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Abstract— We consider a class of restless multi-armed ban-
dit (RMAB) problems, in which the active action resets the
stochastic evolution of the system. We obtain the Whittle
index in closed-form, showing that it induces a policy that
is equivalent to the myopic policy, and that it is optimal for
stochastically identical arms. These results find applications in
opportunistic spectrum access and supervisory control systems
such as anomaly detection and control.

Index Terms— Reset processes, restless multi-armed bandit,
Whittle index policy, myopic policy.

I. INTRODUCTION

A. Reset Processes

Consider N independent random processes, in which the

state of each random process can be either 0 or 1. At

each discrete time instant, we can choose K (K < N)
random processes to observe, and a positive reward of r
is obtained from each random process observed in state 1.

Whenever a process is observed, its stochastic evolution is

reset, potentially by a control action taken in response to the

observed state. Specifically, after a process is observed in

state i, the subsequent distribution of its state is given by

a sequence {pi1(t)}t≥1, in which pi1(t) is the probability

that the process is in state 1 after t time slots since the

last observation. It shall become clear later that the marginal

distribution {pi1(t)}t≥1 suffices for the optimal decision

making. We also allow different stochastic dynamics and

rewards across these N processes, but the parameters of the

processes are not indexed for notation simplicity.

The objective is to design a policy that sequentially selects

K arms to observe at each time to maximize the expected

average reward over an infinite horizon.

The above general problem is motivated by two classes of

applications. One is supervisory control in which {pi1(t)}t≥1

characterizes the evolution of a certain physical process and

the decision maker interacts with the physical process by

taking control actions that reset the stochastic evolution of

the process. For example, consider a supervisory control

system in which multiple chemical processes are monitored

and controlled. The state 1 represents an abnormal state and

0 the normal state. The objective is to track and rectify

processes that are in the abnormal state to ensure system
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security or product quality. Different control actions are

taken according to the observed state i, which reset the state

evolution of the process to {pi1(t)}t≥1.

In the other class of applications, the underlying physical

processes evolve as two-state Markov chains independent of

the decision maker. The decision maker decides at each time

which K processes to monitor and accrue rewards from each

process that is in the good state 1. The probability sequence

{pi1(t)}t≥1 characterizes the knowledge of the decision

maker on the state of each process, and whenever a process is

observed, the knowledge about it is refreshed to pi1(1) = qi1

where {qi,j}i,j=0,1 are the transition probabilities of the

corresponding process. It is easy to see that pi1(t) is the

t-step transition probability of the two-state Markov chain

with the following specific form.
{

p01(t) = q01(1−(q11−q01)t)
1+q01−q11

p11(t) = q01+(1−q11)(q11−q01)t

1+q01−q11

(1)

One example of this second class of applications (referred

to as non-interactive applications) is cognitive radio for

dynamic spectrum access, in which secondary users search in

the spectrum for idle channels temporarily unused by primary

users [1]. For this application, the state “1” represents an idle

channel and the state “0” an occupied channel. The reward

obtained on an idle channel represents data delivery and is

proportional to the bandwidth of the channel. The objective

is to maximize the long-run throughput.

B. Main Results

The above general problem can be modeled as a restless

multi-armed bandit problem (RMAB) introduced by Whittle

in 1988 [2]. The actions ‘observe’ and ‘do not observe’

correspond to taking the active and passive actions on an arm,

respectively, which are denoted as the controls a = 1 and

a = 0. For the optimal action making, we only need to know

the marginal probabilities {pi1(t)}t≥1. The arm state is thus

given by (i, t), where i is the state of the process when it was

last observed and t the time lag since the last observation.

The correlation of the state of the random process is not

required to be known and can take an arbitrary form.

We show that the above RMAB consisting of re-

set processes satisfies Whittle indexability. Under certain

monotone conditions on the stochastic evolution of the arm

state, we obtain the Whittle index in closed-form. This result

reduces the complexity of implementing Whittle index policy

to simple evaluations of these closed-form expressions. When

arms are stochastically identical, Whittle index policy is



shown to be equivalent to the myopic policy that has a

simple and robust structure. Based on this structure, we

establish the asymptotic optimality of Whittle index policy

as K/N → 0. In the finite regime, we focus on the non-

interactive applications and the myopic policy. Specifically,

we extend the optimality of the myopic policy established

in [3]–[5] to a more general Markovian model that consists

of time-inhomogeneous Markov chains and allows K to be

time varying.

C. Related Work

The results in this paper generalize those reported in [3]–

[5] and [6], [7] that consider only the non-interactive appli-

cations with time-homogeneous Markov chains. Specifically,

the RMAB model for monitoring stochastically identical

time-homogeneous Markov chains was considered in [3],

in which the semi-universal structure of the myopic policy

was established for all N and the optimality of the myopic

policy was proved for N = 2. In [4], the optimality of

the myopic policy was extended to N > 2 with K = 1
under the condition of q11 ≥ q01. Under the same condition,

a recent work [5] extended the optimality of the myopic

policy to K > 1. In [6], Liu and Zhao considered a general

scenario of non-identical Markov chains, for which Whittle

indexability was established and Whittle index was solved

in closed-form under both discounted and average reward

criteria [6]. Whittle index policy was shown to be optimal

for stochastically identical arms [6]. This result was obtained

by establishing the equivalence between Whittle index policy

and the myopic policy. For the same RMAB problem con-

sidered in [6], Whittle indexability and Whittle index were

also obtained under the discounted reward criterion in an

independent work by Le Ny et al. in [7].

In the context of general RMAB problems, establishing

indexability is still an open problem and often relies on

numerical algorithms [8]. The optimality of Whittle index

policy is generally intractable due to the exponential com-

plexity of the problem [9]. Weber and Weiss showed that

Whittle index policy is asymptotically optimal (N → ∞
with fixed K/N ) under a certain condition [10] that was

shown to hold in numerous RMAB problems [10]–[12].

II. INDEXABILITY AND WHITTLE INDEX POLICY

In this section, we introduce the basic concepts of index-

ability and Whittle index policy.

A. Index Policy

An index policy assigns an index for each state of each

arm to measure how rewarding it is to activate an arm at a

particular state. At each time, the policy activates those K
arms whose current states have the largest indices.

For a strongly decomposable index policy, the index

of an arm only depends on the characteristics (transition

probabilities, reward structure, etc.) of this arm. Arms are

thus decoupled when computing the index, reducing an

N -dimensional problem to N independent 1-dimensional

problems.

The myopic policy is a simple example of strongly de-

composable index policies. This policy ignores the impact

of the current action on the future reward, focusing solely

on maximizing the expected immediate reward. The index is

thus the expected immediate reward of activating an arm at

a particular state. For the problem at hand, the myopic index

of state (i, t) of an arm is simply pi1(t)r.

B. Definition of Indexability and Whittle Index

To introduce indexability and Whittle index, it is sufficient

to focus on a single arm based on the strong decomposability

of Whittle index [2]. Assume a subsidy λ is provided when-

ever the arm is made passive (i.e., not observed). Consider

the problem of deciding whether to observe this arm at each

time in order to maximize the average reward over the infinite

horizon. We have the following optimality equation.

g + φ(i, t) = max{λ + φ(i, t + 1), pi1(t)r

+pi1(t)φ(1, 1) + (1 − pi1(t))φ(0, 1)}, (2)

where g is the maximum average reward obtained from the

single arm and the function φ(·) is the differential reward

caused by the transient effect on the single arm. The optimal

policy for this single-arm problem is essentially given by an

optimal partition of the state space
⋃

i=1,2{(i, t)}t≥1 into a

passive set

P(λ) = {(i, t) : a∗
λ(i, t) = 0}

= {(i, t) : λ + φ(i, t + 1) ≥ pi1(t)r + pi1(t)

×φ(1, 1) + (1 − pi1(t))φ(0, 1)}

and its complement, an active set A(λ) = {pi1(t) :
a∗

λ(i, t) = 1}, where a∗
λ(i, t) denotes the optimal action

at state (i, t) under subsidy λ.

To define Whittle index, it is required that the RMAB is

indexable [2]. An RMAB is indexable if for each arm, the

passive set P(λ) increases monotonically from the empty set

φ to the entire state space
⋃

i=1,2{(i, t)}t≥1 as the subsidy

λ increases from −∞ to +∞.

Given indexability, Whittle index W (i, t) of a state (i, t)
is defined as the infimum subsidy λ that makes the passive

action optimal at (i, t):

W (i, t) = inf{λ : a∗
λ(i, t) = 0}

= inf{λ : λ + φ(i, t + 1) ≥ pi1(t)r

+pi1(t)φ(1, 1) + (1 − pi1(t))φ(0, 1)}.

Whittle index thus measures how attractive it is to activate

an arm based on the subsidy λ. The minimum subsidy λ that

is needed to move a state from the active set to the passive

set under the optimal partition thus measures how attractive

this state is.

III. INDEXABILITY OF THE RMAB CONSISTING OF

RESET PROCESSES

In this section, we establish the indexability of the class

of RMAB considered in this paper.



Theorem 1: The RMAB consisting of multiple reset

processes is indexable.

Proof: It is helpful to rewrite (2). Given we take the

active action, and observe the corresponding random process

to be in state i (i = 0, 1), we will wait some further time ti
until making the next observation (i.e., next taking the active

action). The average-reward optimality equation is then

φ(i) = max
ti≥1

{−gti + λ(ti − 1) + (1 − pi1(ti))

×φ(0) + pi1(ti)(r + φ(1))}, i = 1, 2. (3)

Let us set φ(0) = 0 (since only φ(1)−φ(0) is determined

by the above) and rewrite the optimality equation as

0 = max
t0≥1

{−g − (t0 − 1)(g − λ) + p01(t0)(r + φ(1))}, (4)

φ(1) = max
t1≥1

{−g − (t1 − 1)(g − λ) + p11(t1)(r + φ(1))}. (5)

To prove indexability, it is equivalent to show that the

optimizing ti in (3), say t∗i (λ), should be non-decreasing

in λ. Note that it is intuitive that as λ, the subsidy for

passivity increases, it should be optimal to wait longer

between inspections (instances of taking a = 1). By the

following procedure, we prove that this is true.

1. Let g(λ, t0, t1) be the average reward under a policy

such that whenever the active action is taken and the

true state is observed to be i, the next active action is

taken ti steps later, ti ∈ {1, 2, · · · }. We can compute

g(λ, t0, t1) from the equations

0 = −g − (t0 − 1)(g − λ) + p01(t0)(r + φ(1)), (6)

φ(1) = −g − (t1 − 1)(g − λ) + p11(t1)(r + φ(1)), (7)

where we omit showing dependence of g and φ(1) on

λ, t0, t1. One could explicitly solve these equations for

φ(1) and g. However, this is not required. It is sufficient

to observe that: g(λ, t0, t1) − λ is a linear function of

λ, nonnegative, and decreasing in λ. This is obvious,

because g(λ, t0, t1)−λ is an averaging of ‘λ−λ’ (when

passive), ‘0 − λ’ and ‘r − λ’ (when active).

2. We now combine the observation 1, with the fact that

g(λ) − λ = max
t0,t1

{g(λ, t0, t1) − λ} (8)

to conclude that g(λ)−λ is nonnegative, and decreasing

in λ. It is also convex in λ, but we do not need this fact.

3. g(λ) is increasing in λ.

4. From 2 and 3, we have that g(λ)/(g(λ)−λ) is positive,

and increasing in λ.

5. From (4),

0 = max
t0≥1

�
−

g(λ)

g(λ) − λ
− (t0 − 1) + p01(t0)

�
r + φ(1)

g(λ) − λ

��
. (9)

Hence, using 4, we see from (9) that
r+φ(1)
g(λ)−λ

must be

positive, and nondecreasing in λ.

6. Suppose the process is known to be in true state i and

it is better to next take the active action at step t, rather

than at any earlier step s, s < t. That is,

−g − (t − 1)(g − λ) + pi1(t)(r + φ(1))

> −g − (s − 1)(g − λ) + pi1(s)(r + φ(1)),

s = 1, · · · , t − 1, (10)

where for simplicity we again omit showing the depen-

dence of φ(1) and g on λ.

Recall that r+φ(1) > 0. This fact has been established

in 5. Alternatively, we can see this by supposing λ < r
and so g(λ) < r. By adding r to both sides of (5)

and observing that we could take t1 = 1, we thus find

(1 − p11(1)(φ(1) + r) ≥ r − g(λ) ≥ 0.

So (10) is equivalent to

pi1(t) − pi1(s) > (t − s)

�
g(λ) − λ

r + φ(1)

�
, s = 1, . . . , t − 1. (11)

Using 5, above, we deduce that as λ increases the

right hand side of (11) decreases. Thus the set of t
for which (10) and (11) are true is nondecreasing in

λ. Thus we conclude that t∗i (λ) is nondecreasing in λ.

Since this implies that P(λ) is nondecreasing in λ, we

proved indexability.

IV. WHITTLE INDEX

Based on the indexability given in Theorem 1, Whittle

index policy exists for the RMAB. In this section, we

solve for Whittle index in closed-form under the following

monotone condition on the stochastic evolution of each arm.

The Monotone Condition: p11(t) is decreasing with t and

p01(t) is increasing with t; p11(1) ≥ p01(t) for all t ≥ 1.

Note that for the non-interactive applications with a

Markovian model, the monotone condition is equivalent to

the case that each arm is positively correlated (i.e., q11 ≥
q01). Consider, for example, sampling a continuous Markov

process where the samples are always positively correlated.

In this case, pi1(t) monotonically converges to the stationary

distribution at a rate that depends on q11 − q01, as shown

in (1). In the general scenario, the monotone condition is

more relaxed and does not require that {pi1(t)}t≥1 has any

specific form. In the rest of the paper, we assume that the

monotone condition is satisfied.

The following lemma is the key to solving for Whittle

index. It shows that the optimal policy for a single arm with

subsidy is a threshold policy.

Lemma 1: The optimal policy for a single arm with sub-

sidy is a threshold policy: for any λ, there exists a threshold

p∗(λ) such that it is optimal to activate the arm if and only

if the probability that the underlying random process is in

state 1 is larger than p∗(λ).
Proof: Recall that t∗i (i = 0, 1) maximize, respectively,

the righthand side of (4) and (5). From (11), we have

min
s<t∗

i

pi1(t
∗
i ) − pi1(s)

t∗i − s
≥ c(λ) =

g − λ

r + φ(1)
. (12)



Under the monotone condition, p11(t) is decreasing with

t. From observation 5 in the proof of Theorem 1, c(λ) is

nonnegative. To satisfy (12), we should activate on (1, 1)
immediately (i.e., t∗i = 1) or never activate it (i.e., t∗i = ∞)

depending on c(λ). However, the latter only happens when

c(λ) = 0, i.e., g = λ, which can be achieved by being passive

at all states. This is a trivial threshold policy.

We focus on the non-trivial case that we activate on (1, 1)
immediately. In this case, the arm state evolves in the set

{(0, t)}t≥1 ∪ (1, 1). Under subsidy λ, the passive set is

{(0, 1), . . . , (0, t∗0−1)}. By indexability, t∗0 is nondecreasing

with λ. The minimum subsidy that makes (0, t) in the

passive set is thus not smaller than that makes (0, s) for any

t > s. Since p01(t) is increasing with t under the monotone

condition, Whittle index for (0, t) is increasing with p01(t).
From the above, the minimum subsidy that makes (1, 1)

passive also makes all states passive. So (1, 1) has the largest

Whittle index among {(0, t)}t≥1 ∪ (1, 1). Combined with

the fact that Whittle index for (0, t) is nondecreasing with

p01(t) and p11(1) ≥ p01(t) for all t ≥ 1 (under the monotone

condition), we conclude that Whittle index is increasing with

the probability that the underlying random process is in

state 1. The optimal policy is thus a threshold policy on

the probability space {p01(t)}t≥1 ∪ p11(1): for any subsidy

λ, there exists an p∗(λ) such that we activate the arm if the

probability that the underlying random process is in state 1
exceeds p∗(λ).

Note that states {(1, t)}t>1 are transient under the optimal

policy and their Whittle indices are not clearly defined. We

will return to this issue later. In the following theorem, we

first solve for Whittle indices of states {(0, t)}t≥1 ∪ (1, 1).
For simplicity, we focus on the case that the bandit is strictly

indexable, i.e., there is no tie among the Whittle indexes. A

sufficient and necessary condition for the strict indexability

is given in the following lemma.

Lemma 2: Under C1, the restless bandit consisting of

reset processes is strict indexable if and only if the following

condition is satisfied:

C2: p01(t + 1) − p01(t) is strictly decreasing with t.
Proof: From equation (10) and (11), t is an optimal

activation time if and only if

pi1(t) − pi1(s) ≥ (t − s)

(

g(λ) − λ

r + φ(1)

)

, ∀ s < t;(13)

pi1(u) − pi1(t) ≤ (u − t)

(

g(λ) − λ

r + φ(1)

)

, ∀ u > t.(14)

Note that the right-hand side of (13) (for fixed t, s) is

continuously decreasing from +∞ to 0 as λ increases from

−∞ to +∞.

We first prove the necessity. Under the strict indexability,

states {(0, t)}t≥1 join the passive set one by one as λ
increases. Consider an arbitrary j ≥ 1. If both (13) and (14)

hold with equality by letting (u, t, s) = (j +2, j +1, j) as λ
increases to a certain value, than Whittle indexes for states

(0, j) and (0, j +1) would be the same. This contradicts the

strict indexability. We thus have that p01(j + 1) − p01(j) is

strictly decreasing at j.

Now we prove the sufficiency. If C2 is satisfied, there must

exist a subsidy λ such that both (13) and (14) hold with strict

inequality by letting (t, s, u) = (i+1, i, i+2). So the Whittle

index for state (0, i) is smaller than this λ while the Whittle

index for state (0, i + 1) is larger than it. This proves the

strict indexability.

Theorem 2: Let W (x) denote the Whittle index of state
x. Under the strict indexability,

W (0, t) =
p01(t)(t + 1) − p01(t + 1)t

1 − p11(1) + tp01(t) − (t − 1)p01(t + 1)
r , (15)

W (1, 1) = p11(1)r . (16)

Proof: Based on the proof of Lemma 1, we have

W (1, 1) = p11(1)r . (17)

To find the Whittle index for a state of the form (0, t) we

must find the value of λ for which one would be indifferent

between policies with t0 = t and t0 = t + 1. Under the

second of these policies we have the following optimality

equations

φ(0, 1) = 0

φ(1, 1) + g = p11(1)(r + φ(1, 1))

φ(0, s) + g = λ + φ(0, s + 1) , s = 1, . . . , t

φ(0, t + 1) + g = p01(t + 1)(r + φ(1, 1))

For indifference between passive and active actions in state

(0, t), we need

λ + φ(0, t + 1) = p01(t)(r + φ(1, 1)) .

Solving the t + 4 equations above for the variables φ(1, 1),
φ(0, 1), . . . , φ(0, t + 1), g and λ gives (15). We also have

that

g =
(1 − p11(1))(t − 1)W (0, t) + p01(t)

(1 − p11(1))(t + p01(t)) + p01(t)p11(1)
. (18)

Now, we consider the states {(1, t)}t>1. When λ ≥ p11r,

these states are in the passive set. Consider the case that

λ < p11r. Since one always takes the active action at state

(1, 1), these states are never reached under an optimal policy

unless they are given as the initial state. If the latter happens,

it is necessary to activate the arm at some time such that the

system will evolve on the state space {(0, t)}t≥1 ∪ (1, 1)
and achieve the maximum average reward. In other words,

there must exist a subsequence of states {(1, tk)}tk>1 of

which the Whittle indices are given by p11r. For other states

that do not belong to the subsequence, their Whittle indices

can be set as an arbitrary value that does not exceed p11r.

Note that the subsequence can also be chosen arbitrarily.

Since the states {(1, t)}t>1 may become recurrent under

Whittle index policy for multiple arms, the above results

lead to a fundamental implementation issue of Whittle index

policy: how do we choose Whittle indices that are transient

under the optimal policy for a single arm with subsidy? How

different choices would affect the performance of Whittle

index policy? To the best of our knowledge, these issues



have not been discussed in the literature and are interesting

for future investigations. In the next section, we show that

for stochastically identical arms, the states {(1, t)}t>1 are

transient under Whittle index policy and the choices of their

Whittle indices do not affect the system performance.

V. STRUCTURE AND OPTIMALITY OF WHITTLE INDEX

POLICY

In this section, we study the structure and performance of

Whittle index policy when arms are stochastically identical.

Without loss of generality, we set r = 1 in this section.

A. Equivalence to the Myopic Policy

Lemma 3: When arms are stochastically identical, Whittle

index policy is equivalent to the myopic policy.

Proof: We first notice that under Whittle index policy,

the arm states {(1, t)}t>1 for which Whittle indices are not

clearly defined will eventually disappear (after each arm has

been observed once). It is thus sufficient to focus on the

state space {(0, t)}t≥1 ∪ (1, 1). Based on the proof of

Lemma 1, Whittle index of an arm is increasing with the

probability that the underlying random process is in state

1. Since stochastically identical arms would have the same

Whittle index if they have the same probability that the

underlying random processes are in state 1, Whittle index

policy is equivalent to the myopic policy.

B. Structure

For time-homogeneous Markov chains satisfying the

monotone condition (i.e., q11 ≥ q01), it was shown in [3]

that the myopic policy has the following simple structure:

initialize a queue in which arms are ordered according to

the descending order of the initial probabilities that the

underlying random processes are in state 1. Each time we

activate the K arms at the head of the queue, where arms of

which the underlying random processes observed in state 1
will stay at the head of the queue and other observed arms

will be moved to the end of the queue.

It is easy to see that the above structure of the myopic

policy is preserved (after each arm has been observed once)

under the more general model of reset processes considered

in this paper. Whittle index policy thus has the same structure

due to its equivalence to the myopic policy.

From the structure of Whittle index policy, it does not

require the explicit knowledge of pi1(t) (i = 0, 1) and is

thus robust to model variations (as long as the monotone

condition is satisfied). Based on this structure, we establish

the optimality of Whittle index policy under certain condi-

tions, as presented in the next two subsections.

C. Asymptotic Optimality of Whittle Index Policy

The asymptotic optimality of Whittle index policy in a

limiting regime was studied in [10] by Weber and Weiss

in 1990. They showed that under certain condition, Whittle

index policy achieves the optimal average reward per arm

as N → ∞ (fixed K/N ). For the problem at hand, the arm

state space is infinite and the condition is difficult to check.

In this section, we consider another limiting regime in which

K/N → 0. We show that for this case, Whittle index policy

is asymptotically optimal.

The following lemma is the key to establishing the as-

ymptotic optimality of Whittle index policy, in which the

closed-form lower and upper bounds on the performance of

Whittle index policy are established.

Lemma 4: Let Gw denote the average reward under Whit-

tle index policy. Let G denote the maximum average reward

under the optimal policy. We have,

Kp01(⌊
N
K
⌋)

1 − p11(1) + p01(⌊
N
K
⌋)

≤ Gw ≤ G ≤
Kωo

1 − p11(1) + ωo

, (19)

where ωo = limt→∞ p01(t).

Proof: Define an active period on an arm as the time

period when this arm is continuously activated before being

moved to the end of the queue. Based on the structure of

Whittle index policy, it is easy to show that

Rw = K

(

1 −
1

E[L]

)

, (20)

where E[L] is the average length of the active period over

the infinite time horizon and all arms.

To bound the throughput Rw, it is equivalent to bound the

average length of the transmission period E[L] as shown in

equation (20).

Let ω denote the probability that the underlying random

process of the chosen arm is in state 1 at the beginning of

an active period. The length L(ω) of this active period has

the following distribution.

Pr[L(ω) = l] =

{

1 − ω, l = 1
ω(p11(1))l−2(1 − p11(1)), l > 1

.

(21)

It is easy to see that if ω′ ≥ ω, then L(ω′) stochastically

dominates L(ω).
From the structure of Whittle index policy, ω = p01(s+1),

where s is the time duration in which the arm has been

unobserved since the last active action on this arm. When

the arm is moved to the end of the queue, it has the lowest

priority. It will take at least ⌊N−K
K

⌋ steps before we return

to activate the same arm, i.e., s ≥ ⌊N
K
⌋ − 1. Based on

the monotonically increasing property of p01(t) (under the

monotone condition), we have ω = p01(s + 1) ≥ p01(⌊
N
K
⌋).

Thus L(p01(⌊
N
K
⌋)) is stochastically dominated by L(ω), and

the expectation of the former leads to the lower bound of Gw

given in (19).

Next, we show the upper bound of G. From Whittle

Lagrangian relaxation [2], we have

G ≤ inf
λ
{Ng(λ) − λ(N − K)}, (22)

where g(λ) is the average reward on a single arm with

subsidy λ, as given in (18) (after replacing W (0, t) by λ).

Consider the subsidy λo = limt→∞ W (0, t) =
ωo

1−p11(1)+ωo
. From (18), we have

g(λo) = g( lim
t→∞

W (0, t)) = lim
t→∞

g(W (0, t)) = λo. (23)



From (22) and (23), we arrive at

G ≤ Ng(λo) − λo(N − K)

= Kλo =
Kωo

1 − p11(1) + ωo

. (24)

Theorem 3: When arms are stochastically identical, Whit-

tle index policy is asymptotically optimal in the follow sense:

(i) Gw/G → 1 as K/N → 0;

(ii) G − Gw → 0 as K(ωo − p01(⌊N/K⌋)) → 0.

Proof: This is a direct result from the lower bound of

Gw and the upper bound of G given in Lemma 4. Compared

to the first optimality result, the second one is stronger but

requires K does not grow too fast as N → ∞.

D. Optimality in the Finite Regime for Markovian Processes

For a finite N , the optimality of the myopic policy was

proven in [3]–[5] when the underlying random processes are

time-homogeneous Markov chains satisfying the monotone

condition (i.e., q11 ≥ q01). This result leads to the optimality

of Whittle index policy based on its equivalence to the

myopic policy [6]. In this subsection, we provide a simpler

proof for the optimality of the myopic policy under the

Markovian model and show that the optimality results can

be further generalized. This generalization is twofold: i) each

underlying Markov process can be time-inhomogeneous; ii)

K can be time varying.

Theorem 4: Consider a general Markovian model

in which each underlying Markov process is time-

inhomogeneous and K is time varying, the myopic policy

is optimal over both finite and infinite horizons.

Proof: In following proof, we allow the parameters K ,

p01(1) and p01(1) to be time varying. We adopt a notation

similar to that in [4], [5], but with some small differences.

Recall that K of the N arms are to be observed at each step.

We consider a discounted problem over a finite horizon. Let

Ws(ω1, . . . , ωN) be the discounted reward over s steps when

the arms are ordered so the probabilities that the underlying

random processes are in state 1 are ω1, ω2, . . . , ωN . Suppose

that we observe the K arms at the start of this list. Then

Ws+1(ω1, . . . , ωN ) =
KX

i=1

ωi + βE
�
Ws(p11(1), . . . , p11(1)| {z }

ℓ1 times

,

τ(ωK+1), . . . , τ(ωN ), p01(1), . . . , p01(1)| {z }
ℓ0 times

)
�
,

where W0(·) = 0, τ(x) = p11(1)x + p01(1)(1 − x), and

the expectation is taken over possible outcomes that can

occur when the K arms that are observed are those at

the left end (i.e., having probabilities ω1, . . . , ωK that the

underlying random processes are in state 1), and ℓi of the

underlying random processes are found to be in state i (and

so ℓ0 + ℓ1 = K). Notice that if ω1 ≥ · · · ≥ ωN , then

Ws(ω1, . . . , ωN) is the value function for the myopic policy.

That is, Ws(ω1, . . . , ωN ) is the expected discounted reward

obtained over s remaining steps under the myopic policy

when ω1 ≥ · · · ≥ ωN .

We wish to show that the myopic policy is optimal. To do

this, it is sufficient to show that for y > x, and ω1 ≥ · · · ≥
ωK−1 ≥ x and y ≥ ωK+2 ≥ · · · ≥ ωN we have

Ws+1(ω1, . . . , ωK−1, y, x, ωK+2, . . . , ωN)

> Ws+1(ω1, . . . , ωK−1, x, y, ωK+2, . . . , ωN ) .

From [4], [5],

Ws+1(ω1, . . . , ωK−1, y, x, ωK+2, . . . , ωN )

− Ws+1(ω1, . . . , ωK−1, x, y, ωK+2, . . . , ωN)

=(y − x)[Ws+1(ω1, . . . , ωK−1, 1, 0, ωK+2, . . . , ωN )

− Ws+1(ω1, . . . , ωK−1, 0, 1, ωK+2, . . . , ωN )].

This is because that the expression before the equality must

be a function of the form a+bx+cy, for some a, b and c. The

above is positive if the term in square brackets is positive.

Thus, we can complete a step of the inductive proof (of the

optimality of the myopic policy) by showing this.

However, we show something stronger. Let ω̄i denote any

sequence of ωis, possibly empty. We might partition the state

vector as (ω̄1, y, ω̄2, ω̄3), where y is the probability that a

single underlying random process is in state 1. We shall

prove by induction on s that that for all valid state vectors

(ω̄1, y, ω̄2, ω̄3)

(A) 1 + Ws(ω̄1, y, ω̄2, ω̄3) − Ws(ω̄1, ω̄2, y, ω̄3) ≥ 0 .

This means that the total reward loss by moving ‘y’ higher

in the queue is at most 1.

And for all y > x, and valid state vectors (ω̄1, y, ω̄2, x, ω̄3),

(B) Ws(ω̄1, y, ω̄2, x, ω̄3) − Ws(ω̄1, x, ω̄2, y, ω̄3) ≥ 0 .

These are clearly true for s = 1. Let us begin by proving

an induction step for (B). As above, the expression in (B) is

equal to

(y − x)
[

Ws+1(ω̄1, 1, ω̄2, 0, ω̄3) − Ws+1(ω̄1, 0, ω̄2, 1, ω̄3)
]

.

Let us focus on the arms that have been swapped. Suppose

that these occur in the ith and jth place, i < j. If i, j ≤
K , then the expression in square brackets evaluates to 0. If

i, j > K the expression evaluates to something nonnegative,

by the inductive hypothesis for (B). The interesting case is

i ≤ K < j, in which case, for some ω̄′
1, ω̄

′
2, ω̄

′
3 (which are

stochastically determined by the observations from the top

K arms in the queue)



Ws+1(ω̄1, 1, ω̄2, 0, ω̄3) − Ws+1(ω̄1, 0, ω̄2, 1, ω̄3)

= 1 + βE
h
Ws(ω̄

′
1, p11(1), ω̄

′
2, p01(1), ω̄

′
3)

− Ws(ω̄
′
1, ω̄

′
2, p11(1), ω̄

′
3, p01(1))

i
≥ 1 + βE

h
Ws(ω̄

′
1, ω̄

′
2, p11(1), p01(1), ω̄

′
3)

− Ws(ω̄
′
1, ω̄

′
2, p11(1), ω̄

′
3, p01(1))

i
= 1 − β + βE

h
1 + Ws(ω̄

′
1, ω̄

′
2, p11(1), p01(1), ω̄

′
3)

− Ws(ω̄
′
1, ω̄

′
2, p11(1), ω̄

′
3, p01(1))

i
,

where the inequality follows from the inductive hypothesis

for (B). The final line is nonnegative since the expression

inside the expectation is nonnegative by the inductive hy-

pothesis for (A).

Now consider proving an induction step for (A). Suppose

that y occurs within the two expressions in the ith and jth

place, i < j. As above, if i, j ≤ K , then the expression of

interest evaluates to 1. If i, j > K the expression evaluates

to something nonnegative, by the inductive hypothesis for

(A). So the interesting case is i ≤ K < j. In this case, let

ω̄2 = (ω̄′
2, x, ω̄′′

2 ) so that

1 + Ws+1(ω̄1, y, ω̄2, ω̄3) − Ws+1(ω̄1, ω̄2, y, ω̄3)

= 1 + Ws+1(ω̄1, y, ω̄′
2, x, ω̄′′

2 , ω̄3)

− Ws+1(ω̄1, ω̄
′
2, x, ω̄′′

2 , y, ω̄3)

and ω̄1 and ω̄′
2 together account for K − 1 arms. As

previously, the above expression above is of the form a+bx+
cy+dxy. This is nonnegative for all x, y ∈ [0, 1] if and only if

it is nonnegative for all (x, y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

So we can prove nonnegativity by checking four cases. Two

of them are the same. If x = y = 0 or x = y = 1 then

1 + Ws+1(ω̄1, y, ω̄
′
2, x, ω̄

′′
2 , ω̄3) − Ws+1(ω̄1, ω̄

′
2, x, ω̄

′′
2 , y, ω̄3)

= 1 + βE
h
Ws(ω̄

′
1, τ (x), τ (ω̄′′

2 ), ω̄′
3) − Ws(ω̄

′
1, τ (ω̄′′

2 ), τ (x), ω̄′
3)
i

= 1 − β + βE
h
1 + Ws(ω̄

′
1, τ (x), τ (ω̄′′

2 ), ω̄′
3)

− Ws(ω̄
′
1, τ (ω̄′′

2 ), τ (x), ω̄′
3)
i
.

The term within the final expection is nonnegative, by the

inductive hypothesis for (A).

If x = 0, y = 1,

1 + Ws+1(ω̄1, y, ω̄
′
2, x, ω̄

′′
2 , ω̄3) − Ws+1(ω̄1, ω̄

′
2, x, ω̄

′′
2 , y, ω̄3)

= 1 + βE
h
1 + Ws(ω̄

′
1, τ (1), τ (0), τ (ω̄′′

2 ), ω̄′
3)

− Ws(ω̄
′
1, τ (ω̄′′

2 ), τ (1), ω̄′
3, τ (0))

i
≥ 1 + βE

h
1 + Ws(ω̄

′
1, τ (0), τ (ω̄′′

2 ), τ (1), ω̄′
3)

− Ws(ω̄
′
1, τ (0), τ (ω̄′′

2 ), τ (1), ω̄′
3)
i

> 0,

where the first inequality follows from the inductive hypoth-

esis for (B).

If x = 1, y = 0,

1 + Ws+1(ω̄1, y, ω̄
′
2, x, ω̄

′′
2 , ω̄3) − Ws+1(ω̄1, ω̄

′
2, x, ω̄

′′
2 , y, ω̄3)

= 1 + βE
h
Ws(ω̄

′
1, τ (1), τ (ω̄′′

2 ), ω̄′
3, τ (0)) − 1

− Ws(ω̄
′
1, τ (1), τ (ω̄′′

2 ), τ (0), ω̄′
3)
i

= 1 − β + βE
h
Ws(ω̄

′
1, τ (1), τ (ω̄′′

2 ), ω̄′
3, τ (0))

− Ws(ω̄
′
1, τ (1), τ (ω̄′′

2 ), τ (0), ω̄′
3)
i
.

The term within the expectation is nonnegative by the

inductive hypothesis for (B).

By contradiction, it is easy to show that the myopic policy

also maximizes the expected total discounted reward and the

expected average reward over the infinite horizon.

Remarks on Theorem 4

1. The myopic policy does something stronger than maxi-

mize the expected long-run reward. Let r(t) be the total

number of times we obtain the reward by time t, i.e.,

the number of 1s observed from the underlying random

processes. Then by a similar proof as above, we can

show that the myopic policy maximizes Pr(r(t) ≥ m)
for all m.

2. One can also generalize the result by allowing new arms

to arrive over time. For the case of departing arms,

imagine that each arm is failing into state 2, a ‘dead

state’, e.g., the underlying Markov chain is




1 − α − p01(1) p01(1) α
1 − α − p11(1) p11(1) α

0 0 1



 .

Thus, we can have a model with channels both arriving

and leaving the population of available arms.

3. When the underlying random processes are non-

Markovian, numerical examples showed that the myopic

policy is not optimal over a finite horizon. Its optimality

over the infinite horizon is, however, still open to future

studies.

VI. CONCLUSION

In this paper, we studied a class of RMAB problems that

model the monitoring and control of multiple reset processes.

We showed that the RMAB satisfies Whittle indexability.

When the RMAB satisfies certain monotone conditions on

the stochastic evolution of the arm state, Whittle index

was established in closed-form. Furthermore, when arms are

stochastically identical, we showed that Whittle index policy

is equivalent to the myopic policy. Based on this equivalency,

the structure and optimality of Whittle index policy were

established under certain conditions.
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