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ABSTRACT 

For certain scheduling problems wi th pre-emptive processing, a 
dynamic programming formulation reduces the problem to a sequence of 
deterministic optimal control problems. Simple necessary and 
sufficient optimality conditions for these deterministic problems 
are obtainable from the standard results of optimal control theory, 
and s 0 met i me s 1ea d to a na 1y tic soluti 0 ns . Vlh ere t his doe s not 
happen, then as with many dynamic programming formulations, 
computational solution is possible in principle, but infeasible in 
practice. After a survey of this approach to scheduling problems, 
this paper discusses a simplification of the method which leads to 
computationally tractable problems which can be expected to yield 
good, though sub-optimal, scheduling strategies. This new approach 
is based on the notion of sequential open-loop control, sometimes 
used in control engineering to solve stochastic control problems by 
deterministic means, and is not based on dynamic programming. 

1. INTRODUCTION 

The basic tools of most of optimization theory are optimality 
conditions obtained by variational methods. A fundamental 
difficulty with scheduling problems is their combinatorial nature, 
which usually makes their solution by variational techniques 
impossible. Thus for most scheduling problems, first- and 
second-order optimali ty condi tions analogous to those of 
mathematical programming are unavailable. For one class of 
problems, n~mely those in which scheduling is completely 
pre-emptive, this is not the case. In such problems, processor 
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effort can be regarded as infini tely divisible a t each point in time, 
and the allocation of effort as instantaneously variable. Under 
these conditions, variational methods can be applied. As a bonus, 
we find that when'we formulate such problems appropriately, they can 
be approached by completely deterministic methods. 

In this paper, we outline a method whereby scheduling problems 
of this type can be reduced to deterministic optimal control 
problems. The application of the maximum principle to these problems 
leads to necessary condi tions for optimali ty of a schedule, while the 
Hamil ton-Jacobi-Bellman equation for the problem gives a 
corresponding sufficient condition. For a number of cases, these 
conditions enable one to derive the optimal scheduling strategy. 
This is I.rlOSt easily done for static single-processor problems, and 
becomes increasingly difficul t as the structure of the problem 
becomes more complex. Extending resul ts from the static to the 
dynamic case requires more complicated notation and proofs, and when 
we examine the parallel-processor case, the arguments needed to 
produce analytic results become very delicate indeed. The 
formulation is based on a particular dynamic programming approach, 
and when analytic results are not obtainable, solution by direct 
computation is not a practical proposi tiona Wi thout going into 
formal proofs in detail, we indicate the features of the problem 
which mak~ its solution difficult, and these lead us to propose the 
investigation of what control engineers call sequential open-loop 
strategies. 

To apply an sequential open-loop strategy to a scheduling 
problem, we compute an allocation of processor effort for all future 
times, by optimizing an objective functional on the assumption that 
the chosen allocation will be followed - even to the extent of leaving 
resources idle irrespective of the realizations of the job 
completions. This allocation is followed for the duration of some 
review period (possibly random), then a new allocation is computed 
in the same way, after updating all the probability distributions. 
This new alloca tion is pu t into effect during the next review period, 
and so on .. 

Such a strategy will be sub-optimal, but it will approximate to 
optimali ty in some cases. In particular cases, indeed, such a 
strategy is optimal if the review times are suitably chosen. Where 
we can have some hope that such a strategy will perform well, it has 
considerable advantages: it can be obtained analytically at least as 
often as the optimal closed-loop strategy, while being relatively 
easy to compute even if not so obtainable. 

The next section descri bes the reduction of the scheduling 
problem to a problem in deterministic optimal control, and reviews 
some of the results that can be obtained from this formulation. The 
exposition will be brief, as this material has appeared elsewhere 
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[5], [6], [8]. In the following sections, we examine sequential 
,:	 open-loop schedules for a number of examples and compare them with 

known optimal strategies. 

2. AN OPTIMAL CONTROL FORMULATION 

For simplicity, we consicer first the single-server problem 
wi th no arrivals. At time t=O there are n jobs waiting to be 
processed. Processing effort is available at a constant rate, which 
may be taken to be uni ty. The amount of processing needed to complete 
job i is a random variable whose distribution is known, and has 
distribution Fi with density fi' We define 

the survivor functions and completion rate functions respectively. 
On completion of each job, a reward is received which depends on the 
job and on the time of its completion. The reward received if job 
i is completed at time t is ri (t). (We assume that the functions Fi' 
fi' Pi and ri are all well behaved.) We seek to allocate processing 
effort between jobs over time so as to maximize the expected total 
reward. 

The state of the set of jobs at time t is described by the pair 
(f(t),X(t)), where f(t) is a list, possibly empty, of the indices of 
the jobs that have been completed by time t, and 
X(t)=(X1(t),X2(t), ..• ,Xn(t)) is avectorwhosei'thcomponent is the 
amount of processing received by job i during (O,t). A scheduling 
strategy U is a rule which determines, for any state (f,X) and time 
t an allocation U(f,X,t) of the total processing effort. We use 
f(tiu) and X(t:U) to denote the components of the process (f(t),X(t)) 
when a fixed strategy U is used. 

A crucial feature of the controlled semi-Markov process 
(f(t),X(t)) is that foranyfixedstrategyU, theevolutionofX(t:U) 
is completely deterministic between jumps in f(tiu). Any strategy 
U can therefore be implemented in the following way. Define, for each 
(f ,X) and t, 

uf(X,t;s)=U(f,xf(X,t;s),s), t~s<oo, 

where xf(X,t;s) is determined by 

xf(X,t;s)=uf(X,t;s), t~s<oo, Xf(X,tit)=X. 

Let Co, C1, •.• ,C n denote the ini tial time and the times of the fi rst, 
second, etc. job completions. Let fo,fl, ... ,fn denote the lists of 
completed jobs initially and at times just after the first, second, 
etc. job completions. Then U is implemented by using the allocation 
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at all times s up to the first job completion, then using the 
allocation 

for all times between the first and second completions, then 
switching to 

and so ono 

This idea allows us to 1.;rri te the following recursive expression 
for expected total reward obtained using strategy U and starting at 
time t in state (f,X): 

wi th the obvious terminal condi tion that the expected value in states 
wi th no uncompleted job is identically zero This makes i t clear tha t0 

for any initial state, the scheduling problem can be viewed as one 
of choosing an optimal sequence 

of deterministic controllers. If we apply the dynamic programming 
optimality principle to this sequence of choices~ we see that U is 
optimal if and only if each such controller ul'(X, t; s ) solves a 
deterministic optimal control problem 

subject to ~(s)=u(s), t~s<oo, x(t)=X, 

~ui (s) = 1, t~ s< 00, 
l 

where we define for each f,x,s 

h1f(x,s)={( IT Pk(xk))r.(s)+Vf,iex,s:U)}f.(X.).
k;ti 1 1 1 

kE[' 

Not only is this problem deterministic, but it has a 
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particularly simple form, especially in its dynamics. We quote two 
theorems "Thich show that this simplici ty leads to equally simple 
necessary and sufficient conditions for optimality. Let P1 be the 
problem 

P1(X,t): Maximize f 
CD 

({:h.(x(s),s)u.(s»)ds
t 1. 1. 1. 

subject to x(s)=u(s), t,;;s(oo, x( t)=X, 

{:u i (s)=1, t,;;s(oo, u(s)£Q, O';;s(oo. 
1. 

Theorem 1. A necessary cond~ tion for the optimality of u in P1 is 
that , for each time t, 

rUi(t)f:(3Hij(X(S),S)Uj(S»)dS 

= max {~Wi((l; HiJ,(x(s) ,s)uJ'(s) )ds=O,
w£Q 1. t J 

Lw =1iwhere 

oh.(x,s) ohi(x,s) a 
H.. (x,s)=-J=---- --- + - (h ,(x,s)-h. (x,s».
lJ ox. as J 1ox'

1. J 

This condition is just a statement of the maximum princip~e for P1, 
after integrating the co-state equations to give the co-state 
variables in terms of the states and controls. The details are in 
[5J. 

Theorem 1 is a necessary condition, and relates to open-loop 
controllers, that is controllers specified as functions of time for 
particular sets of initial data. We can ask for a closed-loop or 
feedback controller, which assigns to each state a control action. 
The open-loop controllers are then just the implementations of the 
closed-loop controller on trajectories wi th particular ini tial data. 
By using dynamic programming on P1, we obtain a necessary and 
sufficient condition for optimality of a feedback controller. Let 
V(x, ti u) denote the value of the objective functional in P1 starting 
from state x and time t, using control u. 

Theorem 2. A necessarv and sufficient condition for the feedback 
controller u(x,t) to b~ optimal for P1 is 

) { oV ( x, t i u) () { 0V( x, t: u) ( ) } {:uix,t( +h;x,t}2Lw. +h.x,t 
1. OX j , i 1. oXi 1.A 

for all w£Q such that Lwi =1, for all x and t. 
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Again, the proof of this result is a straightforward application of 
the techniques of optimal control theory. The details can be found 
in [8J .. 

The deterministic problem pf(X, t) is of the same form as P1 , and 
theorems 1 and 2 may therefore be applied to it to obtain necessary 
and sufficient optimali ty condi tions. To solve the scheduling 
problem 1vi th the usual ini tial data - no jobs completed and no 
processing as yet carried out, starting at time °- we need to solve 
p(O,O). A snag is that the condi tions provided by the theorems will 
involve the derivatives of the optimal value functions Vi for the 
(n-1)-job scheduling problems arising at the first completion. It 
is readily shown [5J that these derivatives can be written in terms 
of the co-states for the (n-1 )-job problems.. When the optimal 
scheduling strategy has a structure which is independent of the 
number of jobs (when it is given by a priority index, for example), 
it is usually possible to prove optimali ty by using this as the basis 
of an inductive argument.. When this is not the case, the dependence 
of the objective in p(O,O) on the functions {Vi} means that any 
computa tional procedure based on this approach would have to be 
recursive, and would involve the solution of all 2,3,"00 ,(n-1) job 
sub-problems over a region of the state space of the n job problemo 
While possible in principle, there is Ii ttle hope tha t such a 
procedure could be practical. 

This is a pi ty, because the formula tion permi ts of great 
generality. For example, we can deal with parallel processors just 
by changing the constraints to be satisfied by the deterministic 
controllers. For the mul ti-server case, we just add the constraints 

u.(s)~1/m, i=1,2, .... ,no
l 

Some resul ts for mul ti-server problems obtained in this way are 
described in [8J. Precedence relations between jobs can be modelled 
by allowing the control constraint set Q to depend on f, so that an 
optimal controller u f for pf has to satisfy 

This does not affect the form of the deterministic control problems, 
so that theorems 1 and 2 may still be applied. Queueing problems are 
included simply by noting that arrivals consti tute just another type 
of random jump, so that the set of times at which deterministic 
controllers have to be chosen now includes arrival instants as well 
as completion instants .. We thus have to solve a set of problems pr;6, 
where 6 is the list of jobs which have arrived or been released .. 
Similarly, reneging of customers in a queue is included by adding 
times at which customers renege to the set of decision times. In 
fact, &lmost any effect of this sort, which just adds more jumps to 
the basic process, can be incorporated in this way, and the objective 
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functional and dynamics in the associated deterministic control 
problem are always formally the same as those of P1 : only the specific 
definition of the functions hi changes. Various results involving 
the determination of optimal strategies can be extended by these 
means; some of these extensions are described in [6J. 

In the remainder of this paper, we inves tiga te a possible 
method of using this formulation to generate scheduling strategies 
in problems where the full deterministic control problem derived 
from the optimality principle as above cannot be solved 
analytically. We note that most of the difficulties arise because 
of the dependence of the optimality conditions on the lower-order 
sub-problems, and consider.a formulation in which these dependencies 
do not occur. 

3. OPEN-LOOP FORMULATIONS 

The basic observation we make is that if we pretend that the 
evolution of the system will be unobserved, or that at any rate we 
are unable to act on any observations, then we are faced with the 
problem of finding an open-loop controller, which is simply an 
allocation of processor effort for all future times, which will be 
followed exactly, even if it implies allocating effort to already 
completed jobs. This is equivalent to controlling theyrobability 
dynamics of the process, which is the approach used in L1] and [7J, 
al though nei ther of these papers makes explici t reference to the fact 
that the control is open-loop_ 

The approximation involved in open-loop control is obviously 
a gross one, and the allocations produced would become more and more 
ridiculous as jobs were completed. A compromise between a full 
closed-loop solution and the completely open-loop one that has been 
used in a number of control avplications is open-loop feedback or 
sequential open-loop control L2J. To implement a sequential open 
loop controller, we solve an open-loop problem at each of a 
succession of review times 1;'0,1;'1, ••• , and employ the resul ting 
controller between succesive review times. The review times may be 
predetermined, or state-dependent(and hence random). Each time we 
solve for a new open-loop controller, we incorpora te up-to-da te 
information about the system state. 

For this to be a useful approach to scheduling and allocation 
problems, a number of criteria must be met. First, we must have some 
expectation that the scheduling strategies that result are 
near-optimal, and better than those that might resul t from the 
application of one or other of the well-known scheduling heuristics .. 
Secondly, where the resulting open-loop problems are not soluble 
analytically, they must be computationally tractable. Thirdly, 
their applicability should be reasonably general. 
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301 Sequential open-loop scheduling 

1:1e begin by presenting an open-loop analogue of problem 
pr(X~t)<) 

ro 

OLpr(X,t)~ Maximize f~ ( L_ri(t')fi(x(s))ui(s) )ds; 
l" iEf 

I 

subject to x(s)=u(s), t~s<ro, x(t)=X, 

This is formally the same as P1 so tha t theorems 1 and 2 apply. Noteso 

also that this is a different problem from that of maximizing the 
reward for the first completion, which would be formulated 

MFCf(X,t): Maximize fro~{ IT P.(x.(s))}r.(s)f.(x(s))u.(s)ds 
t-l j:f:i J J 1 1 1 

subject to x(s)=u(s), x(t)=X, 

We could, of course, as well use the latter objective functional as 
that of OLPo We are just seeking to generate a sequence of open-loop 
controllers by solving a surrogate optimization problem, and the 
precise form of that problem is obviously open to choice~ The main 
reason for concentrating on OLP is its extreme simplicity. 

Because OLP no longer contains the recursion implici t in P, the 
proof of analytic resul ts about OLP, where these exist, is in general 
much simpler than for P. An example is the proof of theorem 4 of this 
paper. From the computational point of view, OLP is a particularly 
simple member of a class of standard problems in optimal control. 
Well-developed algorithms are available for the solution of such 
problemso We will not go further into this aspect here, but in the 
rest of this paper we compare the performance of sequential 
strategies derived from OLP with known optimal solutionso 

Consider 9 for example, the case where 

- at 
r i ()t =wie, i = 1 ,2, ••• ,n, 

1'fhere the wi's are posit i veeanstant s • The soluti 0 n 0 f Pin t his cas e 
given by a dynamic priori ty index v which is a particular form of the 
Gittins index [4J for multi-armed bandits: 
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For this class of reward functions, OLP is a deterministic, 
continuous time multi-armed bandit.. Its solution is given by a 
dynamic priority index ~, where 

fX'WofoeC)e-aCdC 
Xl ,1 } ..

~i ( x ) = sup { 

x' >X fX e-a(:dC: 
x 

rfhus the sequential open-loop controller for P derived from OLP works 
as follows.. For each 'L E ( 'rr' 'rr+1 ) ~ compute ~i (Xi ('t)) for each job in 
f( 't), on the basis of the current datao Over the interval ('t r , 't r +1 ), 
schedule using the dynamic priori ty index ~" This heuristic has the 
property that, as the intervals {('t r ,'t r +1): r=1 ,2~ooo} tend to zero 
in length, it tends to a closed-loop controller for P which is based 
on the priority index y, where 

Theorem 3., 

(i) If Pi (x) is a monotonic, non-increasing function of x, then 
Yi(x)=vi(x) for all Xc> 

(ii) If the functions fi are all identical, with increasing 
completion rate P, and the weights Wi all equal, then v and y 
determine identical scheduling strategieso 

Proof. 

(i) If Pi is a decreasing function, so is fio Thus 

(ii) When P is increasing in x, then so is Vo It therefore 
suffices to show that this is also true of Yo This is obvious for 
all values of x for which a(x)=p(x)" Otherwise, suppose that in 
the defini tion a f ~i (x), the supremum on the RHS is achieved by some 
value x'=C:(x)(>x).. Then 

y(x»p(x) .. 

Hence, for some 0>0, and all ~E(x,x+O), 

fX ' w· f· ( c: )e - a c: d c: 
~ l 1. 

Y( ~) = qUP { }t 

x'>C: Piec:)f~ e-aCdC 

fieX)WifiCC)e-aCdC 

) Pi (1:;) fCC x) e- aCdC 
x 
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This theorem ShOV1S that the sequential open-loop strategy is the same 
as the optimal strategy in the limi t of small review period ~ for these 
particular classes of completion time distri bution, and a single 
processor wi th this reward structure. We call a sequential open-loop 
strate&1 with this property aS~1ptotically optimal. 

The theorem extends to the problem of minimizing the weighted 
flowtime, by taking the limit of the discounted case as a70. Part 
(i) of the theorem extends to a more general class of reward 
functionso Suppose that 

r i =Ttl i r+ di' i =1 , 2, . . . ,n, 

where Wi is a positive constant, di is a constant and r is a 
decreasing function of time. Then the optimal controller for this 
version of OLP is still given by the dynamic priority index whose 
value is wifi. This result can be proved by the straightforward 
application of theorem 1 to OLP. In the limi t of small review 
periods, t0is becomes the strategy determined by the priority index 
wiPio This can be shown [5J to be optimal for P 9 again via theorem 
1" 

We now consider a class of single-processor problems for which 
a full optimal strategy is hard to find. Suppose that the jo bs 
represent customers in a queue, and that customers will become 
dissatisfied and leave (renege) at random times if their service is 
not already complete. This is equivalent to giving each job a 
randomly distributed due date, after which no reward can accrue from 
the completion of tha t job. Some resul ts concerning the optimal 
strategy for a variant of this problem when the jobs have a common 
deadline and the processing time distributions are exponential are 
in [3Jo Let Gi denote the distribution of the time that the i'th 
customer is prepared to wait, with density gi and survivor function 
Qio Then the open-loop problem is 

OLRfCX, t): Maximize Joo ( I r. (s)Q. (s)f. (x(s) )u · (s) )ds
- l l l lt iEr 

Subject to x(s)=u(s), t~s<oo, x(t)=x, 

To maximize the weighted number of satisfied customers, we take ri =wi 
for all io Then OLR and OLP are the same, with Qi replacing rio As 
before, the optimal control for OLR when the fi are decreasing is 
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myopic, provided the derivatives of the Qi are proportionale 
Suppose the customers are all equally impatient, the 

distributions {Gi} being identical and negative exponentialo Then 
the resul ts given by theorem 3 for the asymptotic form of the 
sequential open-loop strategy holdo This provides an example where 
the sequential open-loop strategy ne,ed not be asymptotically 
optimal. If n=2, and 

then it is optimal to process job 1 first if 

The asymptotic form of the sequential open-loop strategy is to 
process the jobs in wi Ai order. These two indices a~e equivalen t when 
wI=w2, and asymptotically equivalent for large AI? A2 for any 
weights, but one may readily find values of the parameters for which 
this is not sao 

We remark that for the variant of the problem where there is a 
single deadline, the sequential open-loop stra tegy is asymptotically 
optimal if the condi tions of ei ther theorem 3(i) or (ii) hold for the 
completion time distributions e This follows from the formal 
equivalence of the full problem with problem P, and of the open loop 
problem with OLP, with ri replaced in each case by Q, the survivor 
function of the deadline distributiono 

As a final example, we consider a mul ti-server problem.. Suppose 
we are interested in minimizing the flowtime for the set of n jobs 
on m identical machineso Then we add to OLP the constraints 

Ui(s)~1/m, i=1,2,.o .. ,n, t<s<co" 

Suppose that all the jobs have identical completion time 
distri bu tions, bu t have possibly received different arnoun ts of 
processingo Using theorem 2, it can be shown [8J that if the common 
completion time distribution has monotone completion rate, then the 
strategy of processing at each time the jobs wi th currently greatest 
completion rate minimizes the expected flowtime.. If the common 
completion time densi ty is log-convex or log-concave, then this 
strategy minimizes the flowtime in distribution. These results are 
extensions of similar results for the single server problem P, but 
their proof is much more difficulto In contrast, the corresponding 
open-loop results extend easily to the multi server case when f is 
a decreasing functiono 
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Theorem 4. Suppose the cooonon completion rate distribution of the 
n jobs has monotone completion rate. The the sequential open-loop 
strategy asymptotically minimizes the expected flowtimeo 

Proof. 

What we actually prove is that f is a priority index for the 
pro blem under these condi tions; the resul t proper then follows as in 
theorem 3. Observe that, under our assumptions, two jobs which have 
received the same amount of processing are identical. Thus we can 
solve OLP with a controller which preserves the initial ordering of 
the values of fi' i=1 ,2, ••. ,n, which we may as well take to be the 
same as the lexicographic order. A simple calcula tion shows tha t if 
i<k, then 

J:(JHij(X(S),S)Uj(S) )dS(J:(3Hkj (X(S),S)Uj(S))dS 

with equality only if i and k are identical at time 
identical treatment thereafter. The result fol
maximizing property of the optimal Ue 

t 
lo

and 
ws 

rec
by 

eive 
the 

4. CONCLUSION 

The use of optimal control theory is a powerful analytical tool 
in the solution of scheduling problems when the processing can be 
pre-emptive. Its use in computing optimal scheduling strategies 
where these are not obtainable analytically is not likely to be 
practicable. If we seek sequential open-loop strategies, by finding 
solutions to intui tively plausible surrogate problems, we are faced 
wi th control problems 1'lhich have analytical solutions over a 
somewhat wider range of condi tions than the closed-loop counterpart. 
Where.these problems do not yield an analytic solution, numerical 
solution should not be difficult in practice. The examples 
considered here give us some grounds for hope that the resulting 
strategies will be effective. At the same time, we have shown that 
the optimal strategies for a range of problems can be characterized 
as the limit of sequential open-loop controllers. 

Before the use in practice of open-loop sequential scheduling 
can be recommended, a number of further points have to be examined. 
Chiefly, their performance on problems with more difficult 
structures than those considered here needs to be tested, probably 
by computer. Algorithms for solving deterministic optimal control 
problems are numerous, and it would be worth knowing which perform 
well on problems like OLP. 
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