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Abstract

We consider a discrete-time groundwater model in which the cost of pumping takes
a slightly different form to that which has been traditional in the research literature to
date. This enables us to prove that (a) the optimal pumping quantity is nondecreasing
in the ground water stock, (b) the stock level remaining after each period’s pumping
is also nondecreasing in the groundwater stock, (c) the optimal decision is determined
by maximizing a concave function, and finally (d) the optimal pumping quantity is
nonincreasing in the number of periods to go. We show that (a)-(c), while intuitive,
do not hold under traditional modeling assumptions. We also explain the connections
between our results and similar ones for some classic problems of operations research.
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1 Introduction

In this paper, we consider the problem of managing groundwater under random recharge in

a single cell aquifer. There are two main modeling paradigms used in the literature: the first

based on optimal control of the continuous-time model, e.g., [1, 5, 11, 12, 15, 16, 18, 19, 22],

and the second based on the dynamic programming formulation of the discrete-time model,

e.g., [7, 8, 9, 10, 13, 14, 21]. In this paper, we focus on the second paradigm. While several

dynamic programming formulations have been proposed in the literature, few structural

properties for this problem have been established (although they have been conjectured).

Suppose that at the start of a pumping period the groundwater stock is x. Let C(x,w)

denote the cost of pumping out a quantity of water w during the current period, given that

the stock level of water at the beginning of the period is x. It has been traditional in the

literature to make the simplifying assumption that

C(x,w) = c(x)w, (1)

for a suitably defined nonnegative nonincreasing function c. Note two features of this model:

the cost C(x,w) depends only on the groundwater stock at a particular instant (e.g., the

beginning of the period), not accounting for the fact the stock changes throughout the period

as water is being pumped, and the marginal (per-unit) cost of pumping ∂C/∂w is independent

of the quantity of water pumped. We establish that, far from simplifying (presumably the

initial intention), the modeling assumption (1) makes it more difficult to establish structural

properties. In this paper, we use a more realistic cost function:

C(x,w) =

∫ x

z=x−w
γ(z)dz, (2)

where γ is assumed to be nonnegative, nonincreasing and convex. This form of the cost

function takes account of changes in the groundwater stock that occur during the pumping

period, and further, the marginal cost of pumping depends, in general, on the quantity of

water pumped. Let us suppose that time proceeds forward in T discrete periods, denoted

t = 1, 2, . . . , T . Let w∗t (x) denote the quantity of water which it is optimal to pump in period

t, when at the start of that period the groundwater stock is x. (If the optimal quantity is

not unique, we take the supremum of the optimizers.) Despite model (2) appearing more

complicated than model (1), this modification of the cost function allows us to show that

the following properties hold:
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• Property (a): w∗t (x) is a maximizer of a concave function of w.

• Property (b): w∗t (x) is nondecreasing in x,

• Property (c): x− w∗t (x) is nondecreasing in x, and

• Property (d): w∗t (x) is nondecreasing in t.

We show in Section 3 that all these properties hold for model (2). This is in contrast

to model (1), for which only (c) has been shown to hold, and that with the help of an

additional condition on c (for example, as in [14]). The underlying assumption of [13] is the

supermodularity of B(x−y)−C(x, x−y) in (x, y), where B(w) is the benefit of withdrawing

w units of water, but this condition sometimes fails for model (1); however, for (2), this

supermodularity condition always holds, thereby enabling Property (c) to hold. We show

by example that Properties (a), (b) and (c) may not hold under (1). (We do not have an

example showing (d) failing under (1).)

A common way to prove properties such as (a)-(d) is via a dynamic programming analysis

which uses the concavity of the value function in an essential way. We use this approach,

with the slight variation that it is the concavity of the value function plus an expression

involving the current state that is used in the analysis.

2 Model

We describe a discrete-time stochastic groundwater management model, based on the clas-

sical paper by Burt [7], which is standard in the literature (see the list of papers cited in

Section 1). We consider a finite-horizon problem where T is the planning horizon, and pe-

riods are indexed forward by t ∈ {1, 2, . . . , T}. Let xt denote the groundwater stock at

the beginning of period t. The manager decides the withdrawal quantity wt ≥ 0. Then a

non-negative random variable corresponding to the recharge to the groundwater stock, Rt, is

realized. We suppose that the Rt’s are independent and identically distributed. We assume

that the state transition for the groundwater stock level is given by:

xt+1 = xt − wt +Rt.

3



The single-period benefit (or reward) is

G(x,w) = B(w)− C(x,w)

where B(w) is the benefit of withdrawing w units of water and C(x,w) is the cost of pumping.

We suppose that B(w) is a concave and nondecreasing function of w and that C(x,w) is of

one of the forms in (1) or (2).

The objective is to maximize the present value of the benefit

T∑
t=1

δtG(xt, wt)

where δ ∈ (0, 1] is the discount factor. Then, the value function of dynamic programming is

given by the following recursion:

Vt(xt) = max
wt≥0

{G(xt, wt) + δE[Vt+1(xt − wt +Rt)] },

where VT+1(xT+1) = 0. We note the physical property of an aquifer is such that there is no

explicit “bottom” – that is, it is always possible to drill deeper into the aquifer and pump

more water, though it soon becomes prohibitively expensive at some point depending on the

geological structure; thus, without loss of generality, the groundwater stock level xt may be

treated as a relative measure, and can be negative.1

We comment on the pumping cost C(x,w), which depends on both the quantity of water

withdrawn and the pumping cost per unit of water. In models used in the literature (for

example, [1], [6], [14], [15], [16], [21] and [22]), the cost function has two characteristics:

• the per-unit cost of pumping, ∂C(x,w)/∂w, depends only on the stock of groundwater

at a particular point in time, ignoring the fact that the groundwater stock changes

(falls) as pumping progresses within a period – for example, it is based on the ground-

water stock at the beginning of the period, and

• the per-unit cost of pumping, ∂C(x,w)/∂w, is independent of w, the quantity of water

withdrawn.

1Theorem 1 can also be proved under the constraint of a “bottom”, i.e., with a constraint that xt must
be maintained nonnegative. To see this, note that by adjusting γ(x) so that has its required properties, but
tends very rapidly to −∞ as x decreases from 0 towards −∞, we can ensure that under an optimal policy
the groundwater stock remains nonnegative.
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The first characteristic above is reasonable if the length of a period is sufficiently small and

decisions are made frequently, in which case continuous-time models are more appropriate.

The second characteristic is a modeling assumption and is not always in accord with hy-

drologic facts. The most popular form of the cost function used in the literature is that of

(1), i.e., C(x,w) = c(x)w for some function c, and exhibits both characteristics noted above.

(To our knowledge, all numerical examples given in the literature follow this form. This

assumption is implicit in almost all studies, and is made clear only in [21].) With this cost

function, structural properties such as the concavity of the optimization problem in each

period have not been established.

Example. Under model (1), suppose that B(w) = 5w − w2/4 for w ∈ [0, 10], and

B(w) = 25 for w ≥ 10. Let c(x) = 10 − x and T = 2. Then it is an easy calculation that

w∗2(x2) = 2 max[0, x2 − 5]. So, for 5 ≤ x2 ≤ 10, we have x2 − w∗2(x2) = 10 − x2. Thus,

property (c) does not hold.

Continuing analysis of this example, it follows that V2(x2) = (x2 − 5)2 if 5 ≤ x2 ≤ 10,

and V2(x2) = 0 if x2 ≤ 5. Suppose that δ = 1 and R1 = 0 with probability 1. Then, for

example, V1(6) = arg maxw1 H(w1), where

H(w1) =

{
B(w1)− c(6)w1 + (6− w1 − 5)2 if w1 ∈ [0, 1),

B(w1)− c(6)w1 if w1 ∈ [1, 5].

It is easy to check that the function H(w1) is not concave in the region w1 ∈ [0, 5] (in fact,

it has two maximizers {0, 2}). Thus, property (a) does not hold.

Example. We change the above example by modifying

c(x) =

{
2 if x < 2

ε if x ≥ 2

for ε > 0, and R1 = 1 with probability 1. Then, the two-period reward we maximize over

w1 and w2 given x1 is

B(w1)− c(x1)w1 +B(w2)− c(x1 − w1 + 1)w2 .

For x1 = 0.5, we have c(x1) = 2 and c(x1 − w1 + 1) = 2 regardless of the value of that

we choose for w1. Thus, the optimal choice for both w1 and w2 is 6. For x1 = 1, we can

guarantee that c(x1 − w1 + 1) = ε if we take w1 = 0, and then we can take w2 = 10,

achieving the reward of 25− 10ε. Taking w1 > 0 produces at most a reward that is at most
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B(6) − 2 · 6 = 9 in each period since c(x1 − w1 + 1) = 2. Thus, for sufficiently small ε,

w∗1(0.5) = 6 and w∗1(1) = 0, in contradiction to (b).

3 Analysis

Recall from (2) our cost function C(x,w) =
∫ x

z=x−w γ(z)dz. From the definitions of Vt and

G, we can write Vt(xt) = maxwt≥0 Ut(xt, wt), where

Ut(xt, wt) = B(wt)−
∫ xt

z=xt−wt

γ(z)dz + δE[Vt+1(xt − wt +Rt)] . (3)

For any xt, let w∗t (xt) = arg maxwt≥0 Ut(xt, wt).

In Theorem 1 below, part (ii) shows that the problem facing the decision maker in each

period is the maximization of a concave function, which is property (a). Part (iii) establishes

two properties of the optimal decision in each period – that the optimal withdrawal quantity

increases in the groundwater stock, and that the groundwater stock in the next period is

nondecreasing in the groundwater stock in the current period – which are Properties (b) and

(c), respectively. We prove these results by showing that a modification of Vt exhibits the

concavity property – which is the content of part (iv).

Theorem 1. Under model (2),

(i) Vt(xt) is nondecreasing in xt for each t ∈ {1, . . . , T + 1},

(ii) Ut(xt, wt) is concave in wt for any xt for each t ∈ {1, . . . , T},

(iii) w∗t satisfies w∗t (xt) ≤ w∗t (xt + ε) ≤ w∗t (xt) + ε for any xt and ε > 0 for each t ∈
{1, . . . , T},2 and

(iv) Vt(xt) +
∫ xt

z=0
γ(z)dz is concave in xt for each t ∈ {1, . . . , T + 1}.

Proof. We proceed by backward induction. As a base case, note that VT+1 is a zero function

and trivially satisfies (i) and (iv). We assume, as an induction hypothesis, that (i) and (iv)

hold for Vt+1, where t ∈ {1, . . . , T}, and prove (i)-(iv) for t.

2This implies that the derivate of w∗t (xt) with respect to xt should belong to [0, 1] if it exists. Also, this
derivative exists almost everywhere since wt is bounded, nondecreasing and continuous.
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The inductive step for (i) is immediate from (3), i.e.,

Ut(xt, wt) = B(wt)− [Γ(xt)− Γ(xt − wt)] + δE[Vt+1(xt − wt +Rt)] ,

where Γ(y) =
∫ y

z=0
γ(z)dz is concave, and Vt+1 is assumed nondecreasing.

To make an inductive step for (ii), we write (3) as

Ut(xt, wt)

= [B(wt)− Γ(xt)] (4)

+ (1− δ)Γ(xt − wt) (5)

− δE[Γ(xt − wt +Rt)− Γ(xt − wt)] (6)

+ δE[Vt+1(xt − wt +Rt)+Γ(xt − wt +Rt)] . (7)

We now explain why each of the lines (4)-(7) is individually a concave function of wt. This

is certainly true of (4), as B is assumed to be concave. As regards (5), we recall the

assumption that γ(z) is nonincreasing in z. It follows that Γ(y) =
∫ y

z=0
γ(z)dz is concave in

z, and so Γ(xt − wt) is concave. As regards (6), the assumption that γ(z) is convex implies

that ∂[Γ(v + Rt) − Γ(v)]/∂v = γ(v + Rt) − γ(v) is nondecreasing in v. This implies that

[Γ(v + Rt) − Γ(v)] is convex in v, as is E[Γ(xt − wt + Rt) − Γ(xt − wt)]. Finally, it is the

inductive hypothesis for (iv) that ensures that (7) is concave in wt. We have now established

the inductive step for (ii).

We now turn to the inductive step for (iii). This follows from Topkis’s theorem [17],

which states that if f(u, v) is a supermodular function of (u, v) and D is a lattice then

arg maxv∈D f(u, v) is nondecreasing in u. Topkis’s theorem applies to our problem since we

are seeking to maximize a function of the form ft(xt, wt) = Ut(xt, wt) + Γ(xt) = B(wt) +

gt(xt − wt), where both B and gt are concave functions, taking gt to be the sum of lines

(5)-(7). A function h is said to be supermodular if h(a ∨ b) + h(a ∧ b) ≥ h(a) + h(b) (where

a∨b and a∧b denote maximum and minimum of a and b). So, ft is a supermodular function

of (xt, wt) because, for any positive ε and δ,

ft(xt + ε, wt + δ) + f(xt, wt) ≥ ft(xt + ε, wt) + f(xt, wt + δ)

⇐⇒ gt(xt + ε− wt − δ) + gt(xt − wt) ≥ gt(xt + ε− wt) + gt(xt − wt − δ)

and this is implied by the concavity of gt. Thus, Topkis’s theorem tells us that w∗t (xt + ε) ≥
w∗t (xt). To show w∗t (xt + ε) ≤ w∗t (xt) + ε, which is equivalent to (xt + ε)−w∗t (xt + ε) ≥ xt −
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w∗t (xt), we need only make the same application of Topkis’s theorem, but take the function

to be maximized ϕt(xt, yt) = B(xt − yt) + gt(yt), making the identification of yt = xt − wt.

Finally, to make the inductive step for (iv), we consider the equation involving (4)-(7),

move Γ(xt) to the left hand side, and replace wt with w∗t (xt). This gives

Vt(xt) + Γ(xt) = B(w∗t (xt)) + gt(xt − w∗t (xt)) .

Note that since w∗t (xt) maximizes Ut(xt, wt) = B(wt) − Γ(xt) + gt(xt − wt) with respect to

wt, it is also the value of w maximizing

B(w) + gt(xt − w) (8)

subject to w ≥ 0. Since B and gt are concave, the expression in (8) is jointly concave in xt

and w. Thus,

B(w∗t (xt)) + gt(xt − w∗t (xt)) = max
w≥0

B(w) + gt(xt − w)

is concave in xt (See, for example, Section 3.2.5 of [4]). Therefore, we conclude that Vt(xt) +

Γ(xt) is concave, proving (iv).

We note that an alternative way to prove Property (c) is to use a sample path argument:

if x1 < x2 and x1−w1 > x2−w2 hold for some period t, then replacing w1 with w1 +x2−x1

and w2 with w2 − x2 + x1 results in a solution that is not worse than the original solution –

this occurs because of the supermodularity of B(x− y)− C(x, x− y) in (x, y).

The following result shows that with more periods to go, the optimal decision is more

conservative in the extraction of water (Property (d)), and implies in particular that the

optimal extraction quantity is bounded above by the myopic withdrawal quantity (which

corresponds to the last period).

Corollary 1. Under model (2), Vt(x) is submodular in (t, x), i.e., Vt1(x
1) + Vt2(x

2) ≤
Vt1(x

2) + Vt2(x
1) whenever t1 ≥ t2 and x1 ≥ x2. Furthermore, for any x and t ≤ T ,

w∗t (x) ≤ w∗t+1(x).

Proof. We remind the reader

Ut(xt, wt) = B(wt)− [Γ(xt)− Γ(xt − wt)] + δE[Vt+1(xt − wt +Rt)] ,

8



where Γ(y) =
∫ y

z=0
γ(z)dz, and

Vt(xt) = max
wt≥0

Ut(xt, wt) ,

with VT+1(xT+1) = 0. To show the submodularity of Vt(x) in (t, x), we need to show, for any

1 < t ≤ T + 1 and any pair of x1 and x2 satisfying x2 < x1,

∆t(x
1, x2) = Vt(x

1) + Vt−1(x
2)− Vt−1(x1)− Vt(x2) ≤ 0.

As a base case, note that ∆T+1(x
1, x2) ≤ 0 holds since VT+1 is a zero function, and VT

is a nondecreasing function (Theorem 1(a)). We proceed with backward induction on t,

by assuming ∆t+1(x
1, x2) ≤ 0 for any x2 < x1, where 1 < t ≤ T . Let w1

t = w∗t (x
1) and

w2
t−1 = w∗t−1(x

2).

Case x1 − w1
t ≥ x2 − w2

t−1. From the definitions of w1
t and w2

t−1, we obtain

Vt−1(x
1) = max

w≥0
Ut−1(x

1, w) ≥ Ut−1(x
1, w1

t ) and Vt(x
2) = max

w≥0
Ut(x

2, w) ≥ Ut(x
2, w2

t−1) .

Thus,

∆t(x
1, x2) ≤ Ut(x

1, w1
t ) + Ut−1(x

2, w2
t−1)− Ut−1(x

1, w1
t )− Ut(x

2, w2
t−1)

= δE
[
Vt+1(x

1 − w1
t +Rt) + Vt(x

2 − w2
t−1 +Rt−1)

−Vt(x1 − w1
t +Rt−1)− Vt+1(x

2 − w2
t−1 +Rt)

]
.

Since Rt and Rt−1 have an identical distribution, we apply the induction hypothesis to

conclude the rightmost expression above is at most zero. It follows that ∆t(x
1, x2) ≤ 0.

Case x1 − w1
t < x2 − w2

t−1. Recall x1 > x2. It follows immediately that both w2
t−1+x1−

x2 and w1
t − x1 + x2 are nonnegative. By using an argument similar to the one used in the

previous case,

Vt−1(x
1) ≥ Ut−1(x

1, w2
t−1 + x1 − x2) and Vt(x

2) ≥ Ut(x
2, w1

t − x1 + x2) .

Then, from the definition of Ut,

∆t(x
1, x2) ≤ Ut(x

1, w1
t ) + Ut−1(x

2, w2
t−1)− Ut−1(x

1, w2
t−1 + x1 − x2)− Ut(x

2, w1
t − x1 + x2)

= B(w1
t ) +B(w2

t−1)−B(w2
t−1 + x1 − x2)−B(w1

t − x1 + x2) ,

where the right-hand most expression is at most zero by the concavity of B and w2
t−1 ≤

min{w2
t−1 + x1 − x2, w1

t − x1 + x2} ≤ max{w2
t−1 + x1 − x2, w1

t − x1 + x2} ≤ w1
t .
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Thus, we complete the induction step, implying the submodularity of Vt for each t. Now,

since Vt(x) is submodular in (t, x), by applying the Topkis’s theorem used in the proof

of Theorem 1, we obtain that w∗t (x) is nondecreasing in t. To provide the details of this

argument, suppose by way of contradiction that w∗t (x) > w∗t+1(x) for some t and x. Let

w0 = w∗t (x) and w1 = w∗t+1(x). Then, the sums of the expected payoffs satisfy

Ut(x,w0) + Ut+1(x,w1)

= B(w0)− [Γ(x)− Γ(x− w0)] + δE[Vt+1(x− w0 +Rt)]

+ B(w1)− [Γ(x)− Γ(x− w1)] + δE[Vt+2(x− w1 +Rt+1)]

≤ B(w0)− [Γ(x)− Γ(x− w1)] + δE[Vt+1(x− w1 +Rt)]

+ B(w1)− [Γ(x)− Γ(x− w0)] + δE[Vt+2(x− w0 +Rt+1)]

= Ut(x,w1) + Ut+1(x,w0) ,

where the inequality follows from the submodularity property of Vt(x). However, this con-

tradicts the choice of w∗t (x) and w∗t+1(x).

Remark: In the paper, we have assumed that C(x,w) =
∫ x

z=x−w γ(z)dz = Γ(x)−Γ(x−w).

It is evident (from an inspection of the proof of Theorem 1) that, for our analysis, the

differentiability of Γ is not required. Indeed, it is sufficient if C(x,w) = Γ(x) − Γ(x − w),

with Γ nondecreasing and concave and Γ(v +R)− Γ(v) convex in v for any R > 0.

We also note that the proof of Theorem 1 can be generalized in a straightforward man-

ner to the case where the Rt’s are no longer independent or identically distributed (i.i.d.).

However, this i.i.d. property is required for the proof of Corollary 1.

4 Other Problems of Sequence Resource Allocation

It is interesting to observe that the results in this paper are very similar to those that have

been obtained for some other well-studied problems of operations research. One of these is

the “fighter problem”, discussed in [2, 3, 20]. In this problem a fighter airplane is initially

endowed with a quantity of missiles and wishes to ration its use of these so as to maximize

the expected number of randomly encountered enemy planes that it can shoot down during

a given time T . A special case is that of the “invincible fighter”, which is not itself liable to

being shot down by the enemy planes. The discrete-time continuous-ammunition version of
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the invincible fighter problem corresponds to a special case of our model (with C(x,w) = 0,

Rt = 0, δ = 1; B(w) is the probability of shooting down an enemy plane by expending a

quantity of ammunition w). It has been shown in [2] and [3] that properties called (A), (B)

and (C) hold for the invincible fighter; these are analogous, respectively, to the Properties

(d), (b) and (c) that we have established in Section 1.
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