
On the Sum-of-Squares Algorithm for Bin Packing

JANOS CSIRIK

University of Szeged, Szeged, Hungary

DAVID S. JOHNSON

AT&T Labs - Research, Florham Park, New Jersey

CLAIRE KENYON

Brown University, Providence, Rhode Island

JAMES B. ORLIN and PETER W. SHOR

MIT, Cambridge, Massachusetts

and

RICHARD R. WEBER

University of Cambridge, Cambridge, England

In this paper we present a theoretical analysis of the on-line Sum-of-Squares algorithm (SS) for
bin packing along with several new variants. SS is applicable to any instance of bin packing
in which the bin capacity B and item sizes s(a) are integral (or can be scaled to be so), and
runs in time O(nB). It performs remarkably well from an average case point of view: For any
discrete distribution in which the optimal expected waste is sublinear, SS also has sublinear
expected waste. For any discrete distribution where the optimal expected waste is bounded, SS
has expected waste at most O(logn). We also discuss several interesting variants on SS, including
a randomized O(nB logB)-time on-line algorithm SS∗ whose expected behavior is essentially
optimal for all discrete distributions. Algorithm SS∗ depends on a new linear-programming-
based pseudopolynomial-time algorithm for solving the NP-hard problem of determining, given a
discrete distribution F , just what is the growth rate for the optimal expected waste.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on discrete structures; Sequencing and scheduling

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: Approximation algorithms, average case analysis, bin packing

A preliminary version of this article appeared in the Proceedings of the 32nd Annual ACM Sym-
posium on the Theory of Computing, 2000, ACM, New York, 208–217.

Authors’ addresses: J. Csirik, Dept. of Computer Sciences, University of Szeged, Szeged, Hun-
gary, email: csirik@inf.u-szeged.hu; D. S. Johnson, AT&T Labs - Research, Room C239, 180 Park
Avenue, Florham Park, NJ 07932, email: dsj@research.att.com; C. Kenyon, Computer Science
Department, Brown University, Providence, RI 02912, email: claire@cs.brown.edu; J. B. Orlin,
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139,
email: jorlin@mit.edu; P. W. Shor. Department of Mathematics, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139, email: shor@math.mit.edu; R. R. Weber, Statistical Laboratory,
University of Cambridge, Cambridge CB3 0WB, England, email: rrw1@cam.ac.uk.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0004-5411/20YY/0100-0002 $5.00
Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 2–68.

The Sum-of-Squares Algorithm for Bin Packing · 3

1. INTRODUCTION

In the classical one-dimensional bin packing problem, we are given a list L =
(a1, ..., an) of items, a bin capacity B, and a size s(ai) ∈ (0, B] for each item in the
list. We wish to pack the items into a minimum number of bins of capacity B, i.e.,
to partition the items into a minimum number of subsets such that the sum of the
sizes of the items in each subset is B or less. Many potential applications, such
as packing small information packets into somewhat larger fixed-size ones, involve
integer item sizes, fixed and relatively small values of B, and large values of n.
The bin packing problem is NP-hard, so research has concentrated on the design

and analysis of polynomial-time approximation algorithms for it, i.e., algorithms
that construct packings that use relatively few bins, although not necessarily the
smallest possible number. Of special interest have been on-line algorithms, i.e.,
ones that must permanently assign each item in turn to a bin without knowing
anything about the sizes or numbers of additional items, a requirement in many
applications. In this paper we shall analyze the Sum-of-Squares algorithm, an
on-line bin packing algorithm recently introduced in Csirik et al. [1999] that is
applicable to any instance whose item sizes are integral (or can be scaled to be so),
and is surprisingly effective.

1.1 Notation and Definitions

In what follows, we assume that all items have integer size. Let P be a packing
of list L and for 0 ≤ h ≤ B let NP (h) be the number of partially-filled bins
in P whose contents have total size equal to h. We shall say that such a bin
has level h. Note that by definition NP (0) = NP (B) = 0. We call the vector
〈NP (1), NP (2), . . . , NP (B − 1)〉 the profile of packing P .
Definition 1.1. The sum of squares ss(P) for packing P is

∑B−1
h=1 NP (h)

2.

The Sum-of-Squares Algorithm (SS) introduced in Csirik et al. [1999] is an on-
line algorithm that packs each item according to the following simple rule: Let a be
the next item to be packed and let P be the current packing. A legal bin for a is one
that is either empty or has current level no more than B−s(a). Place a into a legal
bin so as to yield the minimum possible value of ss(P ′) for the resulting packing
P ′, with ties broken in favor of the highest level, and then in favor of the newest
bin with that level. (Our results for SS hold for any choice of the tie-breaking rule,
but it is useful to have a completely specified version of the algorithm.)
Note that in deciding where to place an item of size s under SS, the explicit

calculation of ss(P) is not required, a consequence of the following lemma.

Lemma 1.2. Suppose an item of size s is added to a bin of level h of packing P ,
thus creating packing P ′, and that NP (h+ s)−NP (h) = d. Then

ss(P ′)− ss(P) =
{
2d+ 1, if h = 0 or h = B − s,
2d+ 2, otherwise.

Proof. Straightforward calculation using the facts that d = NP (h + s) when
h = 0 and d = −NP (h) when h = B − s. �
Thus to find the placement that causes the least increase in ss(P) one simply

needs to find that i with NP (i) �= 0 that minimizes NP (i+s)−NP (i), 0 ≤ i ≤ B−s
Journal of the ACM, Vol. V, No. N, Month 20YY.

4 · J. CSIRIK ET AL.

under the convention that NP (0) and NP (B) are re-defined to be 1/2 and −1/2
respectively. We currently know of no significantly more efficient way to do this in
general than to try all possibilities, so the running time for SS is O(nB) overall.
In what follows, we will be interested in three measures of L and P .

Definition 1.3. The size s(L) of a list L is the sum of the sizes of all the items
in L.

Definition 1.4. The length |P | of a packing P is the number of nonempty bins
in P .

Definition 1.5. The waste W (P) of packing P is
∑B−1
h=1 NP (h) · B−hB = |P | −

s(L)/B.

Note that these quantities are related since |P | ≥ s(L)/B and hence W (P) ≥ 0.
We are in particular interested in the average-case behavior of SS for discrete

distributions. A discrete distribution F consists of a bin size B ∈ Z+, a sequence
of positive integral sizes s1 < s2 < · · · < sJ ≤ B, and an associated vector p̄F =
〈p1, p2, . . . , pJ〉 of positive rational probabilities such that

∑J
j=1 pj = 1. In a list

generated according to this distribution, the ith item ai has size s(ai) = sj with
probability pj, independently for each i ≥ 1. We consider two key measures of
average-case algorithmic performance. For any discrete distribution F and any
algorithm A, let PAn (F) be the packing resulting from applying A to a random list
Ln(F) of n items generated according to F . Let OPT denote an algorithm that
always produces an optimal packing. We then have

Definition 1.6. The expected waste rate for algorithm A and distribution F
is

EWAn (F) ≡ E
[
W
(
PAn (F)

)]
.

Definition 1.7. The asymptotic expected performance ratio for A and F is

ERA∞(F) ≡ lim sup
n→∞

(
E

[∣∣PAn (F)∣∣
|POPTn (F)|

])
.

1.2 Our Results

Let us say that a distribution F is perfectly packable if EWOPTn (F) = o(n) (in
which case almost all of the bins in an optimal packing are perfectly packed). By a
result of Courcoubetis and Weber [1990] that we shall describe in more detail later,
the possible growth rates for EWOPTn (F) when F is perfectly packable are quite
restricted: the only possibilities are Θ (

√
n) and O(1). In the latter case we say

F is not only perfectly packable but is also a bounded waste distribution. In this
paper, we shall present the following results.

(1) For any perfectly packable distribution F , EWSSn (F) = O(
√
n) [Theorem 2.5].

(2) If F is a bounded waste distribution, then EWSSn (F) is either O(1) or Θ(logn)
and there is a simple combinatorial property that F must satisfy for the first
case to hold [Theorems 3.4 and 3.11].

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 5

(3) There is a simpleO(nB)-time deterministic variant SS′ on SS that has bounded
expected waste for all bounded waste distributions and O(

√
n) waste for all

perfectly packable distributions [Theorem 3.10].

(4) There is a linear program (LP) of size polynomial in B for determin-
ing whether F is perfectly packable, and if not, computing the value of
lim supn→∞(EWOPTn /n). If F is perfectly packable, one can determine whether
it is a bounded waste distribution by solving no more than B additional LP’s
obeying similar size bounds. Using current polynomial time algorithms for lin-
ear programming, the total time for this process is polynomial in B and the
number of bits required to describe the probability vector p̄F [Theorems 5.3,
5.2, and 5.6]. Note that since the running time is polynomial in B rather than
in logB, the algorithm technically runs in pseudopolynomial time. We cannot
hope for a polynomial time algorithm unless P = NP since the problem solved
is NP-hard [Coffman, Jr. et al. 2000a].

(5) For the case where F is not perfectly packable, there are lower bound examples
and upper bound theorems showing that 1.5 ≤ maxF ERSS∞ (F) ≤ 3, and that
for all lists L, we have SS(L) ≤ 3OPT (L), where A(L) is the number of bins
used when algorithm A is applied to list L [Theorems 4.1 and 4.2].

(6) For any fixed F , there is a randomized O(nB)-time on-line algorithm SSF such
that EWSSFn (F) ≤ EWOPTn (F)+O(

√
n) and hence ERSSF∞ (F) = 1. Algorithm

SSF is based on SS and, given F , can be constructed using the algorithm of
(4) above [Theorem 6.1].

(7) There is a randomized O(nB)-time on-line algorithm SS∗ that for any F with
bin capacity B has EWSS

∗
n (F) = Θ(EWOPTn (F)) and also EWSS

∗
n (F) ≤

EWOPTn (F) + O(n1/2), the latter implying that ERSS
∗

∞ (F) = 1. This algo-
rithm works by learning the distribution and using the algorithms of (4) and
(6) [Theorem 6.3].

(8) SS can maintain its good behavior even in the face of a non-oblivious adversary
who gets to choose the item size distribution at each step (subject to appropriate
restrictions) [Theorems 7.1 and 7.2].

(9) The good average case behavior of SS is at least partially preserved under many
(but not all) natural variations on its sum-of-squares objective function and the
accuracy with which it is updated. Moreover, there is a variant of SS that runs
in time O(B2+n logB) instead of Θ(nB) and has the same qualitative behavior
as specified for SS′ above in (3) [Theorems 8.1 through 8.11].

Several of these results were conjectured based on experimental evidence in Csirik
et al. [1999], which also introduced the main linear program of (4).

1.3 Previous Results

The relevant previous results can be divided into two classes: (1) results for practical
algorithms on specific distributions, and (2) more general (and less practical) results
about the existence of algorithms. We begin with (1).
The average case behavior under discrete distributions for standard heuristics

has been studied in Albers and Mitzenmacher [1998], Coffman, Jr. et al. [1991],
Coffman, Jr. et al. [1993], Coffman, Jr. et al. [1997], Coffman, Jr. et al. [2000a],

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 · J. CSIRIK ET AL.

and Kenyon et al. [1998]. These papers concentrated on the discrete uniform distri-
butions U{j, k}, where the bin capacity B = k and the item sizes are 1, 2, . . . , j < k,
all equally likely. If j = k− 1, the distribution is symmetric and we have by earlier
results that the optimal packing and the off-line First and Best Fit Decreasing algo-
rithms (FFD and BFD) all have Θ(

√
n) expected waste, as do the on-line First Fit

(FF) and Best Fit (BF) algorithms [Coffman, Jr. et al. 1991; Coffman, Jr. et al.
1997].

More interesting is the case when 1 ≤ j ≤ k−2. Now the optimal expected waste
is O(1) [Coffman, Jr. et al. 1991; Coffman, Jr. et al. 2000a; 2002b], and the results
for traditional algorithms do not always match this. In Coffman, Jr. et al. [1991] it
was shown that BFD and FFD have Θ(n) waste for U{6, 13}, and Coffman, Jr. et al.
[] identifies a wide variety of other U{j, k} with j < k−1 for which these algorithms
have linear waste. For the on-line algorithms FF and BF, the situation is no better.
Although they can be shown to have O(1) waste when j = O(

√
k) [Coffman, Jr.

et al. 1991], when j = k − 2 [Albers and Mitzenmacher 1998; Kenyon et al. 1998],
and (in the case of BF) for specified pairs (j, k) with k ≤ 14 [Coffman, Jr. et al.
1993], for most values of (j, k) it appears experimentally that their expected waste
is linear. This has been proved for BF and the pairs (8, 11) and (9, 12) [Coffman, Jr.
et al. 1993] as well as all pairs j, k with j/k ∈ [0.66, 2/3) when k is sufficiently large
[Kenyon and Mitzenmacher 2002]. In contrast, EWSSn (U{j, k}) = O(1) whenever
j < k − 1. On the other hand, our current best implementation of basic SS runs
in time Θ(nB) assuming logn and logB are no more than the computer word size,
compared to O(n logB) for BF, O(n+B2) for FFD and BFD [Coffman, Jr. et al.].
(The fastest known implementation of FF is Θ(n logn) and so FF is asymptotically
slower than SS for fixed B.)

Turning to less distribution-specific results, the first relevant results concerned
off-line algorithms. In the 1960’s, Gilmore and Gomory [1961; 1963] introduced a
deterministic approach to solving the bin packing problem that used linear program-
ming, column generation, and rounding to find a packing that for any list L with J
or fewer distinct item sizes is guaranteed to use no more than OPT (L)+J−1 bins.
Since J < B for any discrete distribution, this implies an average-case performance
that is at least as good as that specified for SS∗ in (7) of the previous section,
and is in some cases better. This approach, when implemented using the simplex
algorithm, seems to work well in practice, but the worst-case running time for such
an implementation is conceivably exponential in B: We have no polynomial bound
either on the time for simplex to solve the LP’s or on the number of LP’s that
need to be solved. (The LP being implicitly solved can have exponentially many
variables.) One can obtain a time bound for this approach that is polynomial in B,
but for this one must use the ellipsoid method applied to the dual of the implicit
LP, with the column generation subroutine converted to a separation oracle, as in
Grötschel et al. [1981] and Karp and Papadimitriou [1982]. Such an approach is
unfortunately unlikely to be practical.

A simpler way to produce such good packings in time polynomial in B is to
directly solve the basic LP of (4) above and then greedily extract a packing from
the variables of a basic optimal solution, as explained in Applegate et al. [2003]. For
this we are not restricted to the ellipsoid method and can use the fastest available

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 7

polynomial time linear programming algorithm, currently that of Vaidya [1989].
A simplistic analysis of the resulting running time yields a worst-case bound of
O(n+ (JB)4.5 log2 n), which is linear but with an additive constant that for many
distributions would still render the algorithm impractical. As with the Gilmore-
Gomory approach, solving the LP’s using the simplex method tends to work well
in practice, although it again raises the possibility of worst-case times that are
exponential in B Applegate et al. [2003].

Theoretically the best approach along these lines is the off-line deterministic al-
gorithm of Karmarkar and Karp [1982] that for any list L never uses more than
OPT (L) + O(log2 J) bins and takes time O(n + J8 log J log2 n). Although these
guarantees are asymptotically stronger than those for the previous two approaches,
the Karmarkar-Karp algorithm is substantially more complicated and once again
requires the performance of ellipsoid method steps. (This Karmarkar-Karp algo-
rithm is closely related to the more famous one from the same paper that guarantees
a packing within OPT (L)+O(log2(OPT)) for all lists L, independent of the num-
ber of distinct item sizes, but for which the best current running time bound is
O(n8 log3 n).)

For on-line algorithms, the most general results are those of Rhee [1988], Rhee and
Talagrand [1993a] and Rhee and Talagrand [1993b]. Rhee and Talagrand [1993a]
proved that for any distribution F (discrete or not) there exists an O(n logn) on-line

randomized algorithm AF satisfying EW
AF
n (F) ≤ EWOPTn (F) + O(

√
n log3/4 n)

and hence ERAF∞ (F) = 1. (For distributions with irrational sizes and/or probabil-
ities, their results assume a real-number RAM model of computation.) This is a
more general result than (6) above, and although the additive error term is worse

than the one in (6), the extra factor of log3/4 n appears to reduce to a constant
depending only on B when F is a discrete distribution, making the two bounds
comparable. Unfortunately, Rhee and Talagrand only prove that such algorithms
exist. The details of the algorithms depend on a non-constructive characterization
of F and its packing properties given in Rhee [1988].

Rhee and Talagrand [1993b] present a single (constructive) on-line random-
ized algorithm A that works for all distributions F (discrete or not) and has

EWAn (F) ≤ EWOPTn (F) + O(
√
n log3/4 n), again with the log3/4 n factor likely

to reduce to a function of B for discrete distributions. Even so, for discrete distri-
butions this algorithm is not quite as good as our algorithm SS∗, which itself has
EWSS

∗
n (F) ≤ EWOPTn (F) + O(

√
n) for all discrete distributions and in addition

gets bounded waste for bounded waste distributions. Moreover, the algorithm of
Rhee and Talagrand [1993b] is unlikely to be practical since it uses the Karmarkar-
Karp algorithm (applied to the items seen so far) as a subroutine.

The fastest on-line algorithms previously known that guarantee an O (
√
n) ex-

pected waste rate for perfectly packable discrete distributions are due to Courcou-
betis and Weber, who used them in the proof of their characterization theorem
in Courcoubetis and Weber [1990]. These algorithms are distribution-dependent,
but for fixed F run in linear time. At each step, the algorithm must solve a
linear program whose number of variables is potentially exponential in B, but
for fixed F this takes constant time, albeit potentially a large constant. More-
over, for bounded waste distributions, the Courcoubetis-Weber algorithms have

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 · J. CSIRIK ET AL.

EWAn (F) = O(1), whereas the Rhee-Talagrand algorithms cannot provide any
guarantee better than O (

√
n). On the other hand, the algorithms of Rhee and

Talagrand [1993a] and Rhee and Talagrand [1993b] guarantee ERA∞(F) = 1 for all
distributions, while Courcoubetis and Weber [1990] only do this for those distribu-
tions in which EWOPTn (F) = O (

√
n).

Thus, although these earlier general approaches rival the packing effectiveness
of SS and its variants, and in the case of the offline algorithms actually can do
somewhat better, none are likely to be as widely usable in practice (certainly none
of the online rivals will be), and none has the elegance and simplicity of the basic
SS algorithm.
As to our LP-based approach for evaluating distributions (4), this too has relevant

precursors. The main linear program we use turns out to be essentially equivalent
to the arc flow model for bin packing previously introduced by Valério de Carvalho
[1999], although that paper did not address questions of average case behavior.
Moreover, the classic LP-based approach to the cutting stock problem of Gilmore
and Gomory [1961] and Gilmore and Gomory [1963] once again applies and can
be implemented to run in time polynomial in B using the ellipsoid algorithm and
the separation oracle results of Grötschel et al. [1981] and Karp and Papadimitriou
[1982]. The Gilmore-Gomory based approach is significantly more complicated than
ours, however, and at least implicitly involves LP’s that are of size exponential
rather than polynomial in B. Moreover, no previous paper has even implicitly
presented algorithms for identifying bounded-waste distributions.

1.4 Outline of the Paper

The remainder of this paper is organized as follows. In Section 2 we present the
details of the Courcoubetis-Weber characterization theorem and prove our result
about the behavior of SS under perfectly packable distributions. In Section 3 we
prove our results for bounded waste distributions. Section 4 covers our linear-
programming-based algorithm for characterizing EWOPTn (F) given F . In Section
5 we discuss our results about the behavior of SS under linear waste distribu-
tions. In Section 6 we discuss our results about how SS can be modified so that
its expected behavior is asymptotically optimal for such distributions. Section 7
presents our results about how SS behaves in more adversarial situations. Sec-
tion 8 covers our results about the effectiveness of algorithms that use variants on
the sum-of-squares objective function or trade accuracy in measuring that function
for improved running times. We conclude in Section 9 with a discussion of open
problems and related results, such as the recent extension of the Sum-of-Squares
algorithm to the bin covering problem in Csirik et al. [2001].

2. PERFECTLY PACKABLE DISTRIBUTIONS

In order to explain why the Sum-of-Squares algorithm works so well, we need first to
understand the characterization theorem of Courcoubetis and Weber [1990], which
we now describe.
Given a discrete distribution F , a perfect packing configuration is a length-J

vector b̄ = 〈b1, b2, . . . , bJ〉 of nonnegative integers such that
∑J
j=1 bjsj = B. Such

a configuration corresponds to a way of completely filling a bin with items from

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 9

F . That is, if we take bi items of size si, 1 ≤ i ≤ J , we will precisely fill a bin
of capacity B. Let ΛF be the cone generated by the set of all perfect packing
configurations for F , that is, the closure under convex combinations and positive
scalar multiplication of the set of all such configurations.

Definition 2.1. A vector x̄ = 〈x1, . . . , xJ 〉 is in the interior of a cone Λ if and
only if there exists an ε > 0 such that all nonnegative vectors ȳ = 〈y1, . . . , yJ〉
satisfying |x̄− ȳ| ≡∑Ji=1 |xi − yi| ≤ ε are in Λ.
Theorem [Courcoubetis and Weber 1990]. Let p̄F denote the vector of size
probabilities 〈p1, p2, . . . , pJ〉 for a discrete distribution F .
(a) EWOPTn (F) = O(1) if and only if p̄F is in the interior of ΛF .

(b) EWOPTn (F) = Θ (
√
n) if and only if p̄F is on the boundary of ΛF , i.e., is in

ΛF but not in its interior.

(c) EWOPTn (F) = Θ(n) if and only if p̄F is outside ΛF .

The Courcoubetis-Weber Theorem can be used to prove the following lemma,
which is key to many of the results that follow:

Lemma 2.2. Let F be a perfectly packable distribution with bin size B, P be an
arbitrary packing into bins of size B, x be an item randomly generated according
to F , and P ′ be the packing resulting if x is packed into P according to SS. Then
E[ss(P ′)|P] < ss(P) + 2.

Proof. The proof relies on the following claim.

Claim 2.3. If F is a perfectly packable distribution with bin size B, then there
is an algorithm AF such that given any packing P into bins of size B, AF will pack
an item randomly generated according to F in such a way that for each bin level h
with NP (h) > 0, 1 ≤ h ≤ B − 1, the probability that NP (h) increases is no more
than the probability that it decreases.

Proof of Claim. The algorithmAF depends on the details of the Courcoubetis-
Weber Theorem. Since F is perfectly packable, p̄F must be in ΛF and so there must
exist some number m of length-J nonnegative integer vectors b̄i and corresponding
positive numbers αi satisfying

J∑
j=1

(bi,j · sj) = B, 1 ≤ i ≤ m, (2.1)

m∑
i=1

(αi · bi,j) = pj , 1 ≤ j ≤ J. (2.2)

Note that since the bi,j are integral and the pj are rational, there exists a set of
values for the αi that are rational as well, so assume that they are. Now since the
αi and pj are all rational, there exists an integer Q such that Q · αi and Q · pj are
integral for all i and j. Consider the ideal packing P ∗ which has Qαi copies of bins
of type b̄i. We will use P

∗ to define AF . Note that by (2.2) P ∗ contains Qpj items
Journal of the ACM, Vol. V, No. N, Month 20YY.

10 · J. CSIRIK ET AL.

(1) Let the set U of as-yet-unordered items initially
be set to Y and let S = 0 be the initial total size
of ordered items.

(2) While U �= ∅ and last(Y) is undefined, do the following:
2.1 If there is an item x in U such that P has

a partially filled bin of level S + s(x)
2.1.1 Choose such an x, put it next in the ordering,

and remove it from U
2.1.2 Set S = S + s(x).

2.2 Otherwise, set last(Y) to be the number of
items ordered so far and exit While loop.

(3) Complete the ordering by appending the remaining
items in U in arbitrary order.

Fig. 1. Procedure for ordering items in bin Y given a packing P

of size j, 1 ≤ j ≤ J , and hence a total of Q items. Let LF = {x1, x2, . . . , xQ}
denote the Q items packed into P ∗, and denote the bins of P ∗ as Y1, Y2, . . . , Y|P∗|.
Now let P be an arbitrary packing of integer-size items into bins of size B. We

claim that for each bin Y of the packing P ∗, there is an ordering y1, y2, . . . , y|Y | of
the items contained in Y and a special threshold index last(Y), 0 ≤ last(Y) < |Y |,
such that if we set Si ≡

∑i
j=1 s(yj), 0 ≤ i ≤ |Y |, then the following holds:

(1) P has partially filled bins with each level Si, 0 ≤ i ≤ last(Y).
(2) P has no partially filled bin of level Slast(Y) + s(yi) for any i > last(Y).

That such an ordering and threshold index always exist can be seen from Figure 1,
which presents a greedy procedure that, given the current packing P , will compute
them. Assume we have chosen such an ordering and threshold index for each bin
in P ∗. Note that S|Y | = B for all such bins Y , since each is by definition perfectly
packed.
Our algorithmAF begins the processing of an item a by first randomly identifying

it with an appropriate element r(a) ∈ LF . In particular, if a is of size sj , then r(a)
is one of the Q · pj items in LF of size sj , with all such choices being equally likely.
Note that this implies that for each i, 1 ≤ i ≤ Q, the probability that a randomly
generated item a will be identified with xi is 1/Q.
Having chosen r(a), we then determine the bin into which we should place a as

follows. Suppose that in P ∗, item r(a) is in bin Y and has index j in the ordering
of items in that bin.

(i) If j = 1, place a in an empty bin, creating a new bin with level s(a) = S1.

(ii) If 1 < j ≤ last(Y), place a in a bin with level Sj−1, increasing its level to Sj .
(iii) If j > last(Y), place a in a bin of size Slast(Y) (or in a new bin if last(Y) = 0).

For example, suppose that the items in Y , in our constructed order, are of size
2, 3, 2, and 4 and last(Y) = 2. Then S1 = 2, S2 = 5, S3 = 7, S4 = B = 11,
NP (2), NP (5) > 0, and NP (7) = NP (9) = 0. If r(a) ∈ Y , then it is with equal
probability the first 2, the 3, the second 2, or the 4. In the first case it starts a new

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 11

bin, creating a bin of level 2 and increasing NP (2) by 1. In the second it goes in
a bin of level 2, converting it to a bin of level 5, thus decreasing NP (2) by 1 and
increasing NP (5) by 1. In the third and fourth cases it goes in a bin of level 5,
converting it to a bin of level 7 or 9, depending on the case, and decreasing NP (5)
by 1. Thus when r(a) ∈ Y , the only positive level counts that can change are those
for h ∈ {2, 5} = {S1, S2 = Slast(Y)}, counts can only change by 1, and each count
is at least as likely to decline as to increase.
More generally, for any bin Y in P ∗, if a is randomly generated according to F and

r(a) ∈ Y , then by the law of conditional probabilities r(a) will take on each of the
values yi, 1 ≤ i ≤ |Y | with probability p = 1/|Y |. Thus if r(a) ∈ Y the probability
that the count for level Si increases equals the probability that it decreases when
1 ≤ i < last(Y). The probability that the count for Slast(Y) decreases is at least as
large as the probability that it increases (greater if last(Y) ≤ |Y | − 2). And for all
other levels with positive counts, the probability that a change occurs is 0. Since
this is true for all bins Y of the ideal packing P ∗, the Claim follows. �
Claim 2.3 is used to prove Lemma 2.2 as follows. Note that the claim implies

a bound on the expected increase in ss(P) when a new item is packed under AF .
For any level count x > 0, the expected increase in ss(P) given that this particular
count changes is, by the claim, at most

1

2

(
(x+ 1)2 − x2

)
+
1

2

(
(x− 1)2 − x2

)
= 1.

More trivially, the expected increase in ss(P) given that a 0-count changes is also
at most 1. Since a placement changes at most two counts, this means that the
expected increase in ss(P) using algorithm AF is at most 2. Since SS explicitly
chooses the placement of each item so as to minimize the increase in ss(P), we thus
must also have that the expected increase in ss(P) under SS is at most 2 at each
step. �

Lemma 2.2 is exploited using the following result.

Lemma 2.4. Suppose P is a packing under SS of a randomly generated list
Ln(F), where F is a discrete distribution with bin size B and n > 0. Then

E[W (P)] ≤
√
(B − 1)E[ss(P)].

Proof. For 1 ≤ i ≤ n let Ci =
∑B−1
h=1 p[NP (h) = i], i.e., the expected number

of levels whose count in P equals i. Then
∑n
i=1 Ci = B − 1 and

E[ss(P)] =

B−1∑
h=1

E
[
NP (h)

2
]
=

n∑
i=1

Ci · i2. (2.3)

We now apply the Cauchy-Schwartz inequality, which says that(∑
xiyi

)2
≤
(∑

x2i

)(∑
y2i

)
.

Let xi =
√
Ci and yi = i

√
Ci, 1 ≤ i ≤ n. We then have(

n∑
i=1

Ci · i
)2
≤
(
n∑
i=1

Ci

)(
n∑
i=1

Cii
2

)
.

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 · J. CSIRIK ET AL.

Taking square roots and using (2.3), we get

E

[
B−1∑
h=1

NP (h)

]
≤
√
(B − 1)E[ss(P)]. (2.4)

Since no partially full bin has more than (B − 1)/B < 1 waste, the claimed result
follows. �

Theorem 2.5. Suppose F is a discrete distribution satisfying EWOPTn (F) =
O (
√
n). Then EWSSn (F) <

√
2nB.

Proof. By Lemma 2.2 and the linearity of expectations, we have

E[ss(PSSn (F))] ≤ 2n.
The result follows by Lemma 2.4. �

3. BOUNDED WASTE DISTRIBUTIONS

In order to distinguish the broad class of bounded waste distributions under which
SS performs well, we need some new definitions. If F is a discrete distribution, let
UF denote the set of sizes associated with F .

Definition 3.1. A level h, 1 ≤ h ≤ B − 1, is a dead-end level for F if there is
no collection of items with sizes in UF whose total size is B − h.
In other words, if h is a dead-end level then it is impossible to use items whose

sizes are in UF to completely fill a bin whose current contents have total size h.
Note that the dead-end levels for F depend only on UF and can be identified in
time O(|UF |B) by dynamic programming.
Observation 3.2. For future reference, note the following easy consequences of
the definition of dead-end level.

(a) The algorithms AF of Claim 2.3 in the proof of Lemma 2.2 never create bins
that have dead-end levels. (This is because the levels of the bins they create are
always the sums of item sizes from a perfectly packed bin.)

(b) If F is a perfectly packable distribution, then for no sj ∈ UF is sj a dead-end
level. (Otherwise, no bin containing items of size sj could be perfectly packed.
Since the expected number of such bins in an optimal packing is at least npj/B,
this means that the expected waste would have to be at least npj/B

2. Since we
must have pj > 0 by definition, this implies that we would have linear waste,
contradicting the assumption that F is a perfectly packable distribution.)

(c) No distribution with 1 ∈ UF can have a dead-end level, so that in particular the
U{j, k} do not have dead-end levels.
A simple example of a distribution that does have dead-end levels is any F that

has B = 6 and UF = {2, 3}. Here 5 is a dead-end level for F while 1,2,3,4 are not.
There is a sense, however, in which this distribution is still fairly benign.

Definition 3.3. A level h is multiply-occurring for a distribution F if there is
some list L with item sizes from UF such that the SS packing P of L has NP (h) > 1.

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 13

It is easy to verify that there are no multiply-occurring levels, dead-end or oth-
erwise, in the above B = 6 example.

We shall divide this section into three parts. In subsection 3.1 we show that
SS has bounded expected waste for bounded waste distributions with no multiply-
occurring dead-end levels. In subsection 3.2 we show that a simple variant on SS
has bounded expected waste for all bounded waste distributions. In subsection 3.3
we characterize the behavior of SS for bounded waste distributions that do have
multiply-occurring dead-end levels.

3.1 A Bounded Expected Waste Theorem for SS

Theorem 3.4. If F is a bounded waste distribution with no multiply-occurring
dead-end levels, then EWSSn (F) = O(1).

To prove this result we rely on the Courcoubetis-Weber Theorem, Lemma 2.2,
and the following specialization of a result of Hajek [1982].

Hajek’s Lemma. Let S be a state space and let Fk, k ≥ 1, be a sequence of
functions, where Fk maps Sk−1 to probability distributions over S. Let X1, X2, . . .
be a sequence of random variables over S generated as follows: X1 is chosen ac-
cording to F1(·) and Xk is chosen according to Fk(X1, . . . , Xk−1). Suppose there
are constants b > 1, ∆ <∞, D > 0, and γ > 0 and a function φ from S to [0,∞)
such that

(a) [Initial Bound Hypothesis]. E
[
bφ(X1)

]
<∞.

(b) [Bounded Variation Hypothesis]. For all N ≥ 1, |φ(XN+1)− φ(XN)| ≤ ∆.
(c) [Expected Decrease Hypothesis]. For all N ≥ 1,

E[φ(XN+1)− φ(XN)|φ(XN) > D] ≤ −γ.
Then there are constants c > 1 and T > 0 such that for all N ≥ 1, E [cφ(XN)] < T .
Note that the conclusion of this lemma implies that there is also a constant T ′

such that E[φ(XN)] < T
′ for all N . A weaker version of the lemma was used in the

analyses of the Best and First Fit bin packing heuristics in Albers and Mitzenmacher
[1998], Coffman, Jr. et al. [1993], and Kenyon et al. [1998]. The added strength is
not needed for Theorem 3.4, but will be used in the proof of Theorem 3.11.
We prove Theorem 3.4 by applying Hajek’s Lemma with the following interpre-

tation. The state space S is the set of all length-(B − 1) vectors of non-negative
integers x̄ = 〈x1, x2, . . . , xB−1〉, where we view x̄ as the profile of a packing that has
xi bins with level i, 1 ≤ i ≤ B− 1. X0 is then the profile of the empty packing and
Xi+1 is the profile of the packing obtained by generating a random item according
to F and packing it according to SS into a packing with profile Xi. The potential
function is

φ(x̄) =

√√√√B−1∑
i=1

x2i .

Note that if the hypotheses of Hajek’s Lemma are satisfied under this interpre-
tation, then the lemma’s conclusion would say that there is a T ′ such that for all

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 · J. CSIRIK ET AL.

N ,

E

⎡
⎣
√√√√B−1∑
i=1

x2N,i

⎤
⎦ < T ′,

which implies that E[xN,i] is bounded by T
′ as well, 1 ≤ i ≤ B − 1. Thus the

expected waste is less than the constant BT ′ and Theorem 3.4 would be proved.
Hence all we need to show is that the three hypotheses of Hajek’s lemma apply.

The Initial Bound Hypothesis applies since the profile of an empty packing is all
0’s and hence φ(X0) = 0. The following lemma implies that Bounded Variation
Hypothesis also holds.

Lemma 3.5. Let x̄ be the profile of a packing into bins of size B, and let x̄′ be
the profile of the packing obtained from x̄ by adding an item to the packing in any
legal way. Then

|φ(x̄′)− φ(x̄)| ≤ 1.
Proof. Consider the case when φ(x̄′) > φ(x̄) and suppose that i is the level

whose count increases when the item is packed is level i. We have

φ(x̄′)− φ(x̄) ≤
√
φ(x̄)2 + (xi + 1)2 − x2i − φ(x̄)

=

(√
φ(x̄)2 + 2xi + 1− φ(x̄)

)(√
φ(x̄)2 + 2xi + 1 + φ(x̄)

)
√
φ(x̄)2 + 2xi + 1 + φ(x̄)

=
2xi + 1√

φ(x̄)2 + 2xi + 1 + φ(x̄)

≤ 2xi + 1√
x2i + 2xi + 1 + xi

= 1 .

A similar argument handles the case when φ(x̄′) < φ(x̄). �
To complete the proof of the theorem, we need to show that the Expected De-

crease Hypothesis of Hajek’s Lemma applies. For this we need the following three
combinatorial lemmas.

Lemma 3.6. Suppose y is any number and a > 0. Then

y − a ≤ y
2 − a2
2a

.

Proof. Note that y − a = (y2 − a2)/(y + a), and then observe that no matter
whether y ≥ a or y < a, this is less than or equal to (y2 − a2)/2a. �
Lemma 3.7. Let F be a distribution with no multiply-occurring dead-end levels
and let P be any packing that can be created by applying SS to a list of items all
of whose sizes are in UF . If x̄ is the profile of P and φ(x̄) > 2B

3/2, then there is
a size s ∈ UF such that if an item of size s is packed by SS into P , the resulting
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 15

profile x̄′ satisfies

φ(x̄′)2 ≤ φ(x̄)2 − φ(x̄)
B3/2

.

Proof. Suppose x̄ is as specified and let h be the index for a level at which x̄
takes on its maximum value. It is easy to see that

xh ≥ φ(x̄)/
√
B . (3.5)

Thus xh > 2B > 1 and so by definition h is a multiply-occurring level and hence
by hypothesis cannot be a dead-end level for F . Hence there must be a sequence of
levels h = �0 < �1 < · · · < �m = B, m ≤ B, such that for 1 ≤ i ≤ m, �i−�i−1 ∈ UF .
Taking xB = 0 by convention, we have

xh =

m−1∑
i=0

(x�i − x�i+1) . (3.6)

Let ∆ = max{x�i − x�i+1 : 0 ≤ q < m}, let q be an index which yields this
maximum value, and let s = �q+1 − �q. Then by (3.6) we have ∆ ≥ xh/m ≥
xh/B ≥ φ(x̄)/B3/2, where the last inequality follows from (3.5). By Lemma 1.2
this means that if an item of size s arrives, φ(x̄)2 must decline by at least

2(∆− 1) ≥ 2
(
φ(x̄)

B3/2
− 1
)
≥ φ(x̄) + 2B

3/2

B3/2
− 2 ≥ φ(x̄)

B3/2

as claimed. �

Lemma 3.8. Let F be a bounded waste distribution with UF = {s1, s2, . . . , sJ}
and let pmin = min{pi : 1 ≤ i ≤ J}. (Recall that by definition we must have
pmin > 0.) For each i, 1 ≤ i ≤ J , and ε, 0 < ε < pmin, let F [i, ε] be the distribution
which decreases pi to p

′
i = (pi − ε)/(1 − ε) and increases all other probabilities pj

to p′j = pj/(1 − ε). Then there is a constant ε0 > 0 such that F [i, ε] is a perfectly
packable distribution for all i, 1 ≤ i ≤ J , and ε, 0 < ε ≤ ε0.
Proof. Since F is a bounded waste distribution and pi > 0, 1 ≤ i ≤ J , this

follows from the Courcoubetis-Weber theorem, part (a). �

We can now prove that the Expected Decrease Hypothesis of Hajek’s Lemma
applies, which will complete the proof of the Theorem 3.4. Let F be a bounded
waste distribution with no multiply-occurring dead-end levels, and let ε0 be the
value specified for F by Lemma 3.8. Without loss of generality we may assume that
ε0 < 2. Let P be a packing as specified in Lemma 3.7 but with profile x̄ satisfying
φ(x̄) > 4B3/2/ε0 > 2B

3/2. Let i be the index of the size s ∈ UF whose existence is
proved in Lemma 3.7, and let Fi be the distribution that always generates an item
of size si.
Consider the two-phase item generation process that first randomly chooses be-

tween distributions Fi and F [i, ε0], the first choice being made with probability ε0
and the second with probability 1 − ε0. It is easy to see that this process is just a
more complicated way of generating items according to distribution F . Now con-
sider what happens when this process is used to add one item to packing P . If Fi
is chosen, then by Lemma 3.7, the value of φ2 declines by at least φ(x̄)/B3/2. If

Journal of the ACM, Vol. V, No. N, Month 20YY.

16 · J. CSIRIK ET AL.

F [i, ε0] is chosen, the expected value of φ
2 increases by less than 2 as a consequence

of Lemma 2.2 and the fact that F [i, ε0] is a perfectly packable distribution (Lemma
3.8). Thus if x̄′ is the resulting profile, we have by applying Lemma 3.6 for a = φ(x̄)
and b = φ(x̄′) and taking expectations

E [φ(x̄′)− φ(x̄)] < (1 − ε0)(2)
(
1

2φ(x̄)

)
+ ε0

(
− φ(x̄)
B3/2

)(
1

2φ(x̄)

)

<
1

φ(x̄)
− ε0

2B3/2

< − ε0

4B3/2

since φ(x̄) > 4B3/2/ε0. Thus the Expected Decrease Hypothesis of Hajek’s Lemma
holds with D = 4B3/2/ε0 and γ = ε0/4B

3/2, and so Hajek’s Lemma applies. Thus
EWSSn (F) = O(1), the conclusion of Theorem 3.4. �

3.2 Improving on SS for Bounded Waste Distributions

Unfortunately, although SS has bounded expected waste for bounded waste dis-
tributions with no multiply-occurring dead-end levels, it does not do so well for
all bounded waste distributions. Consider the distribution F with B = 9, J = 2,
s1 = 2, s2 = 3, and p1 = p2 = 1/2. It is easy to see that F is a bounded waste
distribution, since 3’s by themselves can pack perfectly, and only one 3 is needed
for every three 2’s in order that the 2’s can go into perfectly packed bins. Note,
however, that 8 is a multiply-occurring dead-end level for F , so Theorem 3.4 does
not apply. In fact, EWSSn (F) = Ω(logn), as the following informal reasoning sug-
gests: It is likely that somewhere within a sequence of n logn items from F there
will be Ω(logn) consecutive 2’s. These are in turn likely to create Ω(logn) bins of
level 8, and hence, since 8 is a dead-end level, Ω(logn) waste.
Fortunately, this is the worst possible result for SS and a bounded waste dis-

tribution, as we shall see below in Theorem 3.11. First, however, let us show how
a simple modification to SS yields a variant with the same running time that has
O(1) expected waste for all bounded waste distributions.
Like SS, this variant (SS′) is on-line. It makes use of a parameterized variant

SSD on the packing rule of SS, where D is a set of levels. In SSD, we place items
so as to minimize ss(P) subject to the constraint that no bin with level in D may
be created unless this is unavoidable. In the latter case we start a new bin. SS′

works as follows. Let U be the set of item sizes seen so far and let D(U) denote the
set of dead-end levels for U . (Initially U is empty and D(U) = {h : 1 ≤ h < B}.)
Whenever an item arrives, we first check if its size is in U . If not, we update U and
recompute D(U). Then we pack the item according to SSD(U). A first observation
about SS′ is the following.

Lemma 3.9. If F is a perfectly packable distribution, then SS′ will never create
a dead-end level when packing a sequence of items with sizes in UF .

Proof. By Observation 3.2(b), starting a bin with an item whose size is in UF
can never create a dead-end level for UF . On the other hand, if SS

′ puts an item
in a partially full bin, it must by definition be the case that the new level is not

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 17

in D(U). Since D(U) can never gain elements as more item sizes are revealed, the
new level cannot be in D(UF) either. Thus it is not a dead-end level for F . �

Theorem 3.10.

(i) If F is a perfectly packable distribution, then EWSS
′

n (F) = O(
√
n).

(ii) If F is a bounded waste distribution, then EWSS
′

n (F) = O(1).

Proof. We begin by bounding the expected number of items that can arrive
before we have seen all item sizes in UF . Assume without loss of generality that
UF = {s1, s2, . . . , sJ}. The probability that the ith item size does not appear among
the first h items generated is (1 − pi)h. Thus, if we again let pmin = min{pi : 1 ≤
i ≤ J}, the probability that we have not seen all item sizes after the hth item
arrives is at most

J∑
i=1

(1− pi)h ≤ J (1− pmin)h .

Let t be such that J(1 − pmin)t ≤ 1/2. Then for each integer m ≥ 0, the
probability that all the item sizes have not been seen after mt items have arrived
is at most 1/2m. Thus if M is the number of items that have arrived when the
last item size is first seen, we have that for each m ≥ 0, the probability that
M ∈ (mt, (m+ 1)t] is at most 1/2m.
For (i), note that if P is the packing that exists immediately after the last item

size is first seen, then ss(P) ≤M2 and

E[ss(P)] ≤
∞∑
m=0

(
(m+ 1)t)2 · p[M ∈ (mt, (m+ 1)t]]) ≤ ∞∑

m=0

((m+ 1)t)2

2m
= 12t2,

which is a constant bound depending only F . After all sizes have been seen, SS′

reduces to SSD(UF), and it follows from Observation 3.2(a) that Lemma 2.2 applies
to the latter. We thus can conclude that for any n the packing Pn satisfies

E [ss(Pn)] < 12t
2 + 2n,

which by Lemma 2.4 implies that EWSS
′

n (F) = O(
√
n), so (i) is proved.

The argument for (ii) mimics the proof of Theorem 3.4. Using the same potential
function φ we show that Hajek’s Lemma applies when SS is replaced by SSD(UF),
F is a bounded waste distribution, and the initial state x̄ is taken to be the profile
of the packing P that exists immediately after the last item size is first seen by SS′.
To see that the Initial Bound Hypothesis is satisfied, we must show that there

exists a constant b > 1 such that E
[
bφ(x̄)

]
is bounded. To prove this, let M be

the number of items in packing P . It is immediate that φ(x̄) =
√∑B−1

i=1 x
2
i ≤ M .

Thus if we take b = 21/(2t) and exploit the analysis used for (i) above we have

E
[
bφ(x̄)

]
≤ E [bM] ≤ ∞∑

m=0

b(m+1)t · 1
2m
=

∞∑
m=0

2(m+1)/2

2m

=
√
2

∞∑
m=0

1√
2
m =

2√
2− 1 < 4.83.

Journal of the ACM, Vol. V, No. N, Month 20YY.

18 · J. CSIRIK ET AL.

Thus the Initial Bound Hypothesis is satisfied. The Bounded Variation Hypoth-
esis again follows immediately from Lemma 3.5. To prove the Expected Decrease
Hypothesis, we need the facts that Lemmas 2.2 and 3.7 hold when SS is replaced
by SSD(UF). We have already observed that Lemma 2.2 holds. As to Lemma 3.7,
the properties of SS were used in only two places. First, we needed the fact that
SS could never create a packing where the count for a dead-end level exceeded 1, an
easy observation there since we assumed there were no multiply-occurring dead-end
levels. Here the situation is even better since by Lemma 3.9 SS′ can never create
a packing where the count for a dead-end level is nonzero.
The other property of SS used in proving Lemma 3.7 was simply that, in the

terms of the proof of that lemma, it could be trusted to pack an item of size
s = �q+1 − �q in such a way as to reduce ss(P) by at least as much as it would
be reduced by placing the item in a bin of level �q. SSD(UF) will clearly behave as
desired, since level �q+1, as it is constructed in the proof, is not a dead-end level,
and so bins of level �q are legal placements for items of size �q+1−�q under SSD(UF).
We conclude that Lemma 3.7 holds when SSD(UF) replaces SS, and so the Ex-

pected Decrease Hypotheses of Hajek’s Lemma is satisfied. Thus the latter Lemma
applies, and the proof of bounded expected waste can proceed exactly as it did for
SS. �

3.3 Worst-Case Behavior of SS for Bounded Waste Distributions

Theorem 3.11. If F is a bounded waste distribution that has multiply-occurring
dead-end levels, then EWSSn (F) = Θ(logn).

We divide the proof of this theorem into separate upper and lower bound proofs.
These are by a substantial margin the most complicated proofs in the paper, and
readers may prefer to skip this section on a first reading of the paper. None of the
later sections depend on the details of these proofs.

3.3.1 Proof of the O(log n) Upper Bound. For this result we need to exploit
more of the power of Hajek’s Lemma (which surprisingly is used in proving the
lower bound as well as the upper bound). We will also need a more complicated
potential function. Let DF denote the set of dead-end levels for F and let LF
denote the set of levels that are not dead-end levels for F . We shall refer to the
latter as live levels in what follows. For a given profile x̄, define τD(x̄) =

∑
i∈DF x

2
i

and τL(x̄) =
∑
i∈LF x

2
i . Note that φ(x̄) =

√
τD(x̄) + τL(x̄). Our new potential

function ψ must satisfy two key properties.

(1) Hajek’s Lemma applies with the potential function ψ and, as before, Xi repre-
senting the profile after SS has packed i items generated according to F .

(2) For any live level h,

ψ(x̄) ≥
√
τL(x̄) ≥ xh. (3.7)

Let us first show that the claimed upper bound will follow if we can construct
a potential function ψ with these properties. Since Hajek’s Lemma applies, there
exist constants c > 1 and T > 0 such that for all N > 0,

E
[
cψ(XN)

]
≤ T. (3.8)

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 19

We can use (3.8) to separately bound the sums of the counts for live and dead
levels. For each live level h, the component Xn,h of the final packing profile Xn
satisfies Xn,h ≤ ψ(Xn) < cψ(Xn)/ loge c, and so we have

E

[∑
h∈LF

Xn,h

]
≤ E

[
B
cψ(Xn)

loge c

]
≤ BT

loge c
= O(1). (3.9)

In other words, the expected sum of the counts for live levels is bounded by a
constant.
To handle the dead-end levels, we begin by noting that (3.8) also implies that for

all N and all α > 1,

P
[
cψ(XN) > αT

]
<
1

α
,

so if we take logarithms base c and set α = n2/T we get

P [ψ(XN) > 2 logc n] <
T

n2
. (3.10)

Say that a placement is a major uphill move if it increases ss(P) by more than
4 logc n + 1. By Observation 3.2(b) and (3.7), we know that whenever an item is
generated according to F and packed by SS, one option will be to start a new bin
with a live level and hence, no matter where the item is packed, the increase in
ss(P) will be bounded by 2ψ(XN) + 1. Using (3.10), we thus can conclude that at
any point in the packing process, the probability that the next placement is a major
uphill move is at most T/n2. Thus, in the process of packing n items, the expected
number of major uphill moves is at most T/n by the linearity of expectations.
Now let us consider the dead-end levels. Suppose the count for dead-end level h

is 2B(logc n+1) or greater and a bin b with level less than h receives an additional
item that brings its level up to h. We claim that bin b, in the process of attaining
this level from the time of its initial creation, must have at one time or another
experienced an item placement that was a major uphill move.
To see this, let us first recall the tie-ing rule used by SS when it must choose

between bins with a given level for packing the next item. Although the rule
chosen has no effect on the amount of waste created, our definition of SS specified
a particular rule, both so the algorithm would be completely defined and because
the particular rule chosen facilitates the bookkeeping needed for this proof. The
rule says that when choosing the bin of a given level h in which to place an item, we
always pick the bin which most recently attained level h. In other words, the bins
for each level will act as a stack, under the “last-in, first-out” rule. Now consider
the bin b mentioned above. In the process of reaching level h, it received less than
B items, so it changed levels fewer than B times. Note also that by our tie-breaking
rule above, we know that every time the bin left a level, that level had the same
count that it had when the bin arrived at the level. Thus at least one of the steps
in packing bin b must have involved a jump from a level i to a level j such that
NP (j) ≥ NP (i) + 2(logc n + 1). By Lemma 1.2 this means that the move caused
ss(P) to increase by at least 4(logc n+1)+ 1 > 4 logc n+1 and hence was a major

Journal of the ACM, Vol. V, No. N, Month 20YY.

20 · J. CSIRIK ET AL.

uphill move. We conclude that

E

[∑
h∈DF

(Xn,h − 2B(logc n+ 1))
]

≤
∑
h∈DF

E
[(
(Xn,h − 2B(logc n+ 1)) : Xn,h > 2B(logc n+ 1)

)]

≤ E [Number of major uphill moves] ≤ T

n

and consequently

E

[∑
h∈DF

Xn,h

]
< 2B2(logc n+ 1) +

T

n
= O(log n) (3.11)

for fixed F . Combining (3.9) with (3.11), we conclude that

EWSSn (F) < E

[∑
h∈DF

Xn,h

]
+ E

[∑
h∈LF

Xn,h

]
= O(log n).

Thus all that remains is to exhibit a potential function ψ that obeys (3.7)
and the three hypotheses of Hajek’s Lemma. Our previous potential function
φ(x̄) =

√
τL(x̄) + τD(x̄) obeys (3.7) and the Initial Bound and Bounded Variation

Hypotheses. Unfortunately, it does not obey the Expected Decrease Hypothesis for
all bounded waste distributions F with multiply-occurring dead-end levels. There
can exist realizable packings in which the count for the largest dead-end level is
arbitrarily large (and hence so is φ(x̄)), and yet any item with size in UF will cause
φ(x̄) to increase. One can avoid such obstacles by taking instead the potential
function ψ to be

√
τL(x̄), the variant on φ that simply ignores the dead-end level

counts. Unfortunately, this function also fails to obey the Expected Decrease Hy-
pothesis, albeit for a different reason. There are relevant situations in which any
item with a size in UF will either cause an increase in τL(x̄) or else go in a bin with
a dead-end level and thus leave τL(x̄) unchanged.
Thus our potential function must somehow deal with the effects of items going

into dead-end level bins. Let us say that a profile x̄′ is constructible from a profile
x̄ under F if there is a way of adding items with sizes in UF to dead-end level bins
of a packing with profile x̄ so that a packing with profile x̄′ results. Let

τ0(x̄) = min{τD(x̄′) : x̄′ is constructible from x̄ under F}. (3.12)

Note for future reference that τ0(x̄) can never decrease as items are added to the
packing. Now let

rD(x̄) = τD(x̄)− τ0(x̄). (3.13)

Thus rD(x̄) is the amount by which we can reduce τD(x̄) by adding items with sizes
in UF into bins with dead-end levels. Our new potential function is

ψ(x̄) =
√
τL(x̄) + rD(x̄). (3.14)

Note that since we must always have rD(x̄) ≥ 0, we have ψ(x̄) ≥
√
τL(x̄) and so

(3.7) holds for ψ. It remains to be shown that Hajek’s Lemma applies to ψ. This

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 21

is significantly more difficult than showing it applies to φ when F has no dead-end
levels.
First we prove a technical lemma that will help us understand the intricacies of

the rD(x̄) part of our potential function ψ. Recall that if rD(x̄) = t, then there is
some list L of items with sizes in UF that we can add to the dead-end level bins of
a packing with profile x̄ to get to one with a profile ȳ such that τD(ȳ) = τD(x̄)− t,
and no such list of items can yield a profile ȳ′ with τD(ȳ′) < τD(x̄) − t. In what
follows, we will use an equivalent graph-theoretic formulation based on the following
definition.

Definition 3.12. A reduction graph G for F is a directed multigraph whose
vertices are the dead-end levels for F and for which each arc (h, i) is such that i−h
can be decomposed into a sum of item sizes from UF . Such a graph G is applicable
to a profile x̄ if outdegreeG(i) ≤ xi for all dead-end levels i. The profile G[x̄] derived
from applying G to x̄ is the vector ȳ that has yi = xi+indegreeG(i)−outdegreeG(i)
for all dead-end levels and yi = xi for all live levels. We say that G verifies t for x̄
if τD(x̄)− τD(G[x̄]) ≥ t.
Note that rD(x̄) equals the maximum t verified for x̄ by some applicable reduction

graph G. The list L corresponding to G, i.e., the one that can be added to x̄ to
obtain G[x̄], is a union of sets of items of total size i− h for each arc (h, i) in G.
Lemma 3.13. Let G be a reduction graph with the minimum possible number of
arcs that verifies rD(x̄) for x̄. Then the following three properties hold:

(i) No vertex in G has both a positive indegree and a positive outdegree.

(ii) Suppose that the arcs of G are ordered arbitrarily as a1, a2, . . . , am, that we
inductively define a sequence of profiles ȳ[0] = x̄, ȳ[1], . . . ȳ[m] by saying that
ȳ[i] is derived by applying the graph consisting of the single arc ai to ȳ[i − 1],
1 ≤ i ≤ m, and that we define ∆[i] = τD(ȳ[i− 1])− τD(ȳ[i]), 1 ≤ i ≤ m. Then

m∑
i=1

∆[i] = rD(x̄) and (3.15)

∆[i] > 0, 1 ≤ i ≤ m. (3.16)

(iii) G contains fewer than ψ(x̄) copies of any arc (h, i).

Proof. If (i) did not hold, there would be a pair of arcs (h, i) and (i, j) in G
for some h, i, j. But note that then the graph G′ with these two arcs replaced by
(h, j) would also verify rD(x̄) for x̄, and would have one less arc, contradicting our
minimality assumption.
For (ii), equality (3.15) follows from a collapsing sum argument and the fact that

ȳ[m] = G[x̄]. The proof of (3.16) is a bit more involved. Suppose there were some
k such that ∆[k] ≤ 0. We shall show how this leads to a contradiction. Consider
the result of deleting arc ak = (h, j) from G, thus obtaining new graph G

′ and new
sequences ȳ[i]′ and ∆[i]′, 1 ≤ i ≤ m − 1. We will show that G′ also verifies rD(x̄)
for x̄, contradicting our minimality assumption.
Note that ȳ[i]′ = ȳ[i], 1 ≤ i < k, and hence ∆[i]′ = ∆[i] for 1 ≤ i < k.

Thereafter the only difference between ȳ[i] and ȳ[i]′ is that y[i]′h = y[i + 1]h + 1
Journal of the ACM, Vol. V, No. N, Month 20YY.

22 · J. CSIRIK ET AL.

and y[i]′j = y[i + 1]j − 1. Suppose i ≥ k and that ai = (r, q). Note that by (i),
r �= j and q �= h. Thus we have y[i]′r ≥ y[i+ 1]r and y[i]′q ≤ y[i+ 1]q. We can now
apply Lemma 1.2 to bound ∆[i]′. Note first that ∆[i] as defined is −1 times the
quantity evaluated in that lemma, and the second case of the lemma applies here
since neither of the dead-end levels q and r can be 0 or B. The lemma thus says
that ∆[i]′ = −(2d+ 2), where d here equals y[i]′q − y[i]′r. Hence we have

∆[i]′ = 2
(
y[i]′r − y[i]′q − 1

) ≥ 2 (y[i+ 1]r − y[i+ 1]q − 1) = ∆[i+ 1].
Thus we have by (3.15)

m−1∑
i=1

∆[i]′ ≥
m∑
i=1

∆[i]−∆[k] ≥
m∑
i=1

∆[i] = rD(x̄),

and so G′ verifies rD(x̄) for x̄. Since G′ has one less arc than G, this violates our
assumption about the minimality of G and so yields our desired contradiction, thus
proving (3.16).
Finally, let us consider (iii). Suppose there were ψ(x̄) copies of some arc (h, i)

in G. By (ii) we may assume that these are arcs a1, a2, . . . , aψ(x̄), and that each
yields an improvement in τD. Thus when the last is applied, the count for level h
must have been at least 2 more than the count for level i, and inductively, when
arc aψ(x̄)+1−i was applied, the difference in counts had to be at least 2i. Now by
Lemma 1.2, if the count for level h exceeds that for level j by δ, then the decrease
in τD caused by applying the arc is 2δ − 2. Thus by (ii) we have

ψ(x̄)2 ≥ rD(x̄) ≥
ψ(x̄)∑
i=1

(4i− 2) = 2ψ(x̄)2,

a contradiction. Thus (iii) and Lemma 3.13 have been proved. �

Now let us turn to showing that Hajek’s Lemma applies when ψ plays the role
of φ. Since the initial state is the empty packing, for which ψ(x̄) = 0, the Initial
Bound Hypothesis is trivially satisfied. For the Bounded Variation Hypothesis we
must show that there is a fixed bound ∆ on |ψ(x̄′)− ψ(x̄)|, where x̄ is any profile
that can occur with positive probability in an SS packing under F and x̄′ is any
profile that can be obtained by adding an item with size s ∈ UF to a packing with
profile x̄ using SS. We will show this for ∆ = 10B. We may assume without loss
of generality that B ≥ 2, as otherwise EWSSn (F) = 0 for all n.
There are two cases, depending on whether ψ(x̄′) ≥ ψ(x̄). First suppose ψ(x̄′) ≥

ψ(x̄). By Lemma 3.6 it suffices to prove that ψ(x̄′)2−ψ(x̄)2 ≤ 2∆ψ(x̄) = 20Bψ(x̄).
By Observation 3.2(b) we know that s is not a dead-end level and hence by (3.7)
xs ≤ ψ(x̄). Thus by the operation of SS and the fact that τ0(x̄) cannot decrease,
the increase in ψ(x̄)2 is at most (xs + 1)

2 − x2s = 2xs + 1. If xs = 0, this is clearly
less than 10B. Otherwise, we have 2xs + 1 ≤ 3xs ≤ 3ψ(x̄) ≤ 20Bψ(x̄), as desired.
Suppose on the other hand that ψ(x̄′) < ψ(x̄), a significantly more difficult case.

We need to show that ψ(x̄) − ψ(x̄′) ≤ ∆ = 10B. Lemma 3.6 again applies, but
now requires that we show ψ(x̄)2−ψ(x̄′)2 ≤ 2∆ψ(x̄′), where the bound is in terms
of the resulting profile x̄′ rather than the initial one x̄. To simplify matters, we
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 23

shall first show that the former is within a constant factor of the latter. This is
not true in general, but we may restrict attention to a case where it provably is
true. In particular we may assume without loss of generality that ψ(x̄) ≥ 10B,
since otherwise it is obvious that any placement will reduce ψ(x̄) by at most 10B.

Lemma 3.14. Suppose F is a bounded waste distribution with B ≥ 2, x̄ is a
profile with ψ(x̄) ≥ 10B, and x̄′ is the profile resulting from using SS to place an
item of size s ∈ UF into a packing with profile x̄. Then ψ(x̄′) ≥ ψ(x̄)/2.

Proof. By hypothesis, τL(x̄) + rD(x̄) ≥ 100B2. We break into cases depending
on the relative values of τL(x̄) and rD(x̄).
Suppose τL(x̄) ≥ rD(x̄), in which case τL(x̄) ≥ ψ(x̄)2/2 ≥ 50B2. If the new

item goes into a dead-end level bin, then τL(x̄) remains unchanged and ψ(x̄
′) ≥√

ψ(x̄)2/2 ≥ .707ψ(x̄) > ψ(x̄)/2. If on the other hand the new item goes into a bin
with a live level, say h, then τL(x̄) will decline by at most 2xh − 1.
We now break into two further subcases. If 2xh− 1 < τL(x̄)/2, then we will have

τL(x̄
′) > τL(x̄)/2 ≥ ψ(x̄)2/4 and so ψ(x̄′) >

√
ψ(x̄)2/4 = ψ(x̄)/2. If 2xh − 1 ≥

τL(x̄)/2, then xh > τL(x̄)/4 ≥ 12.5B2. But this means that

τL(x̄
′)

τL(x̄)
≥ (xh − 1)

2

x2h
≥
(
12.5B2 − 1)2
(12.5B2)

2 ≥
(
49

50

)2
≥ .96 .

Thus τL(x̄
′) ≥ .96τL(x̄) ≥ .48ψ(x̄)2 and ψ(x̄′) ≥

√
.48ψ(x̄)2 ≥ .69ψ(x̄) > ψ(x̄)/2.

Thus when τL(x̄) ≥ rD(x̄) we have ψ(x̄′) ≥ ψ(x̄)/2 in all cases.
Now suppose that τL(x̄) < rD(x̄), in which case rD(x̄) ≥ ψ(x̄)2/2 ≥ 50B2.

Consider the bin in which the new item is placed. If its new level is a live level,
then its original level must have been live as well. Thus rD(x̄) is unchanged, and
we have ψ(x̄′) ≥√ψ(x̄)2/2 ≥ .707ψ(x̄) > ψ(x̄)/2.
The only case remaining is when rD(x̄) ≥ ψ(x̄)2/2 ≥ 50B2 and the new item

increases the level of the bin that receives it to a dead-end level. Thus the count
for one dead-end level increases by 1. Let us denote this level by h+. If the item
was placed in a bin with a live level, that is the only change in the dead-end level
counts. Otherwise, an additional one of those counts (the one corresponding to the
original level of the bin into which the item was placed) will decrease by 1. Let h−

denote this level if it exists.
In the terms of Lemma 3.13, let G be a minimum-arc graph that verifies rD(x̄)

for x̄. Let G′ equal G if h− does not exist or if outdegreeG(h−) < xh− . Otherwise
let G′ be a graph obtained by deleting one of the out-arcs leaving h− in G. In
both cases, G will be applicable to x̄′. Order the arcs of G so that the deleted
arc (if it exists) comes last, preceded by all the other arcs out of h− (if any exist),
preceded by all the arcs into h+ that are not out of h− (if any exist), preceded by
all remaining arcs, and let the arcs of G′ occur in the same order as they do in G.
Let us now see what happens when we apply G′ to x̄′, and how this differs from
what happens when we apply G to x̄.
Let δ(a) be the decrease in τD due to the application of arc a when G is being

applied to x̄, and let δ′(a) be the decrease when G′ is applied to x̄′. By Lemma
Journal of the ACM, Vol. V, No. N, Month 20YY.

24 · J. CSIRIK ET AL.

3.13 and the definition of τ0 we have

rD(x̄) =
∑
a∈G
δ(a), (3.17)

rD(x̄
′) ≥

∑
a∈G′

δ′(a). (3.18)

Thus to complete the proof of Lemma 3.14, it will suffice to show that∑
a∈G′

δ′(a) ≥ c
∑
a∈G
δ(a) (3.19)

for an appropriate constant c.
Consider an arc a = (i, j) in G and let ni(a) and nj(a) (n

′
i(a) and n

′
j(a)) be the

corresponding level counts when a is applied during the course of applying G to x̄
(G′ to x̄′). By Lemma 1.2 and the fact that since i and j are dead-end levels neither
can be 0 or B, we have δ(a) = 2(ni(a)−nj(a))−2 and δ′(a) = 2(n′i(a)−n′j(a))−2.
Let h be one of i, j. Observe that if h /∈ {h+, h−}, then n′h(a) = nh(a), if h = h+

then n′h(a) = nh(a) + 1, and if h = h
− then n′h(a) = nh(a)− 1. Thus the only arcs

a = (i, j) for which δ′(a) < δ(a) are those with i = h−, j = h+, or both. If only
one of the two holds, then δ′(a) = δ(a)− 2. If both hold then δ′(a) = δ(a)− 4. As
a notational convenience, let A∗ denote the set of deleted arcs. (Note that A∗ will
either be empty or contain a single arc.) Then we have∑
a∈G′

δ′(a) ≥
∑
a∈G
δ(a)− 2 (indegreeG(h+) + outdegreeG(h−))− ∑

a∈A∗
δ(a), (3.20)

where outdegreeG(h
−) is taken by convention to be 0 if h− does not exist.

Let us deal with that last term first. If there is an arc a∗ = (i, j) in A∗ then by
our ordering of arcs in G it is the last arc. Suppose δ(a∗) = 2(ni(a)−nj(a))−2 > 4.
Then we ni(a)−nj(a) > 3. But this means that after the arc is applied we will have
NP (i) − NP (j) ≥ 2, and so it would be possible to apply an additional arc (i, j),
and this would further decrease τD by at least 2. But this contradicts our choice
of G as a graph whose application to x̄ yielded the maximum possible decrease in
τ(x̄). So we can conclude that

δ(a∗) ≤ 4 ≤ 2B. (3.21)

Now let us consider the rest of the right hand side of (3.20). Let M =
indegreeG(h

+) + outdegreeG(h
−). If M ≤ 10B, then∑

a∈G
δ(a)−

∑
a∈G′

δ′(a) ≤ 2M + 2B ≤ 22B ≤ .11ψ(x̄)2,

since by assumption ψ(x̄)2 ≥ 100B2 ≥ 200B. Thus by (3.17), (3.18), and our
assumption that rD(x̄) ≥ ψ(x̄)2/2,

rD(x̄
′) ≥ .39ψ(x̄)2,

and hence ψ(x̄′) ≥ .624ψ(x̄) > ψ(x̄)/2.
Thus we may assume that M > 10B. Let Ah denote the multiset of arcs in G

with i = h− or j = h+ or both, and let us say that a pair < i, j > of dead-end
levels is a valid pair if Ah contains at least one arc (i, j). Note that there can be at

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 25

most B− 1 valid pairs, since by Lemma 3.13 no vertex in G can have both positive
indegree and positive outdegree.
Suppose < i, j > is a valid pair and there are m copies of arc (i, j) in Ah. By

Lemma 3.13 each copy must decrease τD when it is applied, and so by Lemma 1.2
and the fact that i and j are dead-end levels, it must decrease by at least 2. If we
let the last copy of (i, j) in our defined order be a1, the next-to-last by a2, etc., we
will thus have δ(ak) ≥ 2, 1 ≤ k ≤ m. Moreover, since an application of an arc (i, j)
reduces NP (i) − NP (j) by 2, and since by Lemma 3.13 applications of other arcs
cannot increase NP (i) or decrease NP (j), we must in fact have δ(ak) ≥ δ(ak−1)+4,
1 ≤ k ≤ m. Thus

m∑
k=1

δ(ak) ≥
m∑
k=1

(4k − 2) = 2m2.

Since there can be at most B − 1 valid pairs, we thus have
∑
a∈Ah

δ(a) ≥ 2(B − 1)
⌊
M

B − 1
⌋2
> 2(B − 1)

(
M

B − 1 − 1
)2
>
2M2

B − 1 − 4M. (3.22)

Then by (3.20), (3.21), (3.22), and our assumption that M > 10B, we have∑
a∈G δ(a)−

∑
a∈G′ δ

′(a)∑
a∈G δ(a)

≤ 2M + 2B
2M2

B−1 − 4M
=
1 + B

M
M
B−1 − 2

(3.23)

≤ 1.1(B − 1)
M − 2B + 2 ≤

1.1(B − 1)
8B + 2

≤ 1.1
8
≤ .1375 .

Thus by (3.17) and (3.18) and our assumption that rD(x̄) ≥ ψ(x̄)/2, we have
rD(x̄

′) > .86rD(x̄) > .43ψ(x̄)2

and hence ψ(x̄′) ≥ √rD(x̄′) > .65ψ(x̄) > ψ(x̄)/2. Thus in all cases we have
ψ(x̄′) ≥ ψ(x̄)/2 and Lemma 3.14 is proved. �
Returning to the proof that Hajek’s Lemma applies, recall that we are in the

midst of proving that the Bounded Variation Hypothesis holds, and are left with
the task of showing that ψ(x̄) − ψ(x̄′) ≤ 10B in the case where ψ(x̄′) < ψ(x̄). By
Lemma 3.6 it will suffice to show that ψ(x̄)2−ψ(x̄′)2 ≤ 20Bψ(x̄′) when ψ(x̄) ≥ 10B,
which by Lemma 3.14 will follow if we can show that

ψ(x̄)2 − ψ(x̄′)2 ≤ 10Bψ(x̄). (3.24)

We divide the difference ψ(x̄)2 − ψ(x̄′)2 into two parts that we will treat sepa-
rately: τL(x̄)− τL(x̄′) and rD(x̄)− rD(x̄′).
We begin by bounding the first part. If the item being packed goes in an empty

bin, then a live level gets increased and no dead-end level is changed, so ψ(x̄)
increases, contrary to hypothesis. If the item being packed goes into a bin with a
dead-end level, then τL(x̄) remains unchanged. If the item goes into a bin with a
live level h, then by (3.7) we have that xh ≤ ψ(x̄), so by Lemma 1.2 the decrease in
τL is at most 2xh−1 < 2ψ(x̄) ≤ Bψ(x̄). Thus to prove (3.24) it will suffice to prove
that rD(x̄)−rD(x̄′) ≤ 9Bψ(x̄). We will in fact show that rD(x̄)−rD(x̄′) ≤ 3Bψ(x̄).

Journal of the ACM, Vol. V, No. N, Month 20YY.

26 · J. CSIRIK ET AL.

To bound this second difference, note first that the hypotheses of Lemma 3.14
hold. So as in the proof of that Lemma, let G be a graph that verifies rD(x̄). If the
placement of the item changes no dead-end level counts, there is nothing to prove,
so we again may assume that there is a dead-end level h+ that increases by 1 and
(possibly) a dead-end level h− that decreases by 1. As in the proof of the Lemma
we have

rD(x̄)− rD(x̄′) ≤ 2
(
indegreeG(h

+) + outdegreeG(h
−)
)
+ 2B, (3.25)

where by convention outdegreeG(h
−) is taken to be 0 if h− does not exist.

Also, as in the proof of Lemma 3.14, there are at most B−1 distinct pairs < i, j >
such that (i, j) is an arc of G and i = h−, j = h+, or both. But then by Lemma
3.13(iii) we have fewer than ψ(x̄) copies of each. Given that arcs (h−, h+) will be
double counted in indegreeG(h

+) + outdegreeG(h
−), we thus have

indegreeG(h
+) + outdegreeG(h

−) < Bψ(x̄).

Combining this with (3.25) we conclude that

rD(x̄)− rD(x̄′) ≤ 2Bψ(x̄) + 2B ≤ 2Bψ(x̄) + 2ψ(x̄)/10 < 3Bψ(x̄).
We thus conclude (3.24) holds and hence so does the Bounded Variation Hypothesis.

To complete the proof that Hajek’s Lemma applies, all that remains is to show
that the Expected Decrease Hypothesis holds. Essentially the same proof that was
used when there were no multiply-occurring dead-end levels will work, except that
Lemma 3.7 needs to be modified to account for the possibility of such levels and
we need to show that both it and Lemma 2.2 hold for ψ(x̄)2.
This is straightforward for Lemma 2.2, which essentially says that assuming F

is a perfectly packable distribution, the expected increase in φ(x̄)2 that can result
from using SS to pack an item generated according to F is less than 2. This will
hold for ψ(x̄)2 as well since by definition

ψ(x̄)2 = τL(x̄) + rD(x̄)

= τL(x̄) + τD(x̄)− τ0(x̄)
= φ(x̄)2 − τ0(x̄),

and by definition τ0(x̄) can never decrease.
As to Lemma 3.7, we need only modify it by increasing the two key constants

involved. The precise values of these constants are not relevant to satisfying the
Expected Decrease Hypothesis. In particular, we can prove the following variant
on Lemma 3.7.

Lemma 3.15. Let F be a bounded waste distribution and let P be any packing
that can be created by applying SS to a list of items all of whose sizes are in UF .
If x̄ is the profile of P and ψ(x̄) > 8B2, then there is a size s ∈ UF such that if an
item of size s is packed by SS into P , the resulting profile x̄′ satisfies

ψ(x̄′)2 ≤ ψ(x̄)2 − ψ(x̄)
4B2

.

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 27

Proof. Since τ0(x̄) can never decrease and ψ(x̄)
2 = τL(x̄) + τD(x̄)− τ0(x̄), the

result will follow if we can show that there exists an item size s such that if an item
of size s is packed by SS, ss(P) = τL(x̄)+τD(x̄) will decline by at least ψ(x̄)/(4B

2).
Suppose τL(x̄) ≥ ψ(x̄)2/2. Then as in the argument used in the proof of Lemma

3.7 there has to be a live level h with xh ≥
√
τL(x̄)/B ≥ ψ(x̄)/(

√
2B) and hence a

size s that will cause ss(P) to decline by at least

2
(xh
B
− 1
)
≥ 2 ψ(x̄)√

2B3/2
− 2 > ψ(x̄) + 8B

2

√
2B3/2

− 2 > ψ(x̄)√
2B3/2

>
ψ(x̄)

4B2
.

Suppose on the other hand that τL(x̄) < ψ(x̄)
2/2. In this case we must have

rD(x̄) > ψ(x̄)
2/2. Let G be a minimum-arc reduction graph that verifies rD(x̄) ≥

ψ(x̄)2/2, and suppose G contains m arcs, ordered as a1, a2, . . . , am. By Lemma
3.13(i),(iii), we know that m < (B−1)ψ(x̄). Thus by Lemma 3.13(ii) we know that
for some i, 1 ≤ i ≤ m,

∆[i] ≥ rD(x̄)
m

>
ψ(x̄)2

2m
>
ψ(x̄)2

2Bψ(x̄)
=
ψ(x̄)

2B
,

where ∆[i] is defined to be the reduction in τD when the arc ai is applied to the
intermediate profile ȳ[i − 1], created by the application of earlier arcs in sequence
to x̄. Suppose arc ai = (h, j). Now by Lemma 3.13(i), the fact that h is the source
of arc ai means that it cannot have been a sink of a previous arc, so we must have
y[i− 1]h ≤ xh. Similarly the fact that j is the sink of arc ai means that it cannot
be the source of any previous arc, so y[i− 1]j ≥ xj . But then the reduction in τD
that would be obtained if ai were applied directly to x̄, i.e., if an item of size j − h
is placed in a bin of level h, is by Lemma 1.2

2(xh − xj − 1) ≥ 2(y[i− 1]h − y[i− 1]j − 1) = ∆[i] > ψ(x̄)
2B
.

Unfortunately, there may not be an item of size j − h in UF . Lemma 3.13 only
insures that there is a collection of items with sizes in UF whose total size is j − h.
But note that this collection can contain at most B items and that from the above
we have xh − xj > ψ(x̄)/(4B). Thus, as in the argument used in the proof of
Lemma 3.7 and above, there must be a size s ∈ UF that will cause τD(x̄) and hence
ss(P) to decline by at least

2

(
ψ(x̄)

4B2
− 1
)
≥ ψ(x̄) + 8B

2

4B2
− 2 = ψ(x̄)

4B2
. �

The remainder of the proof that Expected Decrease Hypothesis is satisfied by
ψ(x̄) proceeds just as the proof for φ(x̄) did when there were no multiply-occurring
dead-end levels. Thus Hajek’s Lemma applies and the upper bound of Theorem
3.11 is proved. �

3.3.2 Proof of the Ω(logn) Lower Bound. We begin the proof with a sequence
of lemmas.

Lemma 3.16. Suppose s is a divisor of the bin size B. Then if an item of size s
is placed into a packing P using SS, the value of ss(P) can increase by at most 1.

Journal of the ACM, Vol. V, No. N, Month 20YY.

28 · J. CSIRIK ET AL.

Proof. All we need show is that there is some way of placing an item of size
s so that ss(P) increases by 1 or less, which will imply that SS must choose a
placement that does no worse. If s = B then placing an item of size s has no
effect on ss(P), so assume s < B. If there is no bin of level s, then starting a
new bin with an item of size s will increase ss(P) by 1, so assume NP (s) > 0 and
let hs = max{h : s|h and NP (h) > 0}. If hs = B − s, then placing our item in a
bin with this level will decrease ss(P), so assume hs ≤ B − 2s. By Lemma 1.2,
placing an item of size s in one of the bins with level hs increases ss(P) by at most
2(NP (hs + s) − NP (hs)) + 2 ≤ 0. Thus in every case there is a way to increase
ss(P) by 1 or less, as required. �

Let us say that a level h is divisible for F if any set of items with sizes in UF
that has total size h can contain only items whose sizes are divisors of B.

Lemma 3.17. If h is a multiply-occurring dead-end level for F then h is not
divisible for F .

Proof. LetH be the set of all levels i, 1 ≤ i ≤ B−1, that are divisible for F and
assume, for the sake of contradiction, that h ∈ H. Since h is a multiply-occurring
dead-end level for F , there is some list L that under SS yields a packing containing
at least two bins with level h. Consider the first time during the packing of L that
a level i ∈ H had its count NP (i) increase from 1 to 2, and let s be the size of
the item x whose placement caused this to happen. By definition of divisible level,
s must be a divisor of B, and so by Lemma 3.16, the placement of x can have
increased ss(P) by at most 1. But this is impossible: If i = s then the insertion of
x would have increased ss(P) by 22 − 12 = 3. On the other hand, suppose i > s.
Since i is a divisible level, so is i − s. Thus NP (i − s) = NP (i) = 1 just before x
was packed: Neither count can exceed 1 by our choice of i, the latter must be 1 if
it is to increase to 2 after the placement of x, and the former must be 1 since x
can only create a bin with level i if there is a bin of level i− s into which it can be
placed. However, this means that ss(P) increases by 2, contradicting Lemma 3.16.
So h /∈ H, as desired. �
Lemma 3.18. Suppose s is an item size that does not evenly divide the bin ca-
pacity B and we are asked to pack an arbitrarily long sequence of items of size s
using SS. Let di = is, 0 ≤ i ≤ �B/s�. For all m > 0, the packing in existence just
before the first time NP (d1) > m must have NP (di) = mi for every di.

Proof. Let us say thatmi is the target for level di. We first show that it must be
the case that NP (di) is no more than its target, 1 < i ≤ �B/s�, so long as NP (d1)
has never yet exceeded its target. Suppose not, and consider the packing just before
the first one of these counts, say NP (di), exceeded its target. In this packing we
must have NP (di) = mi. Let ∆h = NP (dh) − NP (dh−1), 1 ≤ h ≤ �B/s�, where
by convention NP (0) = 0 and so ∆1 = NP (d1). Now note that if ∆i ≥ ∆1, then,
by Lemma 1.2, starting a new bin will cause ss(P) to increase by less that placing
an item of size s in a bin with level di+1. Since ∆1 by hypothesis is m or less,
this implies that ∆i ≤ m − 1. But then we must have NP (di−1) ≥ (i − 1)m + 1,
contradicting our assumption that level di was the first to have its count exceed its
target.

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 29

For the lower bound, note that in the packing just before NP (d1) first exceeds
m, it must be the case that ∆1 = NP (d1) = m. Since this was the preferred move
under SS, it must be the case by Lemma 1.2 that ∆i ≥ m, 2 ≤ i ≤ �B/s�. The
result follows. �

Lemma 3.19. Suppose F is a fixed discrete distribution with at least one
multiply-occurring dead-end level h and H is a positive constant. Then there is
a list LH of length O(H) consisting solely of items with sizes in UF , such that the
packing resulting from using SS to pack LH contains at least H bins with level h.

Proof. By Lemma 3.17 there must be a set S = {x0, x1, . . . , xt} of items with
sizes in UF whose total size is h, and for which s(x0) is not a divisor of B. Let us also
arrange the indexing so that all items of any given size appear contiguously in the
sequence s(x0), s(x1), . . . , s(xt). Note that we may assume that s(xi) ≥ 2, 0 ≤ i ≤ t,
since if 1 were in UF there could be no dead-end levels. Let hi =

∑i
j=0 s(xj),

0 ≤ i ≤ t. Note that ht = h. Further, let k = �B/s(x0)�.
Our list LH will consist of a sequence of t+1 (possibly empty) segments, the first

of which (Segment 0) consists of H3t
∑k
i=1 i

2 = H3tk(k+1)(2k+1)/6 items of size
s(x0). In the packing P obtained by using SS to pack these items, we will have
by Lemma 3.18 that level i · s0 will have count iH3t, 1 ≤ i ≤ k, and in particular
level h0 = s(x0) will have count H3

t. In what follows we use “P” generically to
denote the current packing. Note that after Segment 0 has been packed, P contains
H3t

∑k
i=1 i = H3

tk(k + 1)/2 partially filled bins.
Segment 1 consists of the shortest possible sequence of items of size s(x1) that,

when added to P using SS, will cause the count for level h1 = s(x0) + s(x1) to
equal or exceed H3t−1. A sequence of this sort must exist for the following reasons:
If NP (h1) is itself H3

t−1 or greater, as for instance it would be if s(x1) = s(x0),
then the empty segment will do. Otherwise, suppose NP (h1) < H3

t−1. So long as
NP (h0) ≥ 2H3t−1 and NP (h1) < H3t−1, placing an item of size s(x1) in a bin with
level h0 would cause a greater reduction in ss(P) than placing it in a bin of level
h1 could, and so would be the preferred move. Since we can place H3

t−1 items in
bins of level h0 before NP (h0) ≤ 2H3t−1, and each such placement would increase
NP (h1) by 1, this means we will eventually have placed enough to increase NP (h1)
to the desired target. Note that we will eventually be forced to place items in bins
of level h0 rather than some level other than h0 or h1, since the existence of moves
that decrease ss(P) means that no new bins are being created.
We complete our argument by induction. In general, we start Segment j, 2 ≤ j ≤

t with a packing in which NP (hj−1) ≥ H3t−j+1 and no new bins have been created
since Segment 0. The segment then consists of the shortest possible sequence of
items of size s(xj) that will cause the count for level hj = hj−1 + s(xj) to equal or
exceed H3t−j. An argument analogous to that for Segment 1 says that this must
eventually occur without any additional bins being started. Thus at the end of
Phase t we have H bins with level ht = h. Given that all the s(xj) are 2 or greater
and no new bins were started after Segment 0, the total number of items in our
overall list LH is at most

H3tk(k + 1)

2
· B
2
< B33BH = O(H)

Journal of the ACM, Vol. V, No. N, Month 20YY.

30 · J. CSIRIK ET AL.

for fixed F , as required. �

For future reference, note that since all the s(xj) are 2 or greater, the number of
segments in LH is no more than B/2.

Lemma 3.20. Suppose P and Q are two packings for which

|P −Q| ≡
B−1∑
h=1

|NP (h)−NQ(h)| =M

and L is a list consisting entirely of items of the same size s ≥ 2. Then the packings
P ′ and Q′ resulting from using SS to pack L into P and Q satisfy |P ′−Q′| ≤ BM.
Proof. We prove the lemma for the special case of M = 1. The general result

then follows by introducing a sequence of packings P = R0, R1, . . . , RM = Q with
|Ri − Ri−1| = 1, 1 ≤ i ≤ M , and applying the M = 1 case to each such pair. So
assume |P −Q| = 1.
Let g denote the level that has different counts under P and Q and suppose

without loss of generality that NP (g) = NQ(g) + 1. Let Pi and Qi denote the
packings that result after the first i items of L have been packed into P and Q
respectively. We will say that a triple (i, j, �), 0 ≤ i, j ≤ |L| and 0 ≤ � ≤ B, is a
compatible triple if either

(1) Pi = Qj and � ∈ {0, B}, or
(2) |Pi −Qj | = 1, and � is the unique bin level such that 1 ≤ � ≤ B − 1, NPj (�) =
NQi(�) + 1.

Note that by this definition (0, 0, g) is a compatible triple.

Claim 3.21. If (i, j, �) is a compatible triple with i, j < |L| then one of the
following three triples must also be compatible:

(i+ 1, j + 1, �), (i+ 1, j, �+ s), (i, j + 1, �− s).
Proof of Claim. Consider the packings Pi and Qj . Suppose SS would place

an item of size s in bins with the same level in both Pi and Qj . Then the same
bins counts would be changed in the same way for Pi and Qj and so (i+1, j+1, �)
would be a compatible triple.
Otherwise suppose SS would place an item of size s in bin hP for Pi and in hQ

for Qj , with hP �= hQ. In this case Pi and Qj must be different, and we are in case
2 of compatibility. Let ∆Q(h) (resp. ∆P (h)) denote the net reduction in the sum
of squares if an item of size s is placed in a bin of level h in Qj (resp. Pi), assuming
such a placement is legal. Since the bin counts NPi(h) and NQj (h) are equal for
every h other than �, it follows that ∆P (h) = ∆Q(h) for all h’s other than � and
�− s. Since SS makes different choices for Pi and for Qj, it must be that at least
one of hQ, hP is either � or � − s. We now show that hP = � or hQ = � − s by
showing that the other two options are impossible.
By hypothesis we have NPi(�) = NQj (�) + 1 and all other counts are equal, so

∆P (� − s) < ∆Q(� − s) (if � − s ≥ 0), ∆P (�) > ∆Q(�) (if � + s ≤ B), and for
all other values of h, ∆P (h) = ∆Q(h). Suppose hP = � − s. Then we must have
∆Q(� − s) > ∆P (� − s) ≥ ∆P (h) for all h �= � − s. But ∆Q(h) = ∆P (h) for
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 31

all h /∈ {� − s, �} and ∆Q(�) < ∆P (�). Thus we must have hQ = � − s = hP
contradicting our assumption that they are unequal. Similarly, if hQ = � then we
must have hP = �, again a contradiction. Thus either hP = � or hQ = �− s.
In the first case, hP = �, we must have � + s ≤ B. Packing an item of size s

into a bin with level � in Pi reduces NPi(�) by 1, so that NPi+1(�) = NQj (�). If
�+ s = B, i.e., we fill up a bin, then |Pi+1−Qj| = 0, and so (i+1, j, �+ s = B) is a
compatible triple. If �+ s < B then NPi(�+ s) will increase by 1 and we will have
NPi+1(�+ s) = NPi(�+ s) + 1 = NQj (�+ s) + 1, while all other levels now have the
same counts. Thus (i+ 1, j, �+ s) is again a compatible triple.
In the second case, hQ = �− s, we must have �− s ≥ 0. Packing an item of size s

into a bin with level �−s in Qj increases NQj (�) by 1, so that NPi(�) = NQj+1(�). If
�−s = 0, i.e. we pack s into a new bin, then |Pi−Qj+1| = 0, and so (i, j+1, �−s = 0)
is a compatible triple. If �− s > 0 then NQj (�− s) will decrease by 1 and we will
have NQj+1(� − s) = NQj (� − s) − 1 = NPi(� − s) − 1, while all other levels now
have the same counts. Thus (i, j + 1, �− s) is again a compatible triple.
This completes the proof of the Claim. �

Given the Claim and the fact that (0, 0, g) is a compatible triple, we have by
induction that at least one of the three following scenarios must hold:

(1) (|L|, |L|, g) is a compatible triple, or
(2) There is an integer a, 1 ≤ a ≤ (B − g)/s such that (|L|, |L| − a, g + as) is a
compatible triple, or

(3) There is an integer b, 1 ≤ b ≤ g/s such that (|L|− b, |L|, g− bs) is a compatible
triple.

In the first case we have |P ′ − Q′| = 1, which clearly satisfies the Lemma’s
conclusion. In the second we have |P ′ −Q|L|−a| = 1, but to get Q′ from Q|L|−a we
will need to add a additional items of size s, and each addition will change one or two
level counts by 1. Since s ≥ 2 and g ≥ 1, we must have a ≤ (B− g)/s ≤ (B− 1)/2.
Thus we can conclude that |P ′ −Q′| ≤ 1 + B − 1 = B as desired. The third case
follows analogously, except now we use the fact that g ≤ B − 1, and the Lemma is
proved. �

Lemma 3.22. Suppose F is a fixed discrete distribution with at least one
multiply-occurring dead-end level and X is a positive constant. Then for any D > X
there is a list LX,D of length O(D) consisting solely of items with sizes in UF , such
that for any packing P with no live-level count exceeding X, the packing Q resulting
from using SS to add LX,D into P contains at least D bins with dead-end levels.

Proof. We may assume that P contains fewer than D bins with dead-end levels,
because the number of bins with dead-end levels can never decrease and if we already
had D such bins any list will do for LX,D. Let h be a multiply-occurring dead-end
level for F . For our list we simply let LX,D be the list LH derived for h using
Lemma 3.19, with H = (XB +D)BB/2 +D = O(D) for fixed F . By Lemma 3.19
the length of LH will be O(H) = O(D).
If P0 denotes the empty packing, we know by Lemma 3.19 that if SS is used

to pack LH into P0 it will create a packing P
′
0 with at least H bins having the

dead-end level h. Let P ′ denote the packing that would result if we used SS to add
Journal of the ACM, Vol. V, No. N, Month 20YY.

32 · J. CSIRIK ET AL.

LH to P . Note that |P −P0| =
∑B−1
i=1 NP (i) ≤ X(B−1)+D−1. Thus by applying

Lemma 3.20 once for each segment of LH and using the fact that LH contains no
more than B/2 segments, we have that |P ′−P ′0| ≤ BB/2(XB+D). But this means
that for dead-end level h we must have NP ′(h) ≥ H −BB/2(XB +D) = D and so
P ′ contains at least the desired number of bins with dead-end levels. �

Lemma 3.23. Let PN be the packing after N items generated according to F
have been packed by SS. There is a constant X, depending only on F , such that
for any N > 0

p[NPN (i) ≤ X for all live levels i] ≥
1

2
. (3.26)

Proof. Recall from the inequality (3.8) of the proof of the O(log n) upper bound
on the expected waste of SS that for any N > 0, if XN is the profile after packing
N items, then there are a constants c and T , depending only on F , such that

E
[
cψ(XN)

]
≤ T.

This means that

p
[
cψ(XN) > 2T

]
≤ 1
2

and hence that

p [ψ(XN) > logc(2T)] ≤
1

2
.

Since as we have repeatedly observed ψ(x̄) ≥ xh for every live level h, this in turn
means that the probability is at least 1/2 that no live level count exceeds logc(2T).
Thus the Lemma holds with X = logc(2T). �

We are now in a position to prove our Ω(logn) lower bound on EWSSn (F) when
F has multiply-occurring dead-end levels. Consider the lists LX,D specified by
Lemma 3.22 for the value of X given by Lemma 3.23, and let �D denote the length
of LX,D. Since the value of X depends only on F , Lemma 3.22 implies that there
is a constant d, depending only on F , such that for all D > X , �D < dD.
Now suppose we have a random list L of length dD of items generated ac-

cording to F . The probability that LX,D is a prefix of L is at least ε
�D , where

ε = min{pj : 1 ≤ j ≤ J}. Let a = log2(1/ε). Then the probability that LX,D is
not a prefix of L is at most (1− (1/2)adD).
Now consider a random list L∗ of length dD2adD, viewed as a sequence of 2adD

random segments of length dD. The probability that none of these segments has
LX,D as a prefix is (

1− 1

2adD

)2adD
<
1

e
<
1

2
.

In other words, the probability that at least one of these segments has LX,D as
a prefix exceeds 1/2. Consider the last segment that has LX,D as a prefix (should
any such segments exist), and the packing P that exists just before this copy of
LX,D is packed. Note that by choosing the last such segment, we do not condition

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 33

in any way the list that precedes this copy or the packing P . Hence by Lemma
3.23, with probability at least 1/2 the packing P has no live level count exceeding
X , and by Lemma 3.22, after the segment is added to the packing, the new packing
(and all subsequent ones) will contain at least D bins with dead-end levels. Thus
the expected number of bins with dead-end levels after all of L∗ is packed is at least
(1/2)(1/2)D = D/4 = Ω(log |L∗|). The lower bound follows. �

4. SS AND LINEAR WASTE DISTRIBUTIONS

The implication of Theorem 2.5 that ERSS∞ (F) = 1 for all perfectly packable dis-
tributions F unfortunately does not carry over to the case where EWOPTn = Θ(n).

Theorem 4.1. There exist distributions Fk, 1 ≤ k ≤ ∞, such that
lim sup
k→∞

ERSS∞ (Fk) = 1.5 .

Proof. Let Fk be the distribution in which the bin size is B = 2k + 1 and the
single item size 2 occurs with probability 1. Consider an n-item list Ln generated
according to Fk where n is divisible both by k and by

∑k
i=1 i

2 = k(k+1)(2k+1)/6.
Then OPT (Ln) = n/k and by Lemma 3.18, we have

SS(Ln) =

(
n∑k
i=1 i

2

)(
k∑
i=1

i

)
= n ·

(
k(k+1)
2

)
(
k(k+1)(2k+1)

6

) = 3n

2k + 1
.

Thus ERSS∞ (Fk), which is defined as a lim sup, equals 3k/(2k+1) and the Theorem
follows. �

We conjecture that 3/2 is the worst possible value for ERSS∞ (F) over all discrete
distributions F , although at present the best upper bound we can prove is 3, which
is implied by the following worst-case result.

Theorem 4.2. For all lists L, SS(L) ≤ 3s(L)/B� ≤ 3OPT (L).
Proof. Let x be the last item of size less than B/3 that starts a new bin and

let s be the size of x. (If no such x exists, then all bins are at least B/3 full in the
final packing and we are done.) Let P be the packing just before x was packed. It
is sufficient to show that the average bin content in the bins of P is at least B/3.
If that is so, then the packing of subsequent items cannot reduce the average bin
content in the bins not containing x to less than B/3. Consequently if m is the
final number of bins in the packing, we must have s(L)/B > (m− 1)/3 and hence
OPT (L) ≥ s(L)/B� ≥ m/3 and the theorem follows.
So let us show that the average bin content in the bins of P is at least B/3. For

1 ≤ j ≤ s, let �j be the greatest integer such that j + �js < B and let Ωj denote
the set of bins with contents j, j+s, . . . , j+ �js. Note that Ω1, . . . ,Ωs is a partition
of the bins of P into s sets, and if we can show that the average contents of the
bins in each nonempty Ωj is at least B/3, we will be done. Fix j and suppose k is
the least integer such that either NP (j + ks) > 0 or j + ks ≥ B/3. If j + ks ≥ B/3
then every bin in Ωj has contents at least B/3 and so Ωj behaves as desired. So
suppose j + ks < B/3, in which case we must have k ≤ �j − 2. Since SS places x

Journal of the ACM, Vol. V, No. N, Month 20YY.

34 · J. CSIRIK ET AL.

in a new bin, we must by Lemma 1.2 have

0 ≤ NP (s) ≤ NP (j + hs+ s)−NP (j + hs), h = k, . . . , �j − 1
and hence NP (j + ks) ≤ NP (j + ks+ s) ≤ · · · ≤ NP (j + �js). This means that if
we let t = j + ks the average contents of the bins in Ωj is at least

t+ (t+ s) + · · ·+ (t+ (�j − k)s)
�j − k + 1 =

t(�j − k + 1) + s(�j − k + 1)(�j − k)/2
�j − k + 1

= t+
(�j − k)s
2

= j + ks+
(�j − k)s
2

>
j + �js

2
≥ B − s

2
>
B

3
. �

Theorem 4.2 raises the question what the actual worst-case behavior of SS is. If
we define the asymptotic worst-case ratio RA∞ for an algorithm A to be

lim sup
n→∞

max

{
SS(L)

OPT (L)
: L is a list with OPT (L) = n

}

the theorem implies that RSS∞ ≤ 3. This bound has recently been lowered to
2.7777. . . [Csirik et al. 2005], but that is still a significantly worse asymptotic bound
than we have for the classic online heuristics as First Fit and Best Fit, both of which
have RA∞ = 1.7 [Johnson et al. 1974]. Moreover, although the upper bound on RSS∞
is not tight, SS is definitely worse than First and Best Fit in the above asymptotic
worst-case sense:

Theorem 4.3. RSS∞ ≥ 2.
Proof. This lower bound is proved by exhibiting lists Lm for each odd m > 0

satisfying OPT (Lm) = (m + 1)/2 and SS(Lm) = m. List Lm has bin size B =
2m+ 1 and consists of m items with the sizes 2m, 2m− 2, 2m− 4, . . ., 6, 4, 2, in
that order. SS will place each in a separate bin, whereas an optimal packing would
combine 2(m− i) with 2i, 1 ≤ i < m/2. �
Note that the above examples yield only one optimum value for each value of B

and so are not asymptotic for fixed B. If one defines

RA∞(B) = lim sup
n→∞

max

{
SS(L)

OPT (L)
: L is a list for bin size B with OPT (L) = n

}

then the we know of no examples for any fixed B that show that RSS∞ (B) exceeds
the lower bound of roughly 1.54 that van Vliet [1992] showed holds for all online
algorithms A.

5. IDENTIFYING PERFECTLY PACKABLE DISTRIBUTIONS

Given the observations of the previous section, it would be valuable to be able
to identify those distributions F that satisfy the hypotheses of Theorem 2.5, i.e.,
those for which EWOPTn (F) = O(

√
n) and hence ERSS∞ (F) = 1 is guaranteed. This

task is unfortunately NP-complete, as it would require us to solve the PARTITION

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 35

problem [Garey and Johnson 1979]. Fortunately, however, the problem is not NP-
complete in the strong sense, and as we shall now see, can be solved in time pseudo-
polynomial in B via linear programming, as was claimed but not proved in Csirik
et al. [1999].
Suppose our discrete distribution is as described above, with a bin capacity B,

integer item sizes s1, s2, . . . , sJ , and positive rational probabilities p1, p2, . . . , pJ .
Our linear program, which for future reference we shall call the “Waste LP for
F ,” will have JB variables v(j, h), 1 ≤ j ≤ J and 0 ≤ h ≤ B − 1, where v(j, h)
represents the rate at which items of size sj go into bins whose current level is h.
The constraints are:

v(j, h) ≥ 0, 1 ≤ j ≤ J, 0 ≤ h ≤ B − 1, (5.1)

v(j, h) = 0, 1 ≤ j ≤ J, sj > B − h, (5.2)

B−1∑
h=0

v(j, h) = pj , 1 ≤ j ≤ J, (5.3)

J∑
j=1

v(j, h) ≤
J∑
j=1

v(j, h− sj), 1 ≤ h ≤ B − 1. (5.4)

where by convention the value of v(j, h − sj) when h− sj < 0 is taken to be 0 for
all j. Constraints (5.2) say that no item can go into a bin that is too full to have
room for it. Constraints (5.3) say that all items must be packed. Constraints (5.4)
say that bins with a given level are created at least as fast as they disappear. The
goal is to minimize

c(F) ≡
B−1∑
h=1

⎛
⎝(B − h) ·

⎛
⎝ J∑
j=1

v(j, h− sj)−
J∑
j=1

v(j, h)

⎞
⎠
⎞
⎠ . (5.5)

Let ES(F) denote the expected item size
∑J
j=1 sjpj .

Lemma 5.1. Suppose F is a discrete distribution and let Ln(F) be a random
n-item list generated according to F .

(1) For all n > 0,

∣∣∣∣EWOPTn (F)− nc(F)
B

∣∣∣∣ ≤ O(√n).
(2) There exist constants b and N∗ such that for all n ≥ N∗

P
[∣∣∣OPT (Ln(F)) − n

B

(
ES(F) + c(F)

)∣∣∣ > bn2/3] ≤ 1

n1/6
.

This lemma, which we shall prove shortly, implies the following three results.

Theorem 5.2. Suppose F is a discrete distribution. Then

lim
n→∞

(
EWOPTn (F)

n

)
=
c(F)

B
.

Theorem 5.3. Suppose F is a discrete distribution. Then EWOPTn (F) =
O(
√
n) if and only if c(F) = 0.

Journal of the ACM, Vol. V, No. N, Month 20YY.

36 · J. CSIRIK ET AL.

Lemma 5.4. Suppose F is a discrete distribution and A is a (possibly random-
ized) bin packing algorithm for which A(L)/OPT (L) ≤ d for some fixed constant d
and all lists L. Then

ERA∞(F) =
ES(F) +B · lim supn→∞EWAn (F)/n

ES(F) + c(F)
.

Theorems 5.3 and 5.2 are immediate consequences of Claim 1 of Lemma 5.1.
Lemma 5.4 follows from Claim 2. Basically, it says that ERA∞(F), which is de-
fined in terms of expected ratios, can actually be computed in terms of ratios of
expectations. It follows because Claim 2 implies that we can divide the set of lists
L of length n generable according to F into two sets. For the first set, which has
cumulative probability 1− 1/n1/6, we have

E

[
A(L)

OPT (L)

]
=

(
nES(F) +B ·EWAn (F)
nES(F) + nc(F)

)(
1 +O

(
1

n1/3

))
. (5.6)

For the second set, which has cumulative probability 1/n1/6, E[A(L)/OPT (L)] ≤ d.
Thus this set contributes at most d/n1/6 to the overall expected ratio for Ln(F),
meaning that (5.6) holds with L replaced by Ln(F) and 1/n

1/3 replaced by 1/n1/6.
Lemma 5.4 follows. We now turn to the proof of Lemma 5.1.

Proof of Lemma 5.1. Consider the values v(j, h) of the variables in an optimal
basic solution to the LP. Since all the coefficients and right-hand sides of the LP
are rational, all these variable values must be rational as well, and there exists a
positive integer N such that Nv(j, h) is an integer, 1 ≤ j ≤ J and 0 ≤ h ≤ B − 1.
For each positive integer k, let Lk be a list consisting of k

∑B−1
h=0 Nv(j, h) items of

size sj , 1 ≤ j ≤ J . By (5.3) Lk will contain kNpj items of size sj for each j, for a
total of kN items. We will thus have s(Lk) = kN ·ES(F).
Note that we can construct a packing of Lk simply by following the instructions

provided by the variable values in the solution to the LP. That is, for each j, start
kNv(j, 0) bins by placing an item of size sj into an empty bin. By (5.4), the

number of bins of level 1 will now be at least
∑J
j=1 kNv(j, 1). Thus we can take

a set consisting of kNv(j, 1) items of size sj , 1 ≤ j ≤ J , and place each of these
items in a distinct bin with level 1. We can now proceed to pack bins of level 2,
and so on. Let Pk denote the resulting packing.
How many bins does this packing contain? A bin in Pk that has level h contains

items of total size h by definition, and in addition has a gap of size B − h. Thus
the total number of bins is simply the 1/B times the sum of the item sizes and the
sum of the gap sizes, that is

1

B

⎛
⎝kN · ES(F) + kN B−1∑

h=1

⎛
⎝(B − h) ·

⎛
⎝ J∑
j=1

v(j, h− sj)−
J∑
j=1

v(j, h)

⎞
⎠
⎞
⎠
⎞
⎠

and hence

|Pk| =
(
kN

B

)(
ES(F) + c(F)

)
. (5.7)

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 37

Note for future reference that since Pk has at least one item per bin, we have
|Pk| ≤ kN and hence (5.7) implies ES(F) + c(F) ≤ B and c(F) ≤ B − 1.
Now, since Lk is in essence the “expected value” of the random list LkN (F), we

can use the packings Pk as models for packing the random lists Ln(F), n > 0. We
proceed as follows: Let L be a specific list of n items generated according to F . Let
k ≥ 0 be such that kN ≤ n < (k + 1)N . Now note that the packing Pk has kNpj
“slots” for items of size sj , 1 ≤ j ≤ J , and L is expected to have between kNpj
and (k + 1)Npj such items. Let nj denote the number of items of size sj among
the first kN items of L and define

∆+j = max{0, nj − kNpj}, 1 ≤ j ≤ J,
∆−j = max{0, kNpj − nj}, 1 ≤ j ≤ J.

Thus ∆+j is the oversupply of items of size sj among the first kN items, ∆
−
j is the

shortfall, and
∑J
j=1∆

+
j =

∑J
j=1∆

−
j . Let Xn denote n−kN+

∑J
j=1∆

+
j . We claim

that ∣∣∣OPT (L)− n
B

(
ES(F) + c(F)

)∣∣∣ ≤ Xn. (5.8)

We first show that OPT (L) ≤ (n/B)(ES(F) + c(F)) + Xn: Starting with our
model packing Pk, place as many items of L into the appropriate slots as possible,
and then place the leftover items in additional bins, one per bin. The total number
of bins used will then be at most |Pk| plus the number of additional bins. This
number is at most the oversupply of items among the first kN of L, i.e.,

∑J
j=1∆

+
j ,

plus the number of items after the first kN in L that do not go into slots, which
can clearly be no more than n− kN . We thus have
OPT (L) ≤ |Pk|+Xn = kN

B

(
ES(F) + c(F)

)
+Xn ≤ n

B

(
ES(F) + c(F)

)
+Xn.

A slightly more complicated argument implies (n/B)(ES(F)+c(F)) ≤ OPT (L)+
Xn: First observe that the packing Pk defined above for Lk must be an optimal
packing for Lk. If not, i.e., if OPT (Lk) ≤ (kN/B)(ES(F) + c(F)), then we could
use an optimal packing for Lk to define a better solution to our LP, contradicting
our assumption that c(F) was the optimal solution value for the LP. Next observe
that if we are given a packing P for L, we can construct a closely related one for
Lk by a process of addition: For each of the at most

∑J
j=1∆

−
j =

∑J
j=1∆

+
j items

in Lk that do not have counterparts of the same size in Ln, we add a new bin to
P containing just that item. This new packing contains at least as many items of
each size as does Lk and so must contain at least OPT (Lk) bins. Thus we have

|Pk| = OPT (Lk) ≤ OPT (L) +
J∑
j=1

∆+j .

Now observe that by (5.7) we have

n

B

(
ES(F) + c(F)

)
≤ |Pk|+ n− kN

B

(
ES(F) + c(F)

)
≤ |Pk|+ n− kN

since as previously observed ES(F)+ c(F) ≤ B. Combining these last two inequal-
ities we obtain (n/B)(ES(F) + c(F)) ≤ OPT (L) +Xn as claimed.

Journal of the ACM, Vol. V, No. N, Month 20YY.

38 · J. CSIRIK ET AL.

Thus (5.8) holds, and our remaining task is to estimate Xn = n−kN+
∑J
j=1∆

+
j .

Since each nj is a sum of independent Bernoulli variables when considered by

itself, we have E[∆+j] ≤
√
kNpj(1− pj) <

√
kNpj . Given that

∑J
j=1

√
kNpj

is maximized when all the probabilities are equal, we have that E[
∑J
j=1∆

+
j] ≤

J
√
kN/J ≤ √nJ . Since J and N are constants, we thus have

E[Xn] = n− kN + E
⎡
⎣ J∑
j=1

∆+j

⎤
⎦ ≤ N +√nJ = O(√n). (5.9)

Claim 2 of the lemma now follows in straightforward fashion from (5.8) and
(5.9). That Claim 1 holds follows from these and the fact that EWOPTN (F) =
E[OPT (Ln(F))]− E[s(Ln(F))/B] and E[s(Ln(F))] = nES(F). �
Thus one can determine whether EWOPTn (F) is sublinear and, if it is not, com-

pute the constant of proportionality on the expected linear waste, all in the time
it takes to construct and solve the Waste LP for F . The worst-case time for this
process obeys the following time bound.

Theorem 5.5. Given a description of a discrete distribution F in which all
probabilities are presented as rational numbers with a common denominator D ≥ B,
the Waste LP for F can be constructed and solved in time

O
(
(JB)4.5 log2D

)
= O

(
B9 log2D

)
.

Proof. Given its straightforward description, the LP can clearly be constructed
in time proportional to its size, so construction time will be dominated by the time
to solve the LP. For that, the best algorithm currently available is that of Vaidya
[1989], whose running, expressed in bit operations, is O((M + N)1.5NL2), where
M is the larger of the number of variables and the number of constraints (the
latter including the “≥ 0” constraints), N is the smaller, and L is a measure of the
number of bits needed in the computation if all operations are to be performed in
exact arithmetic.
Our LP has JB variables and the number of constraints is Θ(JB). Thus for

our LP the running time is O((JB)2.5L2) = O(B5L2). To obtain a bound on
L, note that all coefficients in the constraints of the LP are 1, 0, or −1 and the
coefficients in the objective function are all O(B). The leaves the probabilities pj
to worry about. Note that we can determine c(F) by solving the LP with each pj
replaced by its numerator (the integer Dpj), and then dividing the answer by D.
If we proceed in this way, then all the “probabilities” are integers bounded by D.
Following the precise definition of L given in Vaidya [1989] we can then conclude
that L = O(JB logD), giving us the overall running time bound claimed. �

Although this running time bound is pseudopolynomial in B, it will be poly-
nomial if B is polynomially bounded in terms of J , which is true for many of
the distributions of interest in practice. Moreover, much better running times are
obtainable in practice by using commercial primal simplex codes rather than inte-
rior point techniques to solve the LP’s. See Applegate et al. [2003] which details
simplex-based methods that can be used to compute c(F) in reasonable time for
discrete distributions with J and B as large as 1,000 and 10,000, respectively.

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 39

In the remainder of this section, we will show how we can further distinguish
between the cases in which EWOPTn (F) = Θ(

√
n) and those in which EWOPTn (F) =

O(1). Our goal is to distinguish cases (a) and (b) in the Courcoubetis-Weber
theorem, as described in Section 2. Thus we need to determine, given that p̄F is
in ΛF , whether it is also in the interior of ΛF . Our approach is based on solving J
additional, related LP’s. The total running time will simply be J +1 times that for
solving the original LP, and so we will be able to determine whether EWOPTn (F) =
O(
√
n) and if so, which of the two cases hold, in total time O(J5.5B4.5 log2D) =

O(B10 log2D).
For each i, 1 ≤ i ≤ J , let xi ≥ 0 be a new variable and let LPi denote the linear

program obtained from the Waste LP for F by (a) changing the inequalities in (5.4)
to equalities, (b) replacing (5.3) by

B−1∑
h=0

v(i, h) = pi + xi,

B−1∑
h=0

v(j, h) = pj , 1 ≤ j ≤ J and j �= i, (5.10)

and (c) changing the optimization criterion to “maximize xi.” Let ci(F) denote
the optimal objective function value for LPi. Note that LPi is feasible for xi = 0
whenever c(F) = 0, so that ci(F) is always well-defined and non-negative in this
case.

Theorem 5.6. If F is a discrete distribution, then EWOPTn (F) = O(1) if and
only if c(F) = 0 and ci(F) > 0, 1 ≤ i ≤ J .
Proof. Combining the Courcoubetis-Weber Theorem with Theorem 5.3 we

know that for all discrete distributions F ,

p̄F ∈ ΛF if and only if c(F) = 0. (5.11)

Let q̄(i, β) denote the vector obtained from p̄F by setting qi = pi + β and qj =
pj , j �= i. By (5.11) and the construction of the linear programs LPi, it is easy
to see that q̄(i, β) is in ΛF if and only if LPi is feasible when xi = β. Thus by
convexity, q̄(i, β) is in ΛF if and only if 0 ≤ β ≤ ci(F).
Let us first suppose that the stated properties of c(F) and the ci(F) do not

hold. If c(F) �= 0, then p̄F is not even in ΛF , much less in its interior. So suppose
c(F) = 0 but ci(F) = 0 for some i, 1 ≤ i ≤ J . Then for any ε > 0 there is a vector
q̄ with |q̄ − p̄F | ≤ ε that is not in ΛF , namely q̄(i, ε). Thus by definition p̄F is not
in the interior of ΛF .
On the other hand, suppose c(F) = 0 and ci(F) > 0, 1 ≤ i ≤ J . To show that

p̄F is in the interior of ΛF , we make use of two elementary properties of such cones:

C1. If the vector ā = 〈a1, . . . , ad〉 is in a cone Λ, then so is the vector rā =
〈ra1, . . . , rad〉 for any r > 0.

C2. If vectors ā = 〈a1, . . . , ad〉 and b̄ = 〈b1, . . . , bd〉 are in Λ, then so is the vector
sum ā+ b̄ = 〈a1 + b1, . . . , ad + bd〉.

Journal of the ACM, Vol. V, No. N, Month 20YY.

40 · J. CSIRIK ET AL.

In other words, any positive linear combination of elements of the cone is itself
in the cone. Our proof works by showing that there is an ε such that any q̄ with
|p̄F−q̄| ≤ ε can be constructed out of a positive linear combination of vectors q̄(i, βi)
with 0 ≤ βi ≤ ci(F), 1 ≤ i ≤ J . We begin by defining a set of key quantities.

cmin = min{ci(F) : 1 ≤ i ≤ J},
pmax = max{pi : 1 ≤ i ≤ J},
pmin = min{pi : 1 ≤ i ≤ J},
δ = min

{
1

2
,
cmin

4Jpmax

}
,

ε = min

{
pmin

4
,
(cmin
8J

)(pmin
pmax

)}
.

Note that by hypothesis cmin > 0 and by definition all the pi are positive, so
pmin > 0. Hence δ and ε are also positive. Suppose q̄ = 〈q1, . . . , qJ〉 is any vector
with |p̄F − q̄| ≤ ε. We will show that q̄ can be constructed out of a positive linear
combination of vectors q̄(i, βi) as specified above.
Let εi = qi − (1 − δ)pi, 1 ≤ i ≤ J . We first observe that all the εi are positive.

This is clearly true for all i such that qi ≥ pi. Suppose qi < pi. If δ = 1/2 we have

εi = qi − pi + δpi ≥ δpi − ε ≥ pmin
2
− pmin
4
=
pmin

4
> 0. (5.12)

If on the other hand δ = cmin/(4Jpmax), then

εi ≥ δpi−ε ≥
(
cmin

4Jpmax

)
pmin−

(cmin
8J

)(pmin
pmax

)
=
(cmin
8J

)(pmin
pmax

)
> 0. (5.13)

We next observe that for each i, 1 ≤ i ≤ J ,

εi = qi − pi + δpi ≤ ε+ δpi ≤ cmin
8J
+
cmin

4Jpmax
pmax <

cmin

2J
. (5.14)

Now consider the vectors q̄(i, βi), where βi = Jεi/(1 − δ), 1 ≤ i ≤ J . By (5.12)
through (5.14) and the definition of δ, we have

0 < βi =
Jεi

1− δ ≤ 2J
(cmin
2J

)
= cmin,

and so all these vectors are in ΛF . Now consider the vector

r̄ = 〈r1, . . . , rJ 〉 = 1− δ
J

J∑
i=1

q̄(i, βi).

Since r̄ is a positive linear combination of vectors in ΛF , it is itself in ΛF by (C1)
and (C2). But now note that for 1 ≤ i ≤ J , we have

ri =

(
1− δ
J

)
(Jpi) +

(
1− δ
J

)(
Jεi

1− δ
)
= (1− δ)pi + εi = qi.

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 41

Thus q̄ = r̄ and the latter is in ΛF , as claimed. This implies that p̄F is in the
interior of Λ and the theorem is proved. �

6. HANDLING NON-PERFECTLY PACKABLE DISTRIBUTIONS

In this section we consider the case when EWOPTn (F) = Θ(n). As we saw in Section
4, we can have ERSS∞ (F) > 1 for such F . Fortunately, for each such F one can
design a distribution-specific variant on SS that performs much better. Note that
we may assume B > 1 since otherwise the packing problem is trivial.

Theorem 6.1. For any discrete distribution F with EWOPTn (F) = Θ(n), there
exists a randomized variant SSF of SS such that EW

SSF
n (F) = EWOPTn (F) +

O(
√
n) and hence ERSSF∞ (F) = 1 by Lemmas 5.1 and 5.4. This algorithm has

expected running time O(nB) and can itself be constructed in time polynomial in B
and the size of the description of F .

Proof. Algorithm SSF is based on the solution to the Waste LP for F , and
in particular on the optimal solution value c(F), which by Theorem 5.5 can be
computed in time polynomial in B and the size of the description of F . The
algorithm works by performing a series of steps, with new steps being taken so
long as an item in L remains to be packed. At each step we flip a biased coin and
according to the outcome proceed as follows.

(1) With probability 1/(1 + c(F)) we take the next item from L and pack it ac-
cording to SS.

(2) With probability c(F)/(1 + c(F)) we generate a new “imaginary” item of size
1 and pack it according to SS.

Let Gn denote the total size of the gaps in the packing of Ln(F) by this algorithm,
and let In denote the total size of the imaginary items in the packing. Then

EWSSFn (F) =
E[In] + E[Gn]

B
. (6.1)

It is straightforward to determine E[In]. Divide the packing process into n phases,
each phase ending on a step in which a real rather than imaginary item is packed.
The expected number of imaginary items packed in each phase is

∞∑
i=1

(
c(F)

1 + c(F)

)i
= c(F).

We thus can conclude the expected total number of imaginary items is nc(F), and
since each is of size 1 we have E[In] = nc(F).
Let us now turn to E[Gn]. Note that if we consider both real and imaginary items,

we are essentially packing a list generated by the distribution F+ that has a higher
proportion of items of size 1 than does F (if indeed F has any such items). If s1 = 1
(in which case F does have items of size 1), we have p+1 = (p1 + c(F))/(1 + c(F))
and p+i = pi/(1 + c(F)) for all i > 1. Otherwise s

+
1 = 1 and s

+
j+1 = sj , 1 ≤ j ≤ J ,

while p+1 = c(F)/(1 + c(F)) and p
+
j+1 = pj/(1 + c(F)), 1 ≤ j ≤ J .

Claim 6.2. EWOPTn (F+) = O(
√
n).

Journal of the ACM, Vol. V, No. N, Month 20YY.

42 · J. CSIRIK ET AL.

Proof of Claim. By Theorem 5.3 all we need show is that the solution to
the Waste LP for F+ has c(F+) = 0. Denote this LP by LPF+ and denote the
Waste LP for F by LPF . We concentrate on the case where s1 = 1 and p

+
1 =

(p1 + c(F)/(1 + c(F)). The case where s1 > 1 can be handled by the same basic
argument, but its description would be messier because we no longer have s+j = sj ,
1 ≤ j ≤ J . Let v0(j, h) be the variable values in an optimal solution for LPF , and
for 1 ≤ h ≤ B − 1 define

∆h =
∑
j

v0(j, h− sj)−
∑
j

v0(j, h).

Note that by (5.5), c(F) =
∑B−1
h=1 (B − h)∆h. Define a new assignment v by

v(j, h) =
v0(j, h)

1 + c(F)
, j �= 1,

v(1, h) =
v0(1, h) +

∑h
h′=1∆h′

1 + c(F)
.

for 0 ≤ h ≤ B − 1.
We claim that v satisfies the constraints of LPF+ and achieves 0 for the objective

function, thus implying that c(F+) = 0. It is easy to see that v satisfies constraints
(5.1) and (5.2) and satisfies (5.3) for j �= 1. For (5.3) and j = 1, we have

B−1∑
h=0

v(1, h) =
1

1 + c(F)

(
p1 +

B−1∑
h=1

h∑
h′=1

∆h′

)

=
1

1 + c(F)

(
p1 +

B−1∑
h′=1

(B − h′)∆h′
)

=
1

1 + c(F)

(
p1 + c(F)

)
,

as required. As for the constraints (5.4), we have for each h, 1 ≤ h ≤ B − 1, that∑
j

v(j, h− sj) −
∑
j

v(j, h)

=
1

1 + c(F)

⎛
⎝∑

j

v0(j, h− sj)−
∑
j

v0(j, h) +

h−1∑
h′=1

∆h′ −
h∑
h′=1

∆h′

⎞
⎠

=
1

1 + c(F)

(
∆h +

h−1∑
h′=1

∆h′ −
h∑
h′=1

∆h′

)
= 0.

Thus v is a feasible solution for LPF+ . Finally, the value of the objective function
is

B−1∑
h=1

(
B − h

)⎛⎝∑
j

v(j, h− sj)−
∑
j

v(j, h)

⎞
⎠ = 0. �

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 43

Thus F+ is a perfectly packable distribution. By Lemma 2.2, this means that
the expected increase in ss(P) during each step of algorithm SSF is less than
2, no matter what the current packing looks like. For all i > 0 the expected
increase during step i is thus less than 2 times the probability SSF takes i or
more steps. Since the expected number of steps by the above argument about
E[In] is n(1 + c(F)), the expected value of ss(P) when the algorithm terminates
is thus no more than 2n(1 + c(F)). By Lemma 2.4 this implies that E[Gn] ≤
B
√
(B − 1)n(1 + c(F)) = O(B2√n) since c(F) ≤ B by (5.7). Thus by (6.1) we

have

EWSSFn (F) =
nc(F) +O(B2

√
n)

B
,

which by Lemma 5.1 is EWOPTn (F) +O(
√
n), as desired.

All that remains is to show that algorithm SSF can be implemented to run in
time O(nB). This is not immediate, since there are distributions F for which c(F) is
as large as B/2�− 1. Thus the total number of items packed (including imaginary
ones) can be Θ(nB), and the standard implementation of SS will take Θ(nB2).
We avoid this problem by using a more sophisticated implementation, that adds an
additional data structure to aid with the packing of the imaginary items.

This data structure is a doubly-linked list of doubly-linked lists Dd. If P is the
current packing, define δh = Np(h + 1)− NP (h), 0 ≤ h ≤ B − 1, with NP (0) and
NP (B) taken by convention to be 1/2 and −1/2 respectively. Then we know by
Lemma 1.2 and the discussion that follows it that placing an item of size 1 into a
bin of level h will yield a smaller increase (or bigger decrease) in ss(P) than placing
it in a bin of level h′ if and only if δh < δh′ . At any given time in the packing
process, there is a sublist Dd for each value d taken on by some δh, with that
sublist containing representatives for all those h such that δh = d and annotated
by the value of d. The sublists are ordered in the main list by increasing value of
d. For each value of h, 0 ≤ h ≤ B − 1, there is a pointer to the list for δh and to
the representative for h in that list.

Given this data structure, we can pack an item of size 1 in constant time: find
the first h in the first list Dd and place the item into a bin of level h. Note that
this choice of h may violate the official tie-breaking rule for SS which requires that
in case of ties, we should choose the largest h with δh = d1. However, as observed
when we originally specified the official tie-breaking rules, none of the performance
bounds proved in this paper depend on the precise tie-breaking rule used. Thus,
we will still have ERSSF∞ (F) = 1 if SSF is implemented this way.

To complete the proof that this implementation takes O(nB) time overall, we
must show how to keep the data structure current with a constant amount of effort
whenever an item of size 1 is packed. (We can afford O(B) time for other, non-
“imaginary” items, and it is easy to see how to perform the update if this much time
is allowed.) For items of size 1 we exploit the fact that only two counts get changed,
and no count changes by more than 1. Thus at most four δh’s will change, and no
δh can change by more than 2. Thus all we need show is that if δh changes by 2
or less, only a constant amount of work is required to update the data structure.
But this follows from the fact if h is in Dd, then its new sublist can be at most two
sublists away in the overall doubly-linked list, either in an already-existing sublist

Journal of the ACM, Vol. V, No. N, Month 20YY.

44 · J. CSIRIK ET AL.

to which h can be prepended, or in a new sublist containing only h that can be
created in constant time. �

An obvious drawback of the algorithms SSF is that we must know the distribution
F in advance. Fortunately, we can adapt the approach taken in these algorithms
to obtain a distribution-independent algorithm, simply by learning the distribution
as we go along. If we engineer this properly, we can get a randomized algorithm
that matches the best expected behavior we have seen in all situations:

Theorem 6.3. There is a randomized online algorithm SS∗ that for any discrete
distribution F with bin capacity B has the following properties:

(a) SS∗ runs in expected time O(nB).
(b) EWSS

∗
n (F) = EWOPTn (F) +O(

√
n).

(c) ERSS
∗

∞ (F) = 1.

(d) If EWOPTn (F) = Θ(
√
n), then EWSS

∗
n (F) = Θ(

√
n).

(e) If EWOPTn (F) = O(1), then EWSS
∗

n (F) = O(1).

Proof. Note that (d) will follow immediately from (b) and that (c) will follow
from (b) via Lemmas 5.1 and 5.4. Thus we only need to prove (a), (b), and (e),
which we will do in that order.
As the basic building blocks of SS∗, we will use a class of algorithms SSrD,

0 ≤ r < 1 and D ⊂ {1, 2, . . . , B − 1}, that capture the essence of the algorithms
SSF of Theorem 6.1, modified slightly so that we can guarantee (e) above. Recall
from Section 3.2 the algorithm SS′ that guaranteed EWSS

′
n (F) = O(1) for all

bounded waste distributions. This algorithm made use of a parameterized packing
rule SSD, which packed so as to minimize ss(P) subject to the constraint that no
bin with a level in D should be created unless this is unavoidable, in which case
we start a new bin. Algorithm SS′ maintained a set U of all the item sizes seen so
far, and used SSD(U) to pack items, where D(U) is the set of dead-end levels for
U , and SS∗ will do likewise.
Algorithm SSrD works in steps, where in each step we flip a biased coin and

proceed as follows:

(1) With probability 1− r we take the next item from L and pack it according to
packing rule SSD.

(2) With probability r we generate a new “imaginary” item of size 1 and pack it
according to SSD.

Note that if r = c(F)/(1 + c(F)), this is the same as SSF except for the modified
packing rule. If r > 0 then it reduces to SSF as soon as the first item of size 1
arrives, as there can be no dead-end levels if items of size 1 are present.

In algorithm SS∗ we maintain an auxiliary data structure of counts Xi, 1 ≤
i ≤ B − 1, where Xi is the number of items of size i so far encountered in the
list. From this we can derive the set U of the item sizes actually seen so far,
as well as the current empirical distribution F ′, whose probability vector p̄ is
〈X1/N,X2/N, . . . , XB−1/N〉, where N is the number of items seen so far. The
packing process consists of a sequence of phases, during each of which we apply the

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 45

packing rule SSrD(U), where U is the set of item sizes seen up to and including the

first item to be packed in the phase and r = c(F ′)/(1 + c(F ′)) for the empirical
distribution F ′ at the beginning of the phase.
We start the algorithm with a 0-phase in which U consists of the size of the

first item in the list and F ′ is the empirical distribution based on just that first
item. An i-phase terminates when either (a) we see a new item size and have to
update U and recompute D(U) or (b) we have packed a prespecified number of
real items during the phase, where the number is 10B for a 0-phase and 30B4i−1

for an i-phase, i > 0. If an i-phase is terminated by the arrival of an item with
a previously unseen size, the next phase is once again a 0-phase. Otherwise, it is
an (i+ 1)-phase. If the new phase has a different value for U or r, we begin it by
closing all open bins. (A partially filled bin is considered open until it is closed.
A closed bin can receive no further items and does not contribute to the count for
its level.) We shall refer to phases that occur before all item sizes have been seen
as false phases, and ones that occur after as true phases. Note that once the true
phases begin, each phase (except possibly the last) packs 3 times as many items as
the total number of items packed in all previous true phases.
Note that this algorithm will have the claimed running time. The list-of-lists

data structure developed to enable the algorithms SSF to run in time O(nB) can
be adapted to handle the SSrD packing rules, so the cumulative time spent running
SSrD for the various values of D and r is O(nB). In SS

∗ we have the added cost
of re-initializing this data structure from time to time when we close all open bins,
which can take Θ(B) time, but this can happen no more than J(log4(n/10B)�)
times. Thus the overall time for reinitialization is O(B2 logn) = o(nB) for fixed B.
The only other computation time we need to worry about is that needed to solve
the LP’s used to compute the values of c(F ′). By Theorem 5.5, the time for the
LP computed at the beginning of an i-phase is O(B9 log2D) where D ≤ n. Since
there are no more than J(log4(n/10B)�) phases, the total time spent in solving
the LP’s is thus O(B10 log3 n) and for fixed B is again asymptotically dominated
by the time to pack the items.
The proof that SS∗ satisfies (b) will proceed via a series of lemmas. To simplify

things, we will modify our notation for discrete distributions. Given a discrete
distribution F for bin size B, let pi now represent the probability associated with
items of size i (and hence pi > 0 iff i ∈ UF). Thus each discrete distribution for bin
size B is represented by a length-(B−1) vector p̄ with non-negative entries. Under
this revised formulation, the LP for F changes only minimally: J becomes B − 1
and sj becomes j. It is easy to see that with these changes, the optimal solution
value c(F) is unchanged.
In what follows, if p̄ and p̄′ are two length-(B − 1) vectors, we will use ||p̄− p̄′||

to denote the L1 distance between them, that is,

‖p̄− p̄′‖ ≡
B−1∑
i=1

|pi − p′i|.

Lemma 6.4. Suppose F and F ′ are discrete distributions for bin size B with
probability vectors p̄ and p̄′. Then

|c(F)− c(F ′)| ≤ B‖p̄− p̄′‖. (6.2)

Journal of the ACM, Vol. V, No. N, Month 20YY.

46 · J. CSIRIK ET AL.

Proof. We show how to convert an optimal solution to the LP for F to a solution
to the LP for F ′ for which the objective function c satisfies

c ≤ c(F) +B‖p̄− p̄′‖. (6.3)

A symmetric argument holds for the situation where the roles of F and F ′ are
interchanged, and so (6.2) will follow.
For the purposes of this proof we can view our LP’s as determined simply by the

probability vectors for the distributions, p̄ and p̄′, and write c(p̄) and c(p̄′) for c(F)
and c(F ′) respectively. We will convert an optimal solution to the LP for p̄ to a
feasible one for p̄′ via a series of steps.
For 0 ≤ j ≤ B − 1, let p̄j = (pj1, . . . , pjB−1) be the vector with pji = p′i, 1 ≤ i ≤ j

and pji = pi, j+1 ≤ i ≤ B−1. Note that p̄0 = p̄ and p̄B−1 = p̄′. Let LPj denote the
LP for p̄j . Note that these are legitimate LP’s even though the intermediate vectors
p̄j , 0 < j < B − 1, may not have ∑B−1i=1 p

j
i = 1 and hence need not correspond

to probability distributions. We will show how to convert an optimal solution to
LPj−1 to a feasible one for LPj , 1 ≤ j ≤ B − 1, for which the objective function c
satisfies

c ≤ c(p̄j−1) +B|pj − p′j |. (6.4)

Inequality (6.3) will then follow by induction.
So consider an optimal solution to LPj−1. Note that the only constraint of LPj

that is violated is the constraint of type (5.3) for j, i.e., the constraint that says

that
∑B−1
h=0 v(j, h) = p

′
j . If p

′
j ≥ pj , our task is simple. We simply add p′j − pj

to v(j, 0) and leave all other variables unchanged. This will now satisfy the above
constraint for j while not causing any of the others to be violated. The increase
in the objective function will be (B − j)|p′j − pj| ≤ B|p′j − pj |, so (6.4) holds, as
desired.
For the remaining case, suppose p′j < pj and consider an optimal solution to

LPj−1 that has the largest possible value for the potential function
∑B−1
h=0 h ·v(j, h).

We claim that this solution must be such that

for all levels h, if v(j, h) > 0, then v(i, h+ j) = 0 for all i �= j. (6.5)

Suppose not, and hence there is a level h and an integer i �= j such that v(j, h) > 0
and v(i, h + j) > 0. This means that a positive amount of size j was placed in
bins with level h and then a positive amount of size i was placed in bins with the
resulting level h+ j. Let ∆ = min{v(j, h), v(i, h+ j)}, and modify the solution so
that instead of first placing an amount ∆ of j in bins of level h and then adding ∆
of size i, we do these in reverse order. To be specific, revise v(j, h) to v(j, h) −∆,
v(i, h) to v(i, h) +∆, v(i, h+ j) to v(i, h+ j)−∆ and v(j, h+ i) to v(j, h+ i) +∆.
It is not difficult to see that this will not affect the objective function or any of
the constraints, and so the new set of variable values will continue to represent an
optimal solution to LPj−1. Moreover, the potential function will have increased by
i∆, a contradiction.
To convert the above optimal solution to one that is feasible for LPj , we proceed

as follows. Let H∗ = min{H ≤ B : ∑B−1h=H v(j, h) ≤ pj − p′j . Set v(j, h) = 0,
H∗ ≤ h ≤ B−1, and reduce v(j,H∗−1) by pj−p′j−

∑B−1
h=H∗ v(j, h). The resulting

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 47

solution will now satisfy the constraint of type (5.3) for j in LPj . It will continue
to satisfy the constraints of type (5.4) because of (6.5). Finally, the increase in the
objective function will be at most j|pj − p′j| ≤ B|pj − p′j | and so (6.4) again holds,
as desired. �

Definition 6.5. If p̄ is a probability vector and r ≥ 0, then aug(p̄, r) is the
probability vector q̄ with

qj =

⎧⎪⎪⎨
⎪⎪⎩
p1 + r

1 + r
if j = 1,

pj

1 + r
otherwise.

Lemma 6.6. Suppose F is a discrete distribution for bin size B with probability
vector p̄ and suppose r, r′ ≥ 0. If q = aug(p̄, r) and q′ = aug(p̄, r′), then

||q − q′|| < 2|r − r′|.
Proof. By definition,

‖q − q′‖ =
B−1∑
j=2

∣∣∣∣ pj1 + r − pj

1 + r′

∣∣∣∣ +
∣∣∣∣p1 + r1 + r

− p1 + r
′

1 + r′

∣∣∣∣
≤
∣∣∣∣ 11 + r − 1

1 + r′

∣∣∣∣ +
∣∣∣∣ r1 + r − r′

1 + r′

∣∣∣∣

=

∣∣∣∣(1 + r′)− (1 + r)(1 + r′)(1 + r)

∣∣∣∣+
∣∣∣∣r(1 + r′)− r′(1 + r)(1 + r′)(1 + r)

∣∣∣∣ < 2 |r − r′| . �
Lemma 6.7. Suppose F is a discrete distribution for bin size B and F ′ is the
empirical distribution measured after sampling n items with sizes chosen according
to F for some n > 0. Let p̄ and p̄′ be the associated probability vectors and let
q̄ = aug(p̄, c(F)) and q̄′ = aug(p̄, c(F ′)). Then for all β > 0,

(a) P

(
‖p̄− p̄′‖ ≥ Jβ√

2n

)
≤ 2Je−β2,

(b) P

(
|c(F)− c(F ′)| ≥ JBβ√

2n

)
≤ 2Je−β2 ,

(c) P

(
‖q̄ − q̄′‖ ≥

√
2JBβ√
n

)
≤ 2Je−β2 .

Proof. By a variation on Chernoff bounds due to Hoeffding [Hoeffding 1963],
and described in [Coffman, Jr. and Lueker 1991, p. 19], we have that for all j,
1 ≤ j ≤ B − 1, and β > 0,

P
(∣∣npj − np′j∣∣ ≥ β√n) ≤ 2e−β2/2,

which implies that

P

(∣∣pj − p′j∣∣ ≥ β√
2n

)
≤ 2e−β2.

Journal of the ACM, Vol. V, No. N, Month 20YY.

48 · J. CSIRIK ET AL.

Thus the probability that the bound is exceeded for at least one j is no more than
2(B − 1)e−β2. However, if ‖p̄− p̄′‖ ≥ (B − 1)β/√2n then the bound must be
exceeded for some j. Hence conclusion (a) holds. Conclusions (b) and (c) follow
by Lemmas 6.4 and 6.6. �

Lemma 6.8. Suppose F and F ′ are discrete distributions for bin size B, q̄ =
aug(p̄, c(F)), q̄′ = aug(p̄, c(F ′)), and r′ = c(F ′)/(1 + c(F ′)). Suppose qmin is the
smallest nonzero entry in q̄ and ‖q̄−q̄′‖ < qmin. If the algorithm SSr′D(UF) is applied
to a list L of n items generated according to F , then the resulting packing P of L
plus the imaginary items created by SSr

′
D(UF)

satisfies

E[W (P)] = O(max{√n, ‖q̄ − q̄′‖n}).
Proof. Let δ = ‖q̄− q̄′‖/qmin. Since ‖q̄− q̄′‖ < qmin, we have δ < 1 and for all

j with qj > 0, q
′
j ≥ q − ‖q̄ − q̄′‖ ≥ (1− δ)qj > 0.

Suppose items are generated according to F and we use SSr
′
D(UF)

to pack them.
At each step, we will thus be using SSD(UF) to pack an item that looks as if it were
generated according to the probability vector q̄′. Let us view the packing process
as follows: When an item of size j arrives, randomly classify it as a good item with
probability (1 − δ)qj/q′j and as a bad item with probability 1− (1 − δ)qj/q′j . Note
that if one restricts attention to the good items, they now arrive as if generated
according to q̄. Further note that by Claim 6.2 of Theorem 6.1, the distribution
determined by q̄ is a perfectly packable distribution. Thus for these arrivals we can
apply Lemma 2.2, which we have already shown applies to SSD(UF) as well as SS.
Thus we can conclude that the expected increase in ss(P) each time a good item
is packed is less than 2.
Let D denote the constant (1+ qmin)/qmin. The probability that a random item

is a bad item is

J∑
i=1

q′j

(
1− (1− δ)qj

q′j

)
=

J∑
i=1

(
q′j − qj + δqj

) ≤ ‖q̄ − q̄′‖+ δ = D‖q̄ − q̄′‖.
For bad items, the worst-case increase in ss(P) is less than 2maxj{NP (j)} + 2,
an upper bound by Lemma 1.2 on the increase that would occur if our placement
caused the maximum count to increase. Thus the expected increase in ss(P) is less
than

2

(
1 +D‖q̄ − q̄′‖max

j
{NP (j)}

)
. (6.6)

Let Pi be the packing after i items have been packed and let i(t), 1 ≤ t ≤ n, be
the index of the packing that results when the tth real item is packed, with i(0) = 0
by convention. Note that our final packing P = Pi(n). Define

Maxt ≡ max{1, NPi(t)(j) : 1 ≤ j ≤ J}, 1 ≤ t ≤ n,
MaxE ≡ max{E[Maxt] : 0 ≤ t ≤ n}.

Claim 6.9. For all t, 0 ≤ t ≤ n, and all i, i(t) ≤ i < i(t + 1), the maximum
level count in Pi is at most Maxt.

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 49

Proof of Claim. The claim holds for Pi(t) by definition. Suppose it holds for
packing Pi, i ≥ i(t) and i+1 < i(t+1), i.e., the next item to be packed is imaginary.
In this case SSr

′
now must know that items of size 1 exist and hence that there are

no dead-end levels. Hence it must make an improving move whenever one exists.
Suppose the current packing has a count greater than 0 and j is the level with
the biggest count, ties broken in favor of larger levels. Then there is at least one
bin with level j and placing an item of size 1 into such a bin will decrease ss(P).
Thus SSr

′
must choose a placement that decreases ss(P). This cannot increase

the largest level count. Suppose on the other hand that the current packing has
no level count exceeding 0. Then placing an imaginary item will only increase the
maximum level count from 0 to 1, which is still no more than Maxi(t). In both
cases, we are left with a packing in which no count exceeds Maxi(t). The claim
follows by induction. �

Claim 6.10. For 0 ≤ t < n,
E
[
ss(Pi(t+1))− ss(Pi(t))|Pi(t)

] ≤ 2B(1 +D‖q̄ − q̄′‖MaxE).
Proof of Claim. For each k ≥ 0, the probability that there are more than k

items packed in going from Pi(t) to Pi(t+1) is (c(F
′)/(1 + c(F ′)))k. Given that there

are more than k items packed, the expected increase in ss(P) due to the packing
of the (k+1)st item is by (6.6), Claim 6.9, and the definitions of Maxt and MaxE
at most

2(1 +D‖q̄ − q̄′‖E[Maxt]) ≤ 2(1 +D‖q̄ − q̄′‖MaxE).
The total expected increase in going from Pi(t) to Pi(t+1) is thus at most

∞∑
k=0

(
c(F ′)
1 + c(F ′)

)k
2(1 +D‖q̄ − q̄′‖MaxE) = 2(1 + c(F ′))(1 +D‖q̄ − q̄′‖MaxE).

The claim follows since c(F) ≤ B − 1 for all distributions F by (5.7). �
Thus by the linearity of expectations we can conclude that for 1 ≤ t ≤ n

E[ss(Pi(t))] ≤ 2Bt
(
1 +D‖q̄ − q̄′‖MaxE) (6.7)

and, by inequality (2.4) in the proof of Lemma 2.4, that

E[Maxt] ≤ E
⎡
⎣1 + B−1∑

j=1

NPi(t)(j)

⎤
⎦ ≤ 1 +√B · E[ss(Pi(t))]
≤ 1 +

√
2B2t (1 +D‖q̄ − q̄′‖MaxE)

≤ 2B
√
n (1 +D‖q̄ − q̄′‖MaxE)

and hence

MaxE ≤ 2B
√
n (1 +D‖q̄ − q̄′‖MaxE). (6.8)

If D‖q̄ − q̄′‖MaxE ≤ 1, we have E[ss(Pi(n))] ≤ 4Bn by (6.7). So by Lemma 2.4
we have

E[W (P)] = E[W (Pi(n))] ≤
√
BE[ss(Pi(n))] ≤ 2B

√
n = O(

√
n)

Journal of the ACM, Vol. V, No. N, Month 20YY.

50 · J. CSIRIK ET AL.

for fixed F . Otherwise we have by (6.8) that MaxE ≤ 2B√2Dn‖q̄ − q̄′‖√MaxE.
But this implies MaxE ≤ 8B2Dn‖q̄ − q̄′‖, and consequently by (6.7)

E[ss(Pi(n))] ≤ 2Bn+ 16B3D2(‖q̄ − q̄′‖n)2

and hence by Lemma 2.4 that

E[W (P)] = E[W (Pi(n))] ≤
√
BE[ss(Pi(n))] = O(max{

√
n, ‖q̄ − q̄′‖n})

for fixed F . Thus in either case E[W (P)] = O(max{√n, ‖q̄ − q̄′‖n}) and Lemma
6.8 is proved. �

We can now address part (b) of Theorem 6.3. Let us divide the waste created
by SS∗ into three components. Let nA denote the number of items seen before all
sizes in UF have appeared.

—Waste in bins created during the packing of the first nA items (during what we
called false phases).

—Waste in bins created after the first nA items have been packed, either during the
0-phase or during an i-phase, i > 0, for which ‖q̄− q̄′‖ > qmin in the terminology
of Lemma 6.8 (Type 1 true phases).

—Waste in the remaining bins (Type 2 true phases).

For waste in bins created during false phases, we first determine a bound on
E[nA]. The analysis is similar to that used in the proof of Theorem 3.10. The
probability that we have not seen all item sizes after the hth item arrives is no more
than J (1− pmin)h. If we choose the smallest t such that J(1− pmin)t ≤ 1/2, then
for each integer m > 0, the probability that all the item sizes have not been seen
after mt items have arrived is at most 1/2m. Thus for each i ≥ 0, the probability
that nA ∈ (mt, (m+ 1)t] is at most 1/2m. Hence

E[nA] ≤
∞∑
m=0

(
m+ 1)t · p[nA ∈ (mt, (m+ 1)t]]) ≤ t · ∞∑

m=0

(m+ 1)

2m
= 4t.

Thus the expected false phase waste resulting from bins that contain at least one
real item is bounded by 4t(B − 1)/B.
The only other possible waste during false phases consists of 1 unit of waste for

each bin containing only imaginary items. The expected number of imaginary items
that arrive before all item sizes have been seen is bounded by (nA+1)c(Fmax), where
Fmax is the empirical distribution F

′ that has the largest value of c(F ′) among all
those computed before all item sizes have been seen. Since c(F ′) ≤ B − 1 for
all distributions F ′ this is at most (4t + 1)(B − 1). Moreover, all but one of the
bins containing only imaginary items that are started during a given phase must
be completely full: as already remarked, if there are any partially filled bins when
an imaginary item (of size 1) arrives, then placing it in a bin whose level has the
largest count (ties broken in favor of higher levels) will cause a decrease in ss(P)
and hence is to be preferred to starting a new bin. Thus the expected number
of bins containing only imaginary items is at most (4t + 1)(B − 1)/B plus the
expected number of false phases. Since the number of false phases is clearly less

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 51

than nA/(10B) + J , the total expected waste during false phases is at most

4t(B − 1)
B

+
(4t+ 1)(B − 1)

B
+
E[nA]

10B
+J ≤ 8t+1+J− 8t+ 1

B
+
4t

10B
< 8t+J+1,

which is O(1) for fixed F .
We now turn to the Type 1 true phases. The first of these is the true 0-phase,

which is Type 1 by definition. In this phase the expected number of real items
packed is at most 10B and the expected waste is at most 20B + 1 by an argument
like that in the previous paragraph with 4t replaced by 10B and only one phase to
worry about.
By a similar argument, if there is a true i-phase, i > 0, the number of real items

packed in it is at most 30B · 4i−1 and the expected waste during the phase is at
most 60B ·4i−1+1 < 16B ·4i. Whether this phase contributes to the Type 1 waste
depends on the empirical distribution F ′ measured at the beginning of the phase.
In particular, we must have ‖q̄ − q̄′‖ > qmin.
Now the distribution F ′ is based on at least 10B · 4i−1 samples from F . Thus

by Lemma 6.7(c), the probability that ‖q̄ − q̄′‖ ≥ √2JBβ/√2.5B4i is bounded by
2Je−β

2

. Thus the probability that ‖q̄−q̄′‖ ≥ qmin is at most 2Je−(1.25q2min/J2B)4i =
2Jd−4

i

where d = e1.25q
2
min/J

2B > 1 is a constant independent of i. The ex-
pected waste that this phase can produce by being a Type 1 phase is thus at most
(32BJ)(4i/d4

i

). Summing over all true phases we conclude that the total expected
waste for Type 1 phases is at most

20B + 1 + 32BJ

∞∑
i=1

4i

d4
i = O(1).

Finally, let us turn to the waste during Type 2 true phases. Suppose the true i-
phase, i > 0, is of Type 2, and let F ′ be the empirical distribution at the beginning
of the phase, with p̄′ being its probability vector. F ′ must have been based on the
observation of at least 10B4i−1 items generated according to F . Thus by Lemma
6.7(b) there are constants α and γ depending on F but independent of i such that

E
[|c(F)− c(F ′)|] < γ/√5B4i = α2−i.
Let Ni be the number of real items packed during the true i-phase, and recall

that Ni ≤ 30B4i−1. This means that the expected waste due to imaginary items
created during the phase is at most

Nic(F
′)

B
≤ Ni

(
c(F) + α2−i

)
B

≤ Nic(F)
B

+ 7.5α2i.

Note that the total number of true phases is at most log4(n/10B)� < �log4 n� =
�(1/2) log2 n�. Thus even if all such phases are of Type 2, we have that the expected
total waste during the Type 2 phases due to imaginary items is bounded by

nc(F)

B
+ 7.5α

�log4 n�∑
i=1

2i <
nc(F)

B
+ 15α

√
n =

nc(F)

B
+O(

√
n).

Now let us consider the waste caused by empty space in the bins packed during
true phases of Type 2. First note that the set of items contained in open bins at the
end of the i-phase consists of all items packed during this phase plus possibly items

Journal of the ACM, Vol. V, No. N, Month 20YY.

52 · J. CSIRIK ET AL.

from immediately preceding true phases that operated with the same value of r.
Even if all preceding true phases operated with the same value of r, this could be
no more than 10B4i items. Moreover, as argued above we know that the empirical
distribution F ′ computed at the beginning of the i-phase has E

[|c(F) − c(F ′)|] <
α2−i for some fixed α, so that by Lemma 6.6, E

[‖q̄− q̄′‖] < 2α2−i. Since this is a
Type 2 phase, we have by definition that ‖q̄− q̄′‖ ≤ qmin and so Lemma 6.8 applies
and we can conclude that there is a constant γ such that the expected empty space
in the packing is bounded by

γmax
{
(10B4i)(2α2−i),

√
10B4i

}
= O(2i).

Thus the expected total empty space of this kind over all true phases of Type
2 is once again O(

√
n), and so the expected total waste in bins started in Type 2

true phases (empty space plus imaginary items) is nc(F)/B + O(
√
n). Given that

the expected waste in false levels and in true levels of Type 1 was bounded, this
means that

EWSS
∗

n (F) =
nc(F)

B
+O(

√
n),

which by Lemma 5.1 means that Claim (b) of Theorem 6.3 has been proved.

It remains to prove Claim (e), that EWSS
∗

n (F) = O(1) whenever EWOPTn (F) =
O(1), i.e., whenever F is a bounded waste distribution. Suppose F is a
bounded waste distribution with size vector s̄ and probability vector p̄. From
the Courcoubetis-Weber Theorem, we know that there is an ε > 0 such that any
distribution F ′ over the same set of item sizes that has a probability vector p̄′ sat-
isfying ‖p̄− p̄′‖ ≤ ε is a perfectly packable distribution and hence has c(F ′) = 0 by
Theorem 5.6.
Once again, we can divide the waste produced in an SS∗ packing of a list gen-

erated according to F into three components, although this division is somewhat
different.

—Waste in bins created during false phases.

—Waste in bins created in true phases through the last such phase in which the
starting empirical distribution F ′ had c(F ′) > 0.

—Waste created in all subsequent phases.

As in the analysis of Claim (b), we can conclude that the total expected waste for
the false phases is bounded.
Consider now the waste created in true phases through the last phase that started

with c(F ′) > 0. If this was the true 0-phase, the expected waste is bounded by
20B+1, again as argued in Claim (b). If it was the true i-phase, i > 0, then at most
10B4i items can have been packed in true phases through this point, and so the
expected waste would be at most 20B4i + 1 < 21B4i by an analogous argument.
Now the probability that the i-phase is the last phase with c(F ′) > 0 is clearly
no more than the probability that it simply had c(F ′) > 0. As remarked above,
this can only have happened if ‖p̄ − p̄′‖ > ε. Since the empirical distribution at
the start of the i-phase, i > 0, is based on at least 10B4i−1 samples from F , by
Lemma 6.7(a), the probability that ‖p̄−p̄′‖ > ε is at most 2Je−(5Bε2/J2)4i = 2Jd−4i
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 53

for some d > 1. Thus the total expected waste through the last true phase with
c(F ′) > 0 is at most

20B + 1 + 42JB

∞∑
i=1

4i

d4
i = O(1).

Finally, if there are any phases after the last one that had c(F ′) > 0 and hence
r > 0, let the first such phase be the i0-phase. This phase begins by closing all
previously open bins because r has just changed from a positive value to 0. From
now on, however, no more bin closures will take place since r = 0 for all remaining
phases and hence never changes. Thus the packing beginning with the i0-phase is
simply an SS0D(UF) = SSD(UF) packing of items generated according to F , and by

Theorem 3.10 has O(1) expected waste.
Thus the total expected waste under SS∗ is O(1), Claim (e) holds, and Theorem

6.3 is proved. �

7. SS AND ADVERSARIAL ITEM GENERATION

The results for SS∗ in the previous section are quite general with respect to the
context traditionally studied by papers on the average case analysis of bin packing
algorithms: the standard situation in which item sizes are chosen as independent
samples from the same fixed distribution F . However, that context itself is some-
what limited, in that one can conceive of applications in which some dependence
exists between item sizes. Perhaps surprisingly, the arguments used to prove The-
orems 2.5 and 3.4 imply that SS itself can do quite well in some situations where
there is dependence and that dependence is controlled by an adversary.
Suppose that our item generation process works as follows: Let B be a fixed bin

size. For each item xi, i = 1, 2, . . ., the size of item xi is chosen according to a
discrete distribution Fi with bin size B. The choice of Fi, however, is allowed to
be made by an adversary, given full knowledge of all item sizes chosen so far, the
current packing, and the packing algorithm we are using. It would be difficult to do
well against such an adversary unless it were somehow restricted, so to introduce a
plausible restriction, let us say that such an adversary is restricted to F , where F
is a set of discrete distributions, if all the Fi used must come from F . As a simple
corollary of the proof of Theorem 2.5 we have the following.

Theorem 7.1. Let B be a given bin size and suppose items are generated by an
adversary restricted to the set of all perfectly packable distributions for bin size B.
Then the expected waste under SS is O(

√
n).

Proof. By Lemma 2.2 we know that E[ss(P)] increases by less than 2 whenever
SS packs an item whose size is generated by a perfectly packable distribution. Thus
we can conclude that if we pack n items generated by our adversary, we still must
have E[ss(P)] < 2n. The rest follows by Lemma 2.4, as in the proof of Theorem
2.5. �

Note that without the restriction to perfectly packable distributions, the adver-
sary could force the optimal expected waste to be linear, so Theorem 7.1 is in a
sense the strongest possible result of this sort. With even more severe restrictions
on F , one can guarantee bounded expected waste against an adversary.

Journal of the ACM, Vol. V, No. N, Month 20YY.

54 · J. CSIRIK ET AL.

Theorem 7.2. Suppose F is a set of bounded waste distributions for a given bin
size B, none of which has multiply-occurring dead-end levels, and there is an ε > 0
such that every distribution that is within distance ε of a member of F is a perfectly
packable distribution. Then if items are generated by an adversary restricted to F ,
the expected waste under SS is O(1).

Proof. This follows from the proof of Theorem 3.4, since the general hypothesis
of Hajek’s Lemma allows for adversarial item generation. Essentially the same proof
as was used to show Theorem 3.4 applies. �

Note that for any bounded waste distribution F there is an εF > 0 such that
every distribution that is within distance εF of F is perfectly packable, as follows
from the Courcoubetis-Weber Theorem. Hence the universal ε required by Theorem
7.2 must exist for any finite set of bounded waste distributions. Thus we have the
following interesting corollary.

Corollary 7.3. Suppose F = {U{j, k}, 1 ≤ j ≤ k − 2} for some fixed k > 0.
Then if items are generated by an adversary restricted to F , the expected waste
under SS is O(1).

Proof. As shown in Coffman, Jr. et al. [2000a] abd Coffman, Jr. et al. [2002b],
all k − 2 such distributions are bounded waste distributions. �
If we omit from Theorem 7.2 the requirement that the distributions in F have

no multiply-occurring dead-end levels, then the best upper bound on the expected
waste for SS grows to O(log n), as follows from the proof of Theorem 3.11. Note
that we cannot improve this to O(1) by using SS′ instead of SS as we did in the
non-adversarial case. For example, the adversary could generate its first item using
the distribution that yields items of size 1 with probability 1, and then switch to a
bounded waste distribution with multiply-occurring dead-end levels. SS′, having
seen an item of size 1, would conclude that 1 ∈ UF and hence that there are no
dead-end levels. So from then on it would pack exactly as SS would and hence
would produce Ω(log n) waste as implied by the lower bound in Theorem 3.11.

8. THE EFFECTIVENESS OF VARIANTS ON SS

In this section we return to the standard model for item generation, and ask how
much of the good behavior of SS depends on the precise details of the algorithm. It
turns out that SS is not unique in its effectiveness, and we shall identify a variety of
related algorithms A that share one or more of the following sublinearity properties
with SS (where (a) is a weaker form of (b)):

(a) [Sublinearity Property]. If EWOPTn (F) = O(
√
n), then EWAn (F) = o(n).

(b) [Square Root Property]. If EWOPTn (F) = O(
√
n), then EWAn (F) = O(

√
n).

(c) [Bounded Waste Property]. If EWOPTn (F) = O(1) and F has no multiply-
occurring dead-end levels, then EWAn (F) = O(1).

8.1 Objective Functions That Take Level into Account

One set of variants on SS are those that replace the objective function ss(P) by
a variant that multiplies the squared counts by some function depending only on

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 55

B and the corresponding level, and then packs items so as to minimize this new
objective function. Examples include

B−1∑
h=1

NP (h)
2(B − h),

B−1∑
h=1

[NP (h)(B − h)]2 , and
B−1∑
h=1

NP (h)
2

h
.

The first of the above three variants was proposed in 1996 by David Wilson
(personal communication, 2000), before we had invented the algorithm SS itself.
Wilson’s unpublished experiments with this algorithm already suggested that it
satisfied the Square Root and Bounded Waste Properties for the U{j, k} distribu-
tions, a claim we can now confirm as a consequence of the following more general
result.

Theorem 8.1. Suppose f(h,B) is any function of the level and bin capacity,

and A is the algorithm that packs items so as to minimize
∑B−1
h=1 NP (h)

2f(h,B).
Then A satisfies the Square Root and Bounded Waste Properties.

Proof. Such algorithms satisfy the Square Root Property, since by Lemma 2.2
the expected increase in the objective function at each step is still bounded by a
constant (2max{f(h,B) : 1 ≤ h ≤ B − 1}). They satisfy the Bounded Waste
Property, since the proof of Theorem 3.4 need only be modified to change some of
the constants used in the arguments. Details are left to the reader. �

We conjecture that the EWSSn (F) = Θ(logn) result of Theorem 3.11 for distribu-
tions F with multiply-occurring dead-end levels also carries over to these variants,
but the length and complexity of the proof of the original result makes verification
a much less straightforward task.
As to which of these variants performs best in practice, we performed preliminary

experimental studies using the distributions studied in Csirik et al. [1999], i.e.,
U{h, 100}, 1 ≤ h < 100 (as defined in the Introduction), and U{18, j, 100}, 18 ≤
j < 100, where U{h, j, k} is the distribution in which the bin size is k, the set of
possible item sizes is S = {h, h + 1, . . . , j}, and all sizes in S are equally likely.
The distributions in the first class are all bounded waste distributions except for
U{99, 100}, for which EWOPTn (F) = Θ(

√
n). The distributions in the second class

include ones with all three possibilities for EWOPTn (F): O(1), Θ(
√
n), and Θ(n).

We also tested a few additional more idiosyncratic distributions. The values of n
tested typically ranged from 100,000 to 100,000,000. Our general conclusion was
that there is no clear winner among SS and the variants describe above; the best
variant depends on the distribution F .

8.2 Objective Functions with Different Exponents

A second class of variants that at least satisfy the Sublinearity Property is obtained
by changing the exponent in the objective function.

Theorem 8.2. Suppose SrS denotes that algorithm that at each step attempts to
minimize the function

∑B−1
h=1 (NP (h))

r. Then for all perfectly packable distributions

Journal of the ACM, Vol. V, No. N, Month 20YY.

56 · J. CSIRIK ET AL.

F ,

EWSrSn (F) =

⎧⎪⎪⎨
⎪⎪⎩
O
(
n
1
r

)
, 1 < r ≤ 2,

O
(
n
r−1
r

)
, 2 ≤ r <∞.

(Note that when r = 2 both bounds equal O(
√
n), the known bound for SS = S2S.)

Proof. Suppose P is any packing and a random item i is generated according
to F . By the argument used in the proof of Lemma 2.2, we know that there is an
algorithm AF such that if i is packed by AF , then for each h, 1 ≤ h ≤ B − 1, the
expected increase in NP (h)

r given that NP (h) changes and that the current value
NP (h) > 0, is bounded by

1

2

(
(NP (h) + 1)

r −NP (h)r
)
+
1

2

(
(NP (h)− 1)r −NP (h)r

)

=
(NP (h) + 1)

r + (NP (h)− 1)r
2

−NP (h)r .
Let x = max{NP (h) : 1 ≤ h ≤ B − 1}. Given that at most two counts change

when an item is packed and that the expected increase for a zero-count is at most
1r = 1, the expected increase in

∑B−1
h=1 (NPn(h))

r when i is packed is thus at most

max
{
2, (x+ 1)r + (x− 1)r − 2xr

}
. (8.9)

Since SrS packs items so as to minimize
∑B−1
h=1 (NPn(h))

r, the expected increase in
this quantity when we pack i using SrS instead of AF can be no greater.
We thus need to bound (8.9) when r is fixed. For x ≤ 2, it is clearly bounded

by a constant depending only on r, so let us assume that x > 2. To bound (8.9) in
this case, we know by Taylor’s Theorem that there exist θ1 and θ2, 0 < θ1, θ2 < 1,
such that

(x + 1)r = xr + rxr−1 +
r(r − 1)
2!

xr−2 +
r(r − 1)(r − 2)

3!
(x+ θ1)

r−3, (8.10)

(x − 1)r = xr − rxr−1 + r(r − 1)
2!

xr−2 − r(r − 1)(r − 2)
3!

(x− θ2)r−3. (8.11)
Substituting, we conclude that (8.9) is bounded by the maximum of 2 and

r(r − 1)xr−2 + r(r − 1)(r − 2)
6

[
(x+ θ1)

r−3 − (x− θ2)r−3
]
. (8.12)

If 1 < r < 2, then (8.12) has a fixed bound depending only on r when x > 2.
Thus if Pn is the packing that exists after all n items have been packed by SrS,
the expected value of

∑B−1
h=1 (NPn(h))

r is O(n). If r > 2, then (8.12) grows as

Θ(xr−2) = O(nr−2). Thus in this case the expected value of
∑B−1
h=1 (NPn(h))

r is
O(nr−1).

Let Ci =
∑B−1
h=1 P [NP (h) = i], 0 ≤ i < n. Note that

∑n
i=1 Ci = B − 1 and∑n

i=1 iCi is the expected number of partially filled bins in the packing and hence an

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 57

upper bound on the expected waste. We can bound this using Holder’s Inequality:

∑
aibi ≤

(∑
api

) 1
p
(∑

bqi

) 1
q

when
1

p
+
1

q
= 1. (8.13)

Set ai = i(Ci)
1
r , bi = (Ci)

r−1
r , p = r, and q =

r

r − 1 . In the case where 1 < r <
2, we have concluded that there is a d such that

∑n
i=1 Cii

r ≤ dn. Thus Holder’s
Inequality yields

E[W (Pn)] <
∑
iCi ≤

(∑
Cii
r
) 1
r
(∑

Ci

) r−1
r

< (dn)
1
rB

r−1
r = O(n

1
r)

as claimed. On the other hand, if r > 2 we have
∑n
i=1 Cii

r ≤ dnr−1 for some
constant d and so Holder’s Inequality yields

E[W (Pn)] <
∑
iCi ≤

(∑
Cii
r
) 1
r
(∑

Ci

) r−1
r

< d
1
r n

r−1
r B

r−1
r = O(n

r−1
r)

as claimed. �

Despite the differing qualities of the bounds in Theorem 8.2, limited experiments
with the SrS for r = 1.5, 3, and 4 revealed no consistent winner among these
variants and SS. Indeed, they suggest that these algorithms, and perhaps all the
algorithms SrS with r > 1, might satisfy the Square Root and Bounded Waste
Properties as well as the Sublinearity Property. Although we currently do not see
how to prove these conjectures in general, we can show that the algorithms SrS
satisfy the Bounded Waste Property when r ≥ 2.
Theorem 8.3. If r ≥ 2 and F is a bounded waste distribution with no multiply-
occurring dead-end levels, then EWSrSn (F) = O(1).

Proof. As in the proof of Theorem 3.4, we apply Hajek’s Lemma. By an ar-
gument analogous to the one used in that proof, it is straightforward to show that
the desired conclusion will follow if Hajek’s Lemma can be shown to apply to the
potential function

φ(x̄) =

(
B−1∑
h=1

xri

)1/r
.

For this potential function, the Initial Bound Hypothesis applies since we begin
with the empty packing. The Bounded Variation Hypothesis applies since for a
given value y of φ(x̄), the maximum possible change in φ occurs when a single
entry in x̄ equals y and all the rest are 0, in which case φ can increase to at most
y + 1 and decrease to no less than y − 1.
The main challenge in the proof is proving that the Expected Decrease Hypothesis

applies. For this we need the following results, analogues of Lemmas 2.2, 3.6, and
3.7, used in the proof of Theorem 3.4.

Lemma 8.4. Let F be a perfectly packable distribution and r ≥ 2. Then there is
a constant d, depending only on r, such that if P is an arbitrary packing into bins
of size B whose profile is given by the vector x̄ with φ(x̄) > 0, i is an item randomly

Journal of the ACM, Vol. V, No. N, Month 20YY.

58 · J. CSIRIK ET AL.

generated according to F , and x̄′ is the profile of the packing resulting if i is packed
into P according to SrS,

E [φ(x̄′)r : x̄] < φ(x̄)r + dφ(x̄)r−2.

Proof. Note that xh ≤ φ(x̄), 1 ≤ h ≤ B − 1 by definition. The result thus
follows by (8.12) in the proof of Theorem 8.2. �

Lemma 8.5. Let y and a be positive and r ≥ 2. Then
y − a ≤ y

r − ar
rar−1

. (8.14)

Proof. Consider the functions fa(y) = (y − a)− (yr − ar)/(rar−1), a > 0. We
need to show that for all a > 0, fa(y) ≤ 0 whenever y > 0. But observe that the
derivative

f ′a(y) = 1−
ryr−1

rar−1
is greater than 0 if y < a, equals 0 if y = a, and is less than 0 if y > a. Thus fa(y)
takes on its maximum value when y = a, in which case it is 0, as desired. �

Lemma 8.6. Suppose F is a distribution with no multiply-occurring dead-end
levels and r ≥ 2. Let P be any packing that can be created by applying SrS to a list
of items all of whose sizes are in UF . If x̄ is the profile of P and φ(x̄) > r

2Br+1/r

where B is the bin size, then there is a size s ∈ UF such that if an item of size s is
packed by SrS into P , the resulting profile x̄′ satisfies

φ(x̄′)r ≤ φ(x̄)r − φ(x̄)
r−1

B(r
2−1)/r .

Proof. Let xh be the largest level count. By the definition of φ we have φ(x̄)
r ≤

Bxrh and hence xh ≥ φ(x̄)/B1/r ≥ r2Br. Thus h cannot be a multiply-occurring
dead-end level and as in the proof of Lemma 3.7, there must be some h′ ≥ h and
size s ∈ UF such that h′ + s ≤ B and

∆ ≡ xh′ − xh′+s ≥ xh/B ≥ φ(x̄)

B1+1/r
≥ r2Br−1.

Let y denote xh′+s. Then if an item of size s were to be packed, we could reduce∑B−1
h=1 x

r
h by at least

(y +∆)r − (y +∆− 1)r + yr − (y + 1)r.
Using Taylor’s Theorem as in the proof of Theorem 8.2 but with one fewer term in
the expansions than in (8.10) and (8.11), we conclude the reduction is at least[
r(y +∆)r−1 − r(r − 1)(y +∆− θ1)

r−2

2

]
−
[
ryr−1 +

r(r − 1)(y + θ2)r−2
2

]
,

where 0 < θ1, θ2 < 1. But note that the amount we must subtract due to the two
lower order terms is less than

r(r − 1)(y +∆)r−2 = r(y +∆)r−1

(y +∆)/(r − 1) ≤
r(y +∆)r−1

∆/r

≤ r(xh)
r−1

rBr−1
=
(xh
B

)r−1
≤ ∆r−1.

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 59

Since the higher order terms are r(y + ∆)r−1 − ryr−1 ≥ r∆r−1, we can conclude
that φ must decrease by at least

(r − 1)∆r−1 ≥ (r − 1)
(
φ(x̄)

B1+1/r

)r−1
≥ φ(x̄)r−1

B(r2−1)/r

as claimed. �

To prove that φ satisfies the Expected Decrease Hypothesis of Hajek’s Lemma, we
argue much as in the proof of Theorem 3.4. Since F is a bounded waste distribution,
there is an ε > 0 such that the process of generating items according to F is
equivalent to generating items of the size s specified in Lemma 8.6 with probability
ε and otherwise generating items according to a slightly modified perfectly packable
distribution F ′. By Lemmas 8.4 and 8.6, the expected increase in φ(x̄)r is then at
most

(1 − ε)dφ(x̄)r−2 − εφ(x̄)
r−1

B(r2−1)/r
,

which, assuming φ(x̄) is sufficiently large, is less than −bφ(x̄)r−1 for some constant
b > 0 depending only on F and r. By Lemma 8.5 we thus have

E [φ(x̄′)− φ(x̄)] ≤ − bφ(x̄)
r−1

rφ(x̄)r−1
= − b
r

and so the Bounded Decrease Hypothesis holds for φ, Hajek’s Lemma applies, and
we can conclude as in Theorem 3.4 that EWSrSn (F) = O(1). �

8.3 Combinatorial Variants

In this section we consider satisfying the Sublinearity Property with algorithms
that do not depend on powers of counts. As our first two candidates, consider
the algorithms that are in a sense the limits of the SrS algorithms as r → 1 and
r →∞, a promising approach since the SrS algorithms all satisfy the Sublinearity
Property and may even satisfy the Square Root Property.
An obvious candidate for a limiting algorithm when r → 1 is S1S, the algorithm

that always tries to minimize
∑B−1
h=1 NP (h), i.e., the number of partially filled bins.

To do this, we simply must never start a new bin if that can be avoided and must
always perfectly pack a bin when possible (i.e., if the size of the item to be packed
is s and there is a partially full bin with level B − s, we must place the item in
such a bin). By itself this is not a completely defined algorithm, since one needs to
provide a tie-breaking rule. If we use our standard tie-breaking rule (always chooses
a bin with the highest acceptable level), note that S1S reduces to the classic Best
Fit algorithm. As already observed in the Introduction, Best Fit provably has
linear expected waste for the bounded waste distributions U{8, 11} and U{9, 12},
and empirically seems to behave just as poorly for many other such distributions
[Coffman, Jr. et al. 1993]. We doubt that any other tie-breaking rule will do better.
For instance, if we always choose the lowest available level when the item will not
pack perfectly, we typically do much worse than Best Fit. Thus no S1S algorithm
is likely to satisfy the Sublinearity Property.
Taking the limit of SrS as r → ∞ seems more promising. The algorithm S∞S

proceeds as follows. Given an item a of size s, we choose the level h∗ of the bin into
Journal of the ACM, Vol. V, No. N, Month 20YY.

60 · J. CSIRIK ET AL.

which we place a as follows. Let ∆(h) = NP (h)−NP (h+ s), 0 ≤ h ≤ B− s, where
we take NP (0) = 0 and NP (B) = −1 by convention. We first consider the set of
bin levels S1 = {h : 0 ≤ h ≤ B − s, and ∆(h) ≥ 2}. If S1 �= φ, we let h∗ be that
h ∈ S1 that has the maximum value of NP (h), ties broken in favor of the h with the
largest value of ∆(h), and ties for this value broken according to largest value of h.
If S1 is empty, we next consider the set S2 = {h : 0 ≤ h ≤ B − s, and ∆(h) = 1}.
If S2 �= φ, then we let h∗ be the largest h ∈ S2. If S2 is also empty, we know that
for all h, 0 ≤ h ≤ B − s, ∆(h) ≤ 0. Let h∗ be that h with the minimum value
for NP (h + s), ties broken in favor of the largest value for ∆(h), and ties for this
value broken according the the largest value of h. It is not difficult to see that for
any fixed packing these are the choices that will be made by SrS for all sufficiently
large values of r.

Experiments suggest that S∞S has bounded expected waste for U{8, 11} and
U{9, 12} as well as all the bounded waste distributions U{h, 100}, 1 ≤ h ≤ 98.
It still violates the Sublinearity Property, however. For example, EWOPTn (U{18 :
27, 100}) = Θ(√n) but experiments clearly indicate that S∞S has linear waste
for this distribution. A simpler distribution exhibiting the behavior is F with
B = 51, UF = {11, 12, 13, 15, 16, 17, 18}, and all sizes equally likely. Experiments
convincingly suggest that EWS∞Sn (F) = Θ(n), but it is easy to see that this is
a perfectly packable distribution, since both the first four and the last three item
sizes sum to B = 51. Moreover, if one modifies F to obtain a distribution F ′ in
which items of size 1 are added, but with only 1/10 the probability of the other
items, one obtains a bounded waste distribution for which S∞S continues to have
linear waste. Using other tie-breaking rules, such as preferring the lower level bin,
appears only to make things worse. So no S∞S algorithm is likely to satisfy the
Sublinearity Property.

Not surprisingly, the simpler combinatorial variants on S∞S that restrict atten-
tion solely to one of the two values NP (h) and NP (h + s) also fail. In the first of
these, Smaxh, we always place an item of size s in a bin whose level has maximum
count among all levels no greater than B−s, assuming that the count for empty bins
is by definition 0. In the second, Sminh, we place the item so as to minimize the
count of the resulting level, assuming that the count for full bins is by definition −1.
Smaxh has linear waste for U{8, 11} and U{9, 12}, perhaps not surprising since
even if the item to be packed would perfectly fill a bin, Smaxh may well choose
not to do this. Sminh is better, seeming to handle the U{j, k} appropriately.
However, it has linear waste on the same three perfectly packable/bounded waste
distributions mentioned above on which S∞S also failed. Perhaps surprisingly, its
constants of proportionality appear to be better than those for S∞S on the first
two of these distributions. This may be because, unlike the latter algorithm, it will
choose a placement that perfectly packs a bin when this is possible.

Indeed, perfectly packing a bin when that is possible would seem like an inherently
good idea. We know that it is not necessary to do this, since SS does not always
do it, but how could it hurt? Let perfectSS be the algorithm that places the current
item so as to perfectly pack a bin if this is possible, but otherwise places it so as to
minimize ss(P). Surely this algorithm should do just as well as SS. Surprisingly,
there are cases where this variant too violates the Sublinearity Property.

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 61

Consider the distribution F with bin size B = 10, UF = {1, 3, 4, 5, 8}, p(1) =
p(3) = p(5) = 1/4, and p(4) = p(8) = 1/8. This is a perfectly packable distribution,
as the probability vector can be viewed as a convex combination of the perfect
packing configurations (8, 1, 1), (4, 3, 3), and (5, 5). However, experiments show
that perfectSS has linear waste for this distribution (as does Sminh but not S∞S).
Why does this happen? Note that essentially all the items of size 1 must be used
to fill the bins that contain items of size 8. Thus whenever a 1 arrives and there is
a bin of level 8, we need to place the 1 in such a bin. Unfortunately, perfectSS will
prefer to put that 1 in a bin with level 9 if such a bin exists, and bins with level
9 can be created in other ways than simply with an 8 and a 1. Three 3’s or a 5
and a 4 will do. On average this happens enough times to ruin the packing. (The
count for level 9 never builds up to inhibit the nonstandard creation of such bins
because level 9 bins keep getting filled by 1’s.) Standard SS avoids this problem
and has Θ(

√
n) expected waste because it allows the counts for levels 8 and 9 to

grow roughly as
√
n, with the latter being roughly half the former. This means

that placing a 1 in a bin with level 8 is a downhill move, but creating a level 9 bin
by any other means is an uphill move.

8.4 Variants Designed for Speed

Our final class of alternatives to SS are designed to improve the running time,
possibly at the cost of packing quality. Recall that J denotes the number of item
sizes under F . The Θ(nB) running time for the naive implementation of SS can be
improved to Θ(nJ) by maintaining for each item size s ∈ UF the list-of-lists data
structure we introduced to handle items of size 1 in the implementation of algorithm
SS∗ described in Section 6. This approach unfortunately will not be much of an
improvement over the naive algorithm for distributions F with large numbers of
item sizes, and it remains an open problem as to whether SS (or any of the variants
described above that satisfy the Sublinearity Property) can be implemented to run
in o(nB) time in general. However, if one is willing to alter the algorithm itself,
rather than just its implementation, one can obtain more significant speedups.
Indeed, we can devise algorithms that satisfy both the Square Root and Bounded
Waste Properties and yet run in time O(n logB) or even O(n) (although there will
of course be a tradeoff between running time and the constants of proportionality
on the expected waste).
We shall first describe the general algorithmic approach and prove that algorithms

that follow it will satisfy the two properties. We will then show how algorithms
of this type can be implemented in the claimed running times. The key idea is to
use data structures for each item size, as in the O(nJ) implementation mentioned
above, but only require that they be approximately correct (so that we need not
spend so much time updating them). In particular, we maintain for each item size
s a set of local values NP,s(h) for the counts NP (h), and only require these local
counts satisfy ∣∣NP (h)−NP,s(h)∣∣ ≤ δ (8.15)

for some constant δ. When an item of size s arrives, we place it so as to minimize
sss(P) =

∑B−1
i=1 NP,s(h)

2, subject only to the additional constraint that we cannot
place the item in a bin with local count δ or less, since there is no guarantee that

Journal of the ACM, Vol. V, No. N, Month 20YY.

62 · J. CSIRIK ET AL.

such bins exist. Let ApproxSSδ be an algorithm that operates in this way.

Lemma 8.7. Suppose F is a perfectly packable distribution with bin size B, P is
a packing into bins of size B, δ ≥ 0, and x is an item randomly generated according
to F . Then if x is packed according to ApproxSSδ, the expected increase in ss(P)
is at most 10δ + 3.

Proof. We first need a generalization of Claim 2.3 from the proof of Lemma
2.2:

Claim 8.8. Suppose F is a perfectly packable distribution with bin size B and
δ ≥ 0. Then there is an algorithm AF such for any packing P into bins of size B,
if an item x is randomly generated according to F , AF will pack x in such a way
that x does not go in a partially filled bin with a level h for which NP (h) ≤ δ and
yet for each level h with NP (h) > δ, 1 ≤ h ≤ B − 1, the probability that NP (h)
increases is no more than the probability that it decreases.

This is proved by a simple modification of the proof of Claim 2.3 to require that
for each optimal bin the items are ordered so that all the levels S1 through Slast(Y)
have counts greater than δ and none of the levels Slast(y)+ s(yi) do for i > last(y).

Claim 8.8 implies that the expected increase in ss(P) under AF is at most 2δ+2:
If a count greater than δ changes, the proof of Lemma 2.2 implies that the expected
increase in ss(P) is at most 1. Counts of δ or less can only increase, but in this
case ss(P) can increase by no more than 2δ + 1. At most two counts can change
during any item placement, and at most one of them can be a count of δ or less.
Thus the expected change in ss(P) obeys the claimed bound, and if SSδ is the
algorithm that places items so as to minimize ss(P) subject to the constraint that
no item can be placed in a partially filled bin whose level’s count is δ or less, we can
conclude that the expected increase in ss(P) when SSδ places an item generated
according to F is also at most 2δ + 2.
So consider what happens when ApproxSSδ packs an item with size s ∈ UF .

Suppose that placement is into a bin of level h, and that NP (h+ s)−NP (h) = d.
Note that by Lemma 1.2 the smallest increase in ss(P) this can represent is 2d+1.
Now by (8.15) we must haveNP,s(h+s)−NP,s(h) ≤ d+2δ and so the move chosen by
ApproxSSδ must place the item in a bin of level h

′ satisfyingNP,s(h′+s)−NP,s(h′) ≤
d+2δ. But then, again by (8.15), we must have NP (h

′+ s)−NP (h′) ≤ d+4δ and
hence, again by Lemma 1.2, ss(P) can increase by at most 2d+ 8δ+ 2, or at most
8δ + 1 more than the increase under SSδ. Since the expected value for the latter
was at most 2δ + 2, the Lemma follows. �

Theorem 8.9. For any δ ≥ 0,
(a) If F is a perfectly packable distribution, then EWApproxSSδn (F) = O(

√
n).

(b) If F is a bounded waste distribution with no multiply-occurring dead-end levels,
then EWApproxSSδn (F) = O(1).

(c) Suppose ApproxSS′δ is the algorithm that mimics ApproxSSδ except that it never
creates a bin that, based on the item sizes seen so far, has a dead-end level,
unless this is unavoidable, in which case it starts a new bin. Then this algo-

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 63

rithm has EW
ApproxSS′δ
n (F) = O(1) for all bounded waste distributions, as well

as EW
ApproxSS′δ
n (F) = O(

√
n) for all perfectly packable distributions.

Proof. Note that for any fixed δ, 10δ + 3 is a constant, and having a constant
bound on the expected increase in ss(P) was really all we needed to prove the above
results for SS and SS′. Thus the above three claims all follow by essentially the
same arguments we used for SS and SS′, with constants increased appropriately
to compensate for property (8.15). �

Let us now turn to questions of running time.

Lemma 8.10. Suppose t ≥ 1 is an integer. There are implementations of
ApproxSStB and ApproxSS

′
tB that work for all instances with bin size B and run

in time O(B2 + n(1 + (logB)/t)), where the hidden constants do not depend on t,
B, or n.

Proof. We shall describe an implementation for ApproxSStB . The implemen-
tation for ApproxSS′tB is almost identical except for the requirement that we keep
track of the dead-end levels and avoid creating bins with those levels when possible,
which we already discussed in Section 3.2 and which cumulatively takes at most
O(B2) time.
Our implementations maintain a data structure for each item size s encountered,

the data structure being initialized when the size is first encountered. We are unfor-
tunately unable to use the list-of-list data structure involved in the implementation
of SS∗, since the efficiency of that data structure relied on the fact that counts could
only change by 1 when they were updated. Now they may change by as much as
tB. Therefore we use a standard priority queue for the up to B possible levels h of
bins into which an item of size s might be placed. Here the “possible levels” for s
are 0 together with all those h such that h+ s ≤ B and NP,s(h) > tB. The levels
are ranked by the increase in sss(P) that would result if an item of size s were
packed in a bin of level h. We can use any standard priority queue implementation
that takes O(1) time to identify an element with minimum rank and O(logB) to
delete or insert an element. The priority queue for size sj is created when the first
item of this size is seen. This will take O(B) time per queue, for a total of at most
O(B2).
When we pack an item of size s, we first identify the “best” level h for it as

specified by the priority queue for s. We then place x in a bin of level h and update
the global counts NP (h) and NP (h + s). This all takes O(1) time. Local counts
are not immediately changed when an item is packed. Local count updates are
performed more sporadically, and initiated as follows. We maintain a counter c(h)
for each level h, initially set to 0. This counter is incremented by 1 every time
NP (h) changes and reset to 1 whenever it reaches the value tB + 1. Suppose the
item sizes seen so far are s1, s2, . . . , sj . The local count NP,si(h) is updated only
when the new value of c(h) satisfies c(h) ≡ 0(mod t) and i = c(h)/t. Note that this
means that NP (h) changes only tB times between any two updatings of NP,si(h)
and so (8.15) is satisfied for δ = tB.
WheneverNP,s(h) is updated, we make up to two changes in the priority queue for

s, each of which involves one or two insertions/deletions and hence takes O(logB)

Journal of the ACM, Vol. V, No. N, Month 20YY.

64 · J. CSIRIK ET AL.

time: First, if h+ s ≤ B we may need to update the priority queue entry for h. If
h is in the queue but now NP,s(h) ≤ tB, then we must delete it from the queue. If
it is not in the queue but now NP,s(h) > tB we must insert it. Finally, if it is in
the queue and NP,s(h) > tB, but its rank is not the correct value (with respect to
NP,s(h) and NP,s(h+ s)), then it must be deleted and reinserted with the correct
value. Similarly, if h− s ≥ 0, then we may have to update the entry for h− s.
It is easy to verify that the above correctly implements ApproxSStB. The overall

running time is O(B2) for initializing the priority queues, O(n) for packing and
updating the true counts NP (h) and O((n/t) logB) for updating local counts and
priority queues, as required. �

Theorem 8.11. There exist algorithms A1SS, A2SS, A1SS′ and A2SS′ such
that

(a) All four satisfy the Square Root and Bounded Waste Properties.

(b) A1SS′ and A2SS′ have bounded expected waste for all bounded waste distribu-
tions.

(c) A1SS and A1SS′ run in time O(B2 + n logB).
(d) A2SS and A2SS′ run in time O(B2 + n).

Proof. Given Theorem 8.9, it is easy to get algorithms with the above properties
from Lemma 8.10: If we take t = 1 we get running time O(n logB) and if we take
t = logB we get running time O(n). (Of course the bigger the value of t, the worse
the constants of proportionality for the expected waste.) �

We can also devise fast analogues of Section 6’s distribution-specific algorithms
SSF that always have ERA∞(F) = 1, even for distributions whose optimal expected
waste is linear. This however involves more than just applying the approximate
data structures described above. The O(nB) running times for the SSF algorithms
derive from two sources, only one of which (the need for Θ(B) time to pack an item)
is eliminated by using the approximate data structures. The second source of Θ(nB)
time is the need to possibly pack Θ(nB) imaginary items of size 1.
To avoid this obstacle, we need an additional idea. Recall that SSF attains

ERSS
F

∞ (F) = 1 by simulating the application of SS to a perfectly packable dis-
tribution F ′ derived from F . The modified distribution F ′ was constructed using
the optimal value c(F) for the linear program of Section 5. Distribution F ′ was
equivalent to generating items according to F with probability 1/(1 + c(F)) and
otherwise generating an (imaginary) item of size 1.
Our new approach uses more information from the solution to the LP. Let v(j, h),

1 ≤ j ≤ J and 0 ≤ h ≤ B − 1, be the variable values in an optimal solution for the
LP for F . For 1 ≤ h ≤ B − 1 define

∆h ≡
J∑
j=1

v(j, h− sj)−
J∑
j=1

v(j, h).

Note that ∆h is essentially the percentage of partially filled bins in an optimal
packing whose gap is of size B−h. Let T =∑B−1h=1 ∆h and note that we must have
T ≤ 1. Our new algorithm uses SS to pack the modified distribution F ′′ obtained
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 65

as follows. With probability 1/(1 + T) we generate items according to the original
distribution F . Otherwise (with probability T/(1 + T)) we generate “imaginary”
items according to the distribution in which items of size s have probability ∆B−s.
It is not difficult to show that this is a perfectly packable distribution and that the
expected total size of the imaginary items is c(F), as in SSF . Now, however, the
number of imaginary items is bounded by n, so the time for packing them is no
more than that for packing the real items, and hence can be O(n logB) or O(n) as
needed.
One can construct a learning algorithm SS∗∗ based on these variants just as we

constructed the learning algorithm SS∗ based on the original SSF algorithms. We
conjecture that SS∗∗ will satisfy the same general conclusions as listed for SS∗ in
Theorem 6.3. The proof will be somewhat more complicated, however, and so we
leave the details to interested readers.

We should note before concluding the discussion of fast variants of SS that
our results on this topic are probably of theoretical interest only. A complicated
O(B2 + n logB) algorithm like ApproxSSB would be preferable to an O(nB) or
O(nJ) implementation of SS only when B is fairly large, presumably well over 100.
However, the constants involved in the expected waste produced by ApproxSSB
are substantial in this case. For example, consider the bounded waste distribution
U{400, 1000}. For this distribution we simulated ApproxSS400, which should pro-
duce less waste than ApproxSSB when B = 1000 and should only be 2.5 times
slower. For n = 100, 000, ApproxSS400 typically uses 100,000 bins, i.e., one per
item and roughly 5 times the optimal number, even though Theorem 8.11 says that
the expected waste is asymptotically O(1). On the other hand, Best Fit, which
itself runs in time O(n logB) but is conjectured to have linear expected waste for
this distribution, empirically uses roughly 0.3% more bins than necessary. (SS
uses roughly 0.25%.) Things have improved by the time n = 10, 000, 000, but not
enough to change the ordering of algorithms. Now ApproxSS400 uses only roughly
9.8% more bins than necessary, while Best Fit uses roughly 0.28%. SS is down to
an average excess of 0.0025%. This consists of roughly 50 excess bins for SS versus
5,600 for BF versus 200,000 for ApproxSS400 It does not appear that ApproxSS400
is likely to catch BF until the value of n becomes very much larger.

9. CONCLUSIONS AND OPEN QUESTIONS

In this paper we have discussed a collection of new, nonstandard, and surprisingly
effective algorithms for the classical one-dimensional bin packing problem. We
have done our best to leave as few major open problems as possible, but several
interesting ones do remain:

—Can SS itself be implemented to run in time o(nB), so that we aren’t forced to
use the approximate versions described in the previous section?

—What is max{ERSS∞ (F) : F is a discrete distribution}? The results of Section
4 only show that this maximum is at least 1.5 and no more than 3.0, an upper
bound that has subsequently been improved to 2.777... by Csirik et al. [2005].
A related question concerns the asymptotic worst-case performance ratio for SS,
which currently is only known to lie between 2.0 and 2.777... We conjecture that
in both cases the true answer lies nearer the lower bound.

Journal of the ACM, Vol. V, No. N, Month 20YY.

66 · J. CSIRIK ET AL.

—Is our conjecture correct that SrS satisfies both the Square Root and Bounded
Waste Properties for all r > 1? Is there any polynomial-time algorithm that sat-
isfies the Sublinearity Property and does not involve at least implicitly computing
the powers of counts?

—Can one obtain a meaningful theoretical analysis of the constants of proportion-
ality involved in the expected waste rates for particular distributions and the
various bin packing algorithms we have discussed? Empirically we have observed
wide differences in these constants for algorithms that, for example, both have
bounded expected waste for a given distribution F , so theoretical insights here
may well be of practical value.

—Is there an effective way to extend the Sum-of-Squares approach to continuous
distributions while preserving its ability to get sublinear waste when the optimal
waste is sublinear?

Finally, there is the question of the extent to which approaches like that embodied
in the Sum-of-Squares algorithm can be applied to other problems. A first step in
this direction is the adaptation of SS to the bin covering problem in Csirik et al.
[2001]. In bin covering we are given a set of items and a bin capacity B, and must
assign the items to bins so that each bin receives items whose total size is at least
B and the number of bins packed is maximized. Here “waste” is the total excess
over B in the bins and the class of “perfectly packable distributions” is the same
as for ordinary bin packing. The interesting challenge here becomes to construct
algorithms that have good worst- and average-case behavior for distributions that
aren’t perfectly packable, while still having O(

√
n) expected waste for perfectly

packable distributions. For details, see Csirik et al. [2001].
The results for bin covering suggest that the Sum-of-Squares approach may be

more widely applicable, but bin covering is still quite close to the original bin pack-
ing problem. Can the Sum-of-Squares approach (or something like it) be extended
to problems a bit further away?

ACKNOWLEDGMENTS

The authors thank the referees for their thorough reading of this very long paper,
which led to many useful suggestions for improving the presentation and helped us
avoid several significant technical imprecisions.

REFERENCES

Albers, S. and Mitzenmacher, M. 1998. Average-case analyses of first fit and random fit bin
packing. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, Philadelphia, Pa., 290–299.

Applegate, D. L., Buriol, L., Dillard, B., Johnson, D. S., and Shor, P. W. 2003. The
cutting-stock approach to bin packing: Theory and experiments. In Proceedings of the 5th
Workshop on Algorithm Engineering and Experimentation. SIAM, Philadelphia, Pa., 1–15.

Coffman, Jr., E. G., Courcoubetis, C., Garey, M. R., Johnson, D. S., McGeoch, L. A.,
Shor, P. W., Weber, R. R., and Yannakakis, M. 1991. Fundamental discrepancies between
average-case analyses under discrete and continuous distributions. In Proceedings 23rd Annual
ACM Symposium on Theory of Computing. ACM, New York, 230–240.

Coffman, Jr., E. G., Courcoubetis, C., Garey, M. R., Johnson, D. S., Shor, P. W.,Weber,
R. R., and Yannakakis, M. 2000a. Bin packing with discrete item sizes, Part I: Perfect packing
theorems and the average case behavior of optimal packings. SIAM J. Disc. Math. 13, 384–402.

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Sum-of-Squares Algorithm for Bin Packing · 67

Coffman, Jr., E. G., Courcoubetis, C., Garey, M. R., Johnson, D. S., Shor, P. W.,Weber,

R. R., and Yannakakis, M. 2002b. Perfect packing theorems and the average-case behavior
of optimal and online bin packing. SIAM Review 44, 95–108. Updated version of Coffman, Jr.
et al. [2000a].

Coffman, Jr., E. G., Johnson, D. S., McGeoch, L. A., Shor, P. W., and Weber, R. R.
Bin packing with discrete item sizes, Part III: Average case behavior of FFD and BFD. In
preparation.

Coffman, Jr., E. G., Johnson, D. S., Shor, P. W., and Weber, R. R. 1993. Markov chains,
computer proofs, and average-case analysis of Best Fit bin packing. In Proceedings 25th Annual
ACM Symposium on Theory of Computing. ACM, New York, 412–421.

Coffman, Jr., E. G., Johnson, D. S., Shor, P. W., and Weber, R. R. 1997. Bin packing with
discrete item sizes, part II: Tight bounds on first fit. Random Structures and Algorithms 10,
69–101.

Coffman, Jr., E. G. and Lueker, G. S. 1991. An Introduction to the Probabilistic Analysis of
Packing and Partitioning Algorithms. Wiley & Sons, New York.

Courcoubetis, C. and Weber, R. R. 1990. Stability of on-line bin packing with random arrivals
and long-run average constraints. Probability in the Engineering and Informational Sciences 4,
447–460.

Csirik, J., Johnson, D. S., and Kenyon:, C. 2001. Better approximation algorithms for bin
covering. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, Philadelphia, Pa., 557–566.

Csirik, J., Johnson, D. S., and Kenyon, C. 2005. On the worst-case performance of the sum-
of-squares algorithm for bin packing. E-Print arXiv:cs.DS/0509031, arXiv.org e-Print archive
(http://arxiv.org/archive/cs).

Csirik, J., Johnson, D. S., Kenyon, C., Shor, P. W., and Weber, R. R. 1999. A self orga-
nizing bin packing heuristic. In Proceedings 1999 Workshop on Algorithm Engineering and
Experimentation, M. Goodrich and C. C. McGeoch, Eds. Lecture Notes in Computer Science
1619, Springer-Verlag, Berlin, Germany, 246–265.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory
of NP-completeness. W. H. Freeman, New York, New York.

Gilmore, P. C. and Gomory, R. E. 1961. A linear programming approach to the cutting stock
problem. Oper. Res. 9, 849–859.

Gilmore, P. C. and Gomory, R. E. 1963. A linear programming approach to the cutting stock
program — Part II. Oper. Res. 11, 863–888.

Grötschel, M., Lovasz, L., and Schrijver, A. 1981. The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica 1, 169–197.

Hajek, B. 1982. Hitting-time and occupation-time bounds implied by drift analysis with appli-
cations. Adv. Appl. Prob. 14, 502–525.

Hoeffding, W. 1963. Probability inequalities for sums of bounded random variables. J. American
Statistical Association 58, 13–30.

Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., and Graham, R. L. 1974. Worst-
case performance bounds for simple one-dimensional packing algorithms. SIAM J. Comput. 3,
299–325.

Karmarkar, N. and Karp, R. M. 1982. An efficient approximation scheme for the one-
dimensional bin packing problem. In Proceedings of the 23rd Annual IEEE Symposium on
Foundations of Computer Science. IEEE Computer Society, Los Alamitos, Calif., 312–320.

Karp, R. M. and Papadimitriou, C. H. 1982. On the linear characterization of combinatorial
optimization problems. SIAM J. Comput. 11, 620–632.

Kenyon, C. and Mitzenmacher, M. 2002. Linear waste of best fit bin packing on skewed distri-
butions. Random Structures and Algorithms 20, 441–464. Preliminary version in Proceedings
of the 41st Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, Las Alamitos, Calif., 2000, 582–589.

Kenyon, C., Rabani, Y., and Sinclair, A. 1998. Biased random walks, Lyapunov functions,
and stochastic analysis of best fit bin packing. J. Algorithms 27, 218–235. Preliminary version

Journal of the ACM, Vol. V, No. N, Month 20YY.

68 · J. CSIRIK ET AL.

in Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,

Philadelphia, Pa., 1996, 351–358.

Rhee, W. T. 1988. Optimal bin packing with items of random sizes. Math. Oper. Res. 13,
140–151.

Rhee, W. T. and Talagrand, M. 1993a. On line bin packing with items of random size. Math.
Oper. Res. 18, 438–445.

Rhee, W. T. and Talagrand, M. 1993b. On line bin packing with items of random sizes – II.
SIAM J. Comput. 22, 1251–1256.

Vaidya, P. M. 1989. Speeding-up linear programming using fast matrix multiplication. In Pro-
ceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science. IEEE
Computer Society, Los Alamitos, CA, 332–337.

Valério de Carvalho, J. M. 1999. Exact solutions of bin-packing problems using column gen-
eration and branch and bound. Annals of Operations Research 86, 629–659.

van Vliet, A. 1992. An improved lower bound for on-line bin packing algorithms. Inf. Process.
Lett. 43, 277–284.

Received October 2002; revised September 2005; accepted September 2005

Journal of the ACM, Vol. V, No. N, Month 20YY.

