling
problem with the usual initial data - no Jobs completed and no
processing as yet carried out, starting at time O - we need to solve
P(0,0). A snag is that the conditions provided by the theorems will
involve the derivatives of the optimal value functions vl for the
(n~1)-job scheduling problems arising at the first completion. It
is readily shown [5] that these derivatives can be written in terms
of the co-states for the (n-1)-job problems. When the optimal
scheduling strategy has a structure which is independent of the
number of jobs (when it is given by a priority index, for example),
it is usually possible to prove optimality by using this as the basis
of an inductive argument. When this is not the case, the dependence
of the objective in P(0,0) on the functions {V1} means that any
computational procedure based on this approach would have to be
recursive, and would involve the solution of all 2,3,...,(n-1) Jjob
sub-problems over a region of the state space of the n job problem.
While possible in principle, there is 1little hope that such a
procedure could be practical.

This is a pity, because the formulation permits of great
generality. For example, we can deal with parallel processors just
by changing the constraints to be satisfied by the deferministic
controllers. For the multi-server case, we just add the constraints

ui(s)<1/m, i=1,2,...,0.

Some results for multi-server problems obtained in this way are
described in [8] Precedence relations between jobs can be modelled
by allowing the control constraint set @ to depend on [, so that an
optimal controller ul for PI has %o satisfy

ul(1) e, o<tce.

This does not affect the form of the deterministic control problems,
so fhat theorems 1 and 2 may still be applied. Queueing problems are
included simply by noting that arrivals constitute just another type
of random jump, so that the set of times at which deterministic
controllers have to be chosen now includes arrival instants as well
as completion instants. We thus have to solve a set of problems PI';A,
where A is the list of Jjobs which have arrived or been released.

Similarly, reneging of customers in a queue is included by adding
times at which customers renege to the set of decision times. In
fact, zlmost any effect of this sort, which just adds more jumps to
the basic process, can be incorporated in this way, and the objective
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functional and dynamics in the associated deterministic control
problem are always formally the same as those of P1: only the specific
definition of the functions hj changes. Various results involving
the determination of optimal strategies can be extended by these
means; some of these extensions are described in 6].

In the remainder of this paper, we investigate a possible
method of using this formulation to generate scheduling strategies
in problems where the full deterministic control problem derived
from the optimality ©principle as above <cannot be solved
analytically. We note that most of the difficulties arise because
of the dependence of the optimality conditions on the lower-order
sub-problems, and consider a formulation in which these dependencies
do not occur.

3. OPEN-LOOP FORMULATIONS

The basic observation we make is that if we pretend that the
evolution of the system will be unobserved, or that at any rate we
are unable to act on any observations, then we are faced with the
problem of finding an open-loop controller, which is simply an
allocation of processor effort for all future times, which will be
followed exactly, even if it implies allocating effort to already
completed jobs. This is equivalent to controlling the probability
dynamics c¢f the process, which is the approach used in tﬁ] and [7],
although neither of these papers makes explicit reference to the fact
that the control is open-loop.

The approximation involved in open-loop control is obviously
a gross one, and the allocations produced would become more and more
ridiculous as Jobs were completed. A compromise between a full
closed-loop solution and the completely open-loop one that has been
used in a number of control applications is open-loop feedback or
sequential open-loop control 2]. To implement a sequential open
loop controller, we solve an open-loop problem at each of a
succession of review times 71g,7T],..., and employ the resulting
controller between succesive review times. The review times may be
predetermined, or state-dependent(and hence random). Each time we
solve for a new open-loop controller, we incorporate up-to-date
information about the system state.

For this to be a useful approach to scheduling and allccation
problems, a number of criteria must be met. First, we must have some
expectation that the scheduling strategies that result are
near-optimal, and better than those that might result from the
application of one or other of the well-known scheduling heuristics.
Secondly, where the resulting open-loop problems are not soluble
analytically, they must be computationally tractable. Thirdly,
their applicability should be reasonably general.
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3.1 Sequential open-loop scheduling

. We Dbegin by presenting an open-loop analogue of probiem
PE(X,t).

OLPF(X,t): Maximize fm ( Z ri(t')fi(x(s))ui(s))dsx
v qel

/
subject to x(s)=u(s), t<s<o, x(t)=X,
Tu. (s)=1, t<s<=,
9

This is formally the same as P1, so that theorems 1 and 2 apply. Note
also that this is a different problem from that of maximizing the
reward for the first completion, which would be formulated

MFCF(X,t): Maximize f:%{ I Pj(xj(s))}ri(s)fi(x(s))ui(s)ds

J#i

subject to i(s)=u(s), x(t£)=X,
fus (s)=1, t<s<=,
o1

We could, of course, as well use the latter objective functional as
that of OLP. We are just seeking to generate a sequence of open-loop
controllers by solving a surrogate optimization problem, and the
precise form of that problem is obviously open to choice. The main
reason for concentrating on OLP is its extreme simplicity.

Because OLP no longer contains the recursion implicit in P, the
proof of analytic results about OLP, where these exist, is in general
much simpler than for P. An example is the proof of theorem 4 of this
paper. From the computational point of view, OLP is a particularly
simple member of a class of standard problems in optimal control.
Well-developed algorithms are available for the solution of such
problems. We will not go further into this aspect here, but in the
rest of this paper we compare the performance of sequential
strategies derived from OLP with known optimal solutions.

Consider, for example, the case where

- -at
ri(t)—wie

, 1=1,2,...,n,

where the wi's are positive constants. The solution of P in this case
given by a dynamic priority index v which is a particular form of the
Gittins index 4] for multi-armed bandits:

fx wifi(c)e_acdc
vi(x)= sup { XX. .
X >X fx Pi(C)e-aCdC
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For this class of reward functions, OLP 1is a deterministic,
continuous time multi-armed bandit. Its solution is given by a
dynamic priority index B, where

t
X

foow . (2)em%tar
B;(x)= 5P (= 1.1 }
*ox fx e~ Cac

Thus the sequential open~loop controller for P derived from OLP works
as follows. TFor each t&(ty, Tp41), compute B;i(X;(1)) for each job in
f(t), on the basis of the current data. Over the interval (Tr,fr+1>,
schedule using the dynamic priority index B. This heuristic has the
property that, as the intervals {{tp,Tp+1J): r=1,2,...} tend to zero
in length, it tends %to a closed-loop contreller for P which is based
on the priority index vy, where

v ()=, (x)/P (%)
Theorem 3.

(1) If p;i(x) is a monotonic, ron-increasing function of x, then
Yi(X>=vi(X) for all x.

(ii) If the functions fy are all identical, with increasing
completion rate p, and the weights w; all equal, then v and vy
determine identical scheduling strategies.

Proof.
(1) 1f pi 1s a decreasing function, so is fi;. Thus
yi(x)=wipy(x)=vi(x).

(i1) When p is increasing in x, then so is v. It therefore
suffices to show that this is also true of y. This is obvious for
all values of x for which a(x)=p(x). Otherwise, suppose that in
the definition of Bi(x), the supremum on the RHS is achieved by some
value x'=¢(x)(>x). Then

y(x)>p(x).

Hence, for some &>0, and all E€(x,x+§),

fz wi T ()emolar

x' DL pi(g)fz'e-aCdC

}

(€095 e (g)ematar

" (o) ) eatar
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jE(X>vzifi(c)e"aCdc

=v(x).
Pi(x>f§(x>e‘aCdC

This theorem shows that the sequential open-loop strategy is the same
as the optimal strategy in the 1imit of small review period, for these
varticular classes of completion time distribution, and a single
processor with this reward structure. We call a sequential open-loop
strategy with this property asynptotically optimal.

The theorem extends to the problem ¢f minimizing the weighted
flowtime, by taking the limit of the discounted case as a»0. Part
(i) of the theorem extends to a more general class of reward
functions. OSuppose that

ri=wir+tdy, i=1,2,...,n,

where w; 1is a positive constant, d; is a constant and r is a
decreasing function of time. Then the optimal controller for this
version of OLP is still given by the dynamic priority index whose
value is wyf;. This result can be proved by the straightforward
application of theorem 1 fo OLP. In the 1limit of small review
periods, this becomes the strategy determined by the priority index
wipi. This can be shown [5] to be optimal for P, again via theorem
1.

We now consider a class of single-processor problems for which
a full optimal strategy is hard to find. Suppose that the jobs
represent customers in a queue, and that customers will become
dissatisfied and leave (renege) at random times if their service is
not already complete. This is equivalent to giving each Job a
randomly distributed due date, after which no reward can accrue from
the completion of that job. Some results concerning the optimal
strategy for a variant of this problem when the jobs have a common
deadline and the processing time distributions are exponential are
in [3]. Let G; denote the distribution of the time that the i'th
customer is prepared to wait, with density g4 and survivor function
Qi- Then the open~loop problem is

oI (X,1): Maximize fw ( Z_ri(s)Qi(s)fi(x(s))ui(s))ds
i€l

Subject to x(s)=uls), t<s<=, x(t)=X,
Zui(s)=1, t<s{,
i
To maximize the weighted number of satisfied customers, we take rj=wy

for all i. Then OLR and OLP are the same, with Qi replacing ry. As
before, the optimal control for OLR when the f; are decreasing is
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myopic, provided the derivatives of the Qi are proportional.

Suppose the customers are all equally dimpatient, the
distributions {G5} being identical and negative exponential. Then
the results given by theorem 3 for the asymptotic form of the
sequential open~-loop strategy hold. This provides an example where
the sequential open-loop strategy need not be asymptotically
optimal. If n=2, and

fi(x)=rje~MX, i=1,2,
then it is optimal to process job 1 first if

)

wy A (1+

a Y2uoho (1+
at M T2z

atAo

The asymptotic form of the sequential open-loop strategy is to
process the jobs in wi A; order. These two indices are equivalent when
w1=wp, and asymptotically equivalent for large Aj;, Ao for any
weights, but one may readily find values of the parameters for which
this is not so.

We remark that for the variant of the problem where there is a
single deadline, the sequential open-loop strategy is asymptotically
optimal if the conditions of either theorem 3(i) or (ii) hold for the
completion time distributions. This follows from the formal
equivalence of the full problem with problem P, and of the open loop
problem with OLP, with r; replaced in each case by Q, the survivor
function of the deadline distribution.

As a final example, we consider a nulti-server problem. Suppose
we are interested in minimizing the flowtime for the set of n jobs
on m identical machines. Then we add to OLP the constraints

ui(s)<1/m, 1=1,2,¢c0,n, t<s{®,

Suppose that all the jcbs have didentical completion time
distributions, but have possibly received different amounts of
processing. Using theorem 2, it can be shown,[8] that if the common
completion time distribution has monotone completion rate, then the
strategy of processing at each time the jobs with currently greatest
completion rate minimizes the expected flowtime. If the common
completion time density is log-convex or log-concave, then this
strategy minimizes the flowtime in distribution. These results are
extensions of similar results for the single server problem P, but
their proof is much more difficult. In contrast, the corresponding
open-loop results extend easily to the multi server case when f is
a decreasing function.
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Theorem 4. Suppose the common completion rate distribution of the
n jobs has monotone completion rate. The the sequential open-loop
strategy asymptotically minimizes the expected flowtime.

Proof.

What we actually prove is that f is a priority index for the
problem under these conditions; the result proper then follows as in
theorem 3. Observe that, under our assumptions, two jobs which have
received the same amount of processing are identical. Thus we can
solve OLP with a controller which preserves the initial ordering of
the values of f3, i1=1,2,...,n, which we may as well take to be the
same as the lexicographic order. A simple calculation shows that if
i<k, then

[cod

ft[EHij(x(s),s)uj(s))ds<fZ(§ij(x(s),s)uj(s))ds

with equality only if 1 and k are identical at time t and receive
identical treatment thereafter. The result follows by the
maximizing property of the optimal u.

4. CONCLUSION

The use of optimal control theory is a powerful analytical tool
in the solution of scheduling problems when the processing can be
pre-emptive. Its use in computing optimal scheduling strategies
where these are not obtainable analytically is not likely to be
practicable. If we seek sequential open-loop strategies, by finding
solutions to intuitively plausible surrogate problems, we are faced
with control problems which have analytical solutions over a
somewhat wider range of conditions than the closed-loop counterpart.
Where these problems do not yield an analytic solution, numerical
solution should not be difficult in practice. The examples
considered here give us some grounds for hope that the resulting
strategies will be effective. At the same time, we have shown that
the optimal strategies for a range of problems can be characterized
as the limit of sequential open-loop controllers.

Before the use in practice of open-loop sequential scheduling
can be recommended, a number of further points have to be examined.
Chiefly, their performance on problems with more difficult
structures than those considered here needs to be tested, probably
by computer. Algorithms for solving deterministic optimal control
problems are numerous, and it would be worth knowing which perform
well on problems like OLP.
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