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Abstract

Petri-Nets with finitely many transitions and places are consid-
cred. A transition process is associated with each transition that
describes the production and consumption of tokens when the
transition is fired. Under certain assumptions about the fluctua-
tion of the above processes and for various models of the under-
lying Petri-Net, we derive conditions for the existence of firing
policies under which the number of tokens in the net satisfies
some stability conditions.

1. Petri-Nets with fluctuating transition
processes

Petri-Nets (PN’s) have been widely used to model systems
imvolving coordination among various components like multi-
processor systems and manufacturing facilities. In this paper we
consider the usual specification of a PN, consisting of m transi-
tions and n places, each with enough space to hold an arbitrary
numnber of tokens. In this paper we speak of running the net in
a certain mode. We suppose that running the net for one period
in mode k is equivalent to performing transition k once, and
changes the inventory level in place ¢ by Sk, tokens. It is a key
idea in this paper that S ; may be a random variable. For exam-
ple, when modelling a manufacturing system this corresponds to
there being unpredictable variations in the processes of demand
and production. Let 2;(t) denote the number of tokens in place i
at time £. Allowing 2;(1) to assume negative values corresponds
to allowing a backlog of tokens in place 7. This models situations
in which borrowing tokens of a certain type is possible provided
there is a compensating production of tokens at a later time. A
negative value of Sy ; indicates that transition & consumes tokens
from place ¢ and, in the case that x;(t) is negative, it increases
the backlog of tokens in that place.

Imagine that at each discrete time ¢,{t =0,1,...), onc mode
of transition must be selected and the net run in that mode
for the next time period. The central notion of the paper is
that il the cost of carrying inventory of tokens is to be finite
then the total number of tokens present should not remain large
tor long periods of time. We shall discuss two criteria that
should be satisfied. The first criterion is the requirement that
P(Z |z:i(t)] — 20) = 0. If this can be achieved by some op-
erating policy. we say the system is weakly — stabilizable, 1f
the inventory process converges to stationary regime then this
implies that @(t) has a well-defined distribution. A stronger con-
dition is to ask that the expected value of ¥ |2;(¢)| be bounded
by a constant, uniformly in 2. If this is possible we say that the
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system is stabilizable. Our aim is to give easily verifiable condi-
tions under which the above model of a PN is weakly-stabilizable
or stabilizable.

We begin with a description of the transition processes. Sup-
pose that on the t'th occasion that the system is operated in
mode & the change in the inventory of tokens of type 7 is Sk (t)-
Let .

Nealt) = 3 Sialu)
u=1

denote the cumulative change in the inventory of tokens of type ¢
due to the first ¢ periods of operation in mode k. Let Ni(t) be the
vector (Ngy(t),..., Np.(t)). Let Fi(s) be the o-field generated
by the entire history of the system up to the time mode kis about
to be used for the s'th time. Throughout the rest of the paper
we shall make the following assumption regarding the processes
Neat).

Assumption A. For all £,7,5 and ¢

E(lNk,i(s + t) — IV);’;(S) ~ tek,iH]:k(S)) < g(t)

where g(1)/t = 0 as t — oo.

This weak assumption simply states that the change to the in-
ventory occasioned by 1 periods of operation in mode k will have
an absolute deviation {rom its mean whose expected value grows
more slowly than linearly in #. One special case in which assump-
tion A satisfied is when S ;(¢) is an ergodic Markov process for
each k.i. Another is when S;;(t) is a second order stationary
process. Varlous kinds of renewal process also satisfy the as-
sumption. As we will show in the next sections, the above con-
dition is used for obtaining weak stabilizability. For obtaining
stabilizability we will use the following condition on the second
moments. Let

Ura(t) = Sealt) = E[Sia(t)]

Assumption B. There exists a (¢ > 0 such that for all

kolosyy syl Ly,

sith s3+t2
I:'( > l%('ln)“ 37 Ui(us) ) < Ot + ty).

Assumption B holds if the variance of Si;(f) is uniformly
bounded and the covariance (or autocovariance when &k = )
between Sgi{s) and Sp;(t) tends to zero sufficiently fast as
|/ = s| — oc. The asswmption holds, for example, when the
Sri(#)’s are independent, irreducible, aperiodic Markov chains.




The present paper develops some new theory, which for the
PN mode] allows one to make quite general assumptions about
fluctuations of the transition processes. Under the conditions
A and B we derive necessary and sufficient conditions for sta-
bility and give simple policies to achieve it. In previous work,
described in section 5, the policies that have been used to obtain
stability of related systems have required the use of artificially
complicated information about the state of the system and have
been randomizing. The present paper presents simpler policies.
In section 2 we present an algorithm for stabilizing our model
when a backlog of tokens is allowed. In section 3 we consider the
case in which backlogs are not allowed and the transitions of the
net have a particular structure. In section 4 we prove that the
conditions obtained for stabilizability are also necessary. Section
5 discusses related work and section 6 describes an algorithm for
checking the sufficient conditions.

2. Stability of a PN with backlogging

In this section we consider a PN in which @(%) can assume nega-
tive values, i.e. borrowing, or backlogging, of tokens is allowed.

Theorem 1 Consider the model described in section 1. Suppose
that tokens can be backlogged, assumption A holds, and the con-
vex cone generated by 0;....,0,, is the whole of R*. Then the
system is weakly-stabilizable.

Proof. Suppose that at time s the system has been operated
in mode k for sj, periods, s; + ...+ s, = s. The inventory level
is a(s) = ¥ Ni(sx). Consider the L, norm, ||z(s)||. We shall
prove the system is weakly-stabilizable by showing that there
exists an increasing sequence of random times, {o;}, tending to
infinity, such that both E(oiz1 — i) and E(||z(o:)||) are uni-
formly bounded for all i. Clearly, the second of these ensures
that P(||a(t)}] = o0) =0.

Let H be the convex hull in R™ of the points 6,,...,0,. The
origin must be in the interior of H. since as fy,..., 0, are gen-
erators for R™ there must be points in A in every direction from
the origin. Choose an integer ¢ > 0 and probabilities ay, .. .. m,
S ey = 1, such that

m

a(s)+ 1Y oyl = 0.

k=1

{1

This is can be done since for large enough ¢ the vector ~z(s)/¢
lies in the interior of H. Now for each £ choose integers t1,...,¢n
such that [ty —tax| < 1 and t = ¢; + ... + ¢,n. Note that this
implies,

n m

a(s) + 3t = [a(s)+1 S b+ Y b —t > et
k=1 k=1 k=1 k=1
< 0t =t )il < 62,
k=1

where we use as a bound &, = 3, ; 10,.].
The next step is to bound # in terms of ||v(s)||. Note that
H lies within the ball of radius 8;. Consider a ball of radius
8 > 0 that lies entirely within H. If ||z(s)]|| is sufficiently large
then max{|z;(s)|} will be large and we can choose the integer
t such that & < max{|zi(s)]}/t < &. Since |jz(s)||/v/n <
max{|z:(s)|} < ||z(s)]|, we have that for all z(s) sufficiently large
we can arrange to choose the o;’s and ¢ to satisfy (1) and also

so that
lle(s)l/ (V) < t < [[z(s){|/b:- @)
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Let D = {a : |la(s)]| £ L}, for L chosen sufficiently large that
we can ensure that (1) and (2) hold for integer ¢ where « is not in
D. Next we define the sequence of observation times {0, 01,.. .},
with oy = 0. If (0y) is in D run the system for one period in
any mode and let 0,4y = o; + 1. If x{0;) is not in D run the
system for 7; = ¢ periods with ¢; of these periods of transitions
in mode k, where t is chosen to satisfy (1) and (2) when s = o;
and the tx’s are as described above. In this case let oi41 = 0;+7;
and note the for s = o; and t = 7; we have that at time s + ¢,
conditional on all the history up to time s,

m

2(s) + 3 (Ni(sk + ) — Ni(sy)) )

k=1

3

+ 3 E(|Ne(sk + ti) — Ni(se) — Oit)

k=1

+{{1) < &+ (1),

Bllete + ) = 2

m

x(s) + Z Oity
k=1

z(s8) + E Oty
k=1

<

where since each #; is less than ¢ it follows that ((t) is o(t).

It follows from the left hand inequality in (2) that when ||z(s)||
is sufficiently large t will be large enough to imply ((¢)/t < 61/2;
suppose L is large enough to ensure this. Using the right hand
inequality in (2) we have ||z(s)||/(t6,) > 1 and thus

E(flz(t+ )} < &+ (@)ll(s)ll/ (261)
<6+ (1/2)l1z(s)l < pll2(s)ll 3)

for some p < 1. The final inequality holds for all ||z(s)|| suffi-
ciently large; again, assume L has been chosen large enough.
From the above discussion we have that if z(o;) is not in D
then E(llz(oi1)]]) < pllz(o:)|]. On the other hand if z(o;) is in
D then E(||#(0:41)]]) is uniformly bounded, by L +mnB. So for

all observation times
E(le(ois)l) < pE(Je(@9)])) + L + mnB.

Thus if {le(oo)l| < (L +mnB)/(1 — p) = M, then (3) implies
E(llz(o)|) £ M for all i. This is sufficient to ensure weak-
stability. Furthermore, since we have 82 < ||z(0:)l], it follows
that the expected value of the time between ohservations is less
than M/8;.

o
By imposing some extra conditions we can deduce the stronger
results that the system is stabilizable.

Theorem 2 Suppose that assumption B and the conditions of
theorem 1 hold. Assume also that the transition processes are
such that by using the policy described in proof of theorem 1 the
process x(t) is stationary. Then the system is stabilizable.

Proof.  The stationarity assumption implies that both
limy—oe E(||2(2)|]) and lime—co t7 E[T4L |2(s)}|] exist and have
the same value, Using the observations times, {0;}, constructed
in the proof of theorem 1, we have

tE [é nm)n] < tE [}:(éf nx(s)HJ
scoEE [£ (£ 1= custen)]
< o8 [5 (3 ot oustan)|

Now conditional on knowing o; and z(o;), the value of iy is
determined by the construction described in the proof of theorem




1. Note that assumption A implies that there exists a B < 0o
such that E(|Ny;(s+1)— Ny .(s)~10x;|) < Bt for all k,7,s and .
So from time o to time oy the value of E(||z(s)||) can increase
by at most mnl3(oiy, — 0;) and the above is

{=1
Y Bl = o) ([lelon)]| + mnBloia ~ 0:))]

<
=0
=1

< VST B(lata)PIL/8 + mnB/6E),
i=0

where the linal inequality follows from (o4 — 0;) < |le(ai)|}/61.
Hence the system will be stabilizable it Efje(o)]|® is uniformly
bounded for all 7. To see that this is the case, consider

E(flrt@)l*) £ (Ellx(e))? + E(|fa(os) ~ (4)

The first term on the right hand side is uniformly bounded, by
theorem 1. Let s, be the number of times for which production
mode k has been run hy time o;_;, and ¢; be the number of times
mode & is run between times o;_; and ¢;. The second term on
the right hand side of (4) is

Elx(a)lil*)

m syt 2
SN Ut l (oi-1)
k=1 t=s
m m | sp+ty sty
(ZZ Z(»hf) ZUlt) ’ Uzl)]
k=11=1 {| t=sy t=s)
<CFE [Z Z(tk +1)
k=1 I=1

<m*CE(o; —0im1) < 7712C'EH.7;(<71'_1)\|/51,

which is uniformly bounded by theorem 1.

3. Stability without backlogging

3.1 PN’s with producing and consuming transitions.  In this
section we suppose that inventories of tokens may not be nega-
tive. To do this we start with a restricted PN in which we can
separate the notions of adding and subtracting from inventories.
The system is said to be in a producing mode when any of modes
r+1,....m are used. Such modes only to add to the invento-
ries: that is, Sg(1) is nonnegative for each of these modes. The
system is said to be in a consuming mode when one of modes
1,...,r, is used. In such a mode S5 ;(t) is nonpositive. If the
requests arising from running the system in a consuming mode
for one time period can he met {rom inventory then this is done
and the system is next run in consuming mode without any fur-
ther production. However, if requests avise for tokens that are
not in the inventory then before allowing further requests the
system is run in procucing modes until all outstanding requests
are satisfied. Only after satislying all requests arising from one
period’s operation in consuming mode do we consider requests
arising from the next period of operation in conswning mode. As
before, when running the system we have a choice as to which
Stability is achicved il it is possible to
maintain inventories of bounded average size.

of the m modes we use.

Prior to stating theoren 3 we observe the following corollary
of assumption A: there exists a constant 27, that is independent
of the time s and the history up to s, and which for all k.4,
Oi; > 0, it is the case thal after running mode & for s periods
the expected number of periods for which it is required to run
mode & until one more product 7 is produced s less than 27°. We
see this since if 0y ; > 1.
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P(Npils +1) = Ny ils) < L Fuls))

P(Nils +1) = Ny i(s) = 10, < 1 — 10| Fils))
P(( \L ( F1) = Nial(s) —10,,)™ > 10, ~ 1| Fuls))
E

((Nis(s + 1) — Nig(s) — 18)7 | Ful8)) /(86 — 1)

By assumiption A the final term is less than 1/2 for all t greater
than some integer T sufficiently large. Thus for any history up
to time s the probability of producing at least one token of type
¢ during the next T periods of use of mode k is at least 1/2.
That is,

Il

I

IA

P(Nii(s+1) = Nia(s) > 1| Fuls)) = 1/2.

Since this holds for s = w,u + T,u + 2T, ..., we see that the
expected time until one product of type 7 is produced is less
than T = 2T. Clearly, we can take T' large enough that this
holds wuniformly for all k and .

Theorem 3 Suppose that for the model described above assump-
tion A holds for all Ny(t) and the convex cone genevated by
0, is the whole of R™. Then the system is weakly-
stabilizable. PFurthermore, if the assumptions of theorem 2 hold
the system is stabilizable.

Proof.
rem 1.

The proof is a modification of the proof for theo-
At every observation time o; the inventory z(g;) is
nomnegative. As in the proof of theorem 1 we solve (1) and
»]10\\ that for ||a(o;)| sufficiently large # can be an integer with
o)l {6a/m) < t < ||a(o:)]|/61. As in the proof of theorem
1 we choose #; such that |apt — i) < Land ¢ =t; + ...+t
If 2(o;) is in D we run any producing mode for one period and
set o;41 = o; + 1. If (o) is not in D we first run each pro-
ducing mode k for ¢; periods, ¥ = » +1,...,m and then run
each consuming mode for ¢ periods, & 1,... Ignore for
the moment the fact that in doing this some components of z(t)
may go negative. In a similar manner as in the proof of theorem
1, we have that the inventory satisfies, for s = ¢; and t = 7,

d )

s +((1).
However. inventories are not allowed to go negative. So suppose
the effect of these ¢ periods is to change inventory of type k to-
kens by Cy. The policy we shall use is augmented by the proviso
that if following any period during which the system is run in
consuming mode a token j is requested that is not in the inven-
tory, then a producing mode & is chosen for which €;; > 0 and
the system is run in mode k until a token of type j is produced.
As demonstrated prior to the statement of the theorem, assump-
tion A implies that the expected number of periods of production
required to produce one more token of type j is bounded for all
j by some T < oc. The number of times we shall have to ini-
tiate extra production periods because of shortfalls in numbers
of tokens of type j is at most (2;(c;) + C;)~. The result of all
such additional production periods, say v; periods in total, due
to shortages for all types of product, will be to produce some fur-
ther number of tokens of type j, say Z;. The next observation
1t follows {from assumption

T

™

als) 4+ D (Nilsk + te) — Ni(si))

k=1

It

< (5)

time is taken as o4y = oy + 7 +v;
A and (5) that



TiE((l‘jm‘) +C5)”

j=1

E(v)

o) 4 S (Nels + £) — Ni(s))

k=1

IA

TE(

)
and therefore E(v;) is o(t). Thus E(Z;) is also o(t). Let C and
Z be the veclors with components C; and Z;. The inventory at

the next observation time will be

(2(0)) + C)F + Z = (a(o;) + C)
(a(o) +C)F + Z.

<

2(0it1)

Thus ||a(gi41)]] has an o(t) bound of & + ((t) + [|E(Z)|}. The
theorem is completed along the same lines as theorem 1. Under
the assumptions of theorem 2

2, a similar proof shows that the
system is stabilizable.

[}

3.2 Deterministic transitions and fluctuating inputs. In this sec-
tion we present a PN as a general model for a manulacturing
system and apply some of the ideas from previous sections. We
think of a manufacturing system that may be modeled by n
distinct queues. Some queues are queues of orders for finished
products. Other queues represent inventories of raw materials,
parts and subassemblies, or work-in-progress waiting for process-
ing at a given machine. Items arrive from outside the system
to these queues according to a stochastic process. The arriv-
ing items are supplies of raw materials and orders for finished
products. As above, we let z;(t) be the number of items in
queue 7 at time t. We shall suppose that a mode of manu-
facture makes deterministic changes to the queues, subtracting
items from some queues and adding items to others. Subtrac-
tions correspond to the consumption of raw materials or the use
of intermediate subassemblies to build other subassemblies and
finished products. A final assembly operation subtracts from
certain queues the resources required to build a finished product
and then also subtracts one unit from the queue of unfilled orders
for that product. A limiting constraint in this model is that the
queues are not allowed to assume negative values, corresponding
to the case in which a manufacturing mode cannot be executed if
the subassemblies or materials it needs are not already available.

As in the previous section suppose that the t'th period of ar-
rivals adds to 2 the vector So(), which for this section is assumed
to be nonnegative in every component. The modes of manufac-
ture make deterministic changes to the queues by addition to
a(t) of the vectors Sy,...,Sy; these are fixed vectors that may
have both positive and negative components. The above model
corresponds to a PN where modes of manufacturing correspond
to arbitrary deterministic transitions, and queues correspond to
places. There is a unique fluctuating transition corresponding
to mode 0. This transitioun does not consume any tokens, and
when fired for the #'th time it adds a random number Sy (t) of
tokens to place 7, ¢ = 1,....m. Note that if there is a nonnega-
tive lincar combinations of Sy,..., S, equal to 0, it is possible,
given a large enough initial inventory, to construct a policy that
stabilizes the system but never uses mode 0. Since this does not
model a practical alternative we shall only consider policies that
select mode 0 infinitely often. We desire to stabilize the system

by ensuring that for all ¢ and ¢ we have E(xi(t)) < B for some
B.

Without loss of generality suppose it is exactly the first » com-
ponents of p that are nonzero. Let

F={eeR" :a<0and y;=0fori>r}.
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Here T' is the set of nonpositive vectors that are only nonzero
in components corresponding to queues to which Sy(¢) can add
items. We call these first r queues the imput queves and the
remaining queues the intermediate queues. Let

A={z el :e=T,0u5 ar >0}

be the set of vectors in I' that can be represented as E{Y; nzSk]
for nonnegative integer-valued random variables n;. It con-
tains all those random combinations of the manufacturing modes
whose effect is to not increase the size of the input queues and
to leave the sizes of intermediate queues unchanged. We provide
a lemma and a theorem that characterize stability.

Lemma 1 A is a finitely generated cone whose generators may
be taken to be nonpositive integer-valued vectors. Each of these
generators can be written as « positive linear combination with
integer coefficients of the vectors Sy,..., Sp.

Proof. Since the vectors Si,..., S, are integer-valued they
generate a cone that can be written as {x : Az > 0} for some
matrix A with integer coefficients. Similarly, ' = {& : Bx > 0}
for some B with coefficients that are all —~1, 0 or 1. Thus A =
{z : Ay > 0, Bx > 0}. Since the generators of A must be rational
vectors and they lie in the cone generated by Sy,..., Sn, each
of them can be expressed as a nonnegative linear combination of
the S).’s. There must be such linear combinations in which the
multipliers of the Si’s can be taken to be nonnegative rationals.
It follows, by rescaling the generators, that there is a choice of
generators for which the multipliers of the S)’s are nonnegative
integers.

w}

Let 09 and A be the restrictions of §; and A to their first =
components, i.e. the nonzero components of 6.

Theorem 4 Suppose the arrival process No(t) satisfies assump-
tion A and —8§ lies in the interior of the convex cone A'. Then
the system is weakly-stabilizable. Furthermore, there exists a
weakly-stabilizing policy under which the intermediate queue sizes
are uniformly bounded. If the assumptions of theorem 2 hold then
weakly-stablilizable may be strengthened to stabilizable.

Proof. Using lemma 1, let 57,...,5% be the generators of
A such that S = Ty uwSy, I = 1,...,d, where the p’s are
nonnegative integers. We can associate with each S} a new man-
ufacturing mode that corresponds to running mode & for uy
times, £ = 1,...,m. Consider the new system where the arrival
modeis the same as before and the production modes are the
ones corresponding to the S}, I = 1,...,d. If we project the
state of the system to one in which we watch only the input
queues then we can weakly-stabilize this system while keeping
the input queues nonnegative. This follows from an application
of theorem 3 when there is a single producing mode correspond-
ing to So and d request modes corresponding to the S)’s. Let
K = max/{> pu} maxes1,:{|Ss:]}. One can see that if before
running any mode 5] the size x; of each intermediate queue is
greater than K, then while running the Si’s comprising 5] this
state will remain within the range z; + K, and at the end reas-
sume the value ;. This implies that if the intermediate queues
sizes are all at least [ initially we can weakly-stabilize the pro-
jection of the system onto its input queues and thereby weakly-
stabilize the complete system as well while ensuring that the
intermediate queuve sizes are uniformly bounded. If we assume
the conditions of theorem 2 a similar proof shows the system is
stabilizable.

[m]




4. Necessary conditions for stabilizability

In the previous sections we have given several variations of a
model for a PN and derived sufficient conditions for these models
to be weakly-stabilizable or stabilizable. In theorems 1-3 it was
required that the cone generated by positive linear combinations
of #1,...,0; be the whole of R". This condition is necessary in
the sense that if the cone generated by @y, .., 0, is not the whole
of R™ then, there are processes Si(¢) for which the system cannot
be statbilized. In this section we shall show that the sufficient
condition is necessary when the processes Sy ;(¢) are independent
Bernoulli processes. We discuss the necessity for theorem 2; the
necessity argument is similar for the other theorems. Recall that
the system is run in one of & possible modes during each time
period. Suppose the {S;;(¢)} are mutually independent random
variables and {Si(t)}{2, are identically distributed. Assump-
tion A will hold.

Without loss of generality assume that if any of the m modes
are not available then the process is no longer stabilizable. As-
sume also that the inventory level of each token is affected by
at least one mode. Under the first assumption it is easy to see
that to stabilize the system every mode must almost suvely be
used infinitely often. Suppose that there is such a policy, but
the cone generated by 6,...,0,, is not the whole of R". Then
by Farkas’ lemma. there exists a ¢, which may be chosen to have
integer coefficients, such that ¢70, > 0 for all k&. Choose such
a ¢ and consider the integer-valued process y(t) = ¢T2(¢). Note
that if the system is run in mode & during period t we have
Ely(t+1)~y(t)|2(t)] = ¢T0 > 0 and thus y(t) is a submartingale
and by the martingale convergence theorem it tends to a limit on
every sample path. Now this must almost surely be a finite limit,
since |y(¢)] < llg|lllz(2)]], and E[z(t)] is uniformly bounded for
all ¢ since it is produced by a stabilizing policy. Since y(t) is an
integer, its limit on almost every sample path must be an integer
and y(t) must be equal to this limit for all ¢ sufficiently large.
But since we have assumed each mode is almost surely used in-
finitely often this is impossible unless on almost every sample
path the incremental change in y when mode k is used for the
’th time satisfies 7S¢ (t) = 0 for all ¢ sufficiently large. Now if ¢
has only one nonzero component, say i, this would imply that on
almost every sample path no mode effects the inventory of token
t for ¢ sufficiently large, contradicting our second assumption. If
q is nonzero in more than one component, say in all components
i € I, then it is clearly impossible to have ¢7Sy(t) = 0 unless the
independent randomn variables Sy ;(t), ¢ € I, are almost surely
constants for ¢ sufficiently large. Therefore, except in the special
case that some modes change the inventories of some tokens by
deterministic amounts, the system cannot be stabilizable.

The above argument demonstrates that the sufficient condi-
tion in theorem 2 is necessary il the system is to be stabilizable
for any Si(¢)’s. The exception is when some of the Si’s are deter-
ministic and have a positive linear combination that is zero. The
necessity argument for the other stability theorems is similar.

5. Relation to previous work

The results in this paper are essentially the translation of the re-
sults in Courcoubetis and Weber [6] Irom the context of flexible
manufacturing to that of Petri-Nets. Related results in the lit-
erature are the following. The notion of stabilizability has been
previously studied in the context of on-line bin-packing prob-
lems in [2], [3], {4]. [5] and for off-line packing in [8]. One can
think of n types of item that arrive to a bin-packing system and
can be packed into bins in various ways. For example, a bin
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might be fully packed by either one item of each of types 1,2
and 4, or by five items of type 3. The idea is to pack items in
bins, as they arrive. and ensure that the time-average number
of partially full bins remains bounded. Clearly, this is similar to
the Petri-Net formulation if we think of spaces for items as aris-
ing from a production process and the demand for these spaces
as being generated by randomly arriving items. In [3] we gave
a necessary and sufficient condition for a bin-packing system
to be stabilizable when items arrive according to independent
Bernoulli processes. In 4] this was more fully developed for sev-
eral special types of packing configurations. In [2] Courcoubetis
and Rothblum considered models in which rewards are obtained
when different packing configurations used. Rhee and Talagrand
[8] considered a model in which sizes of items are uniformly dis-
tributed over a subinterval [a,b] of [0.1] and a bin can contain

any number of items whose sizes add to no more than 1. They
characterized the choices of {a,b] for which the wasted space in
partially full bins can be held finite in time average by using an
off-line packing algorithm. In {5] we have considered stabilizing
systems when there are side constraints on the frequencies with
which bins may be packed in different ways. A production model
with batch arrivals has been considered in [1].

6. Discussion

We have seen that if the models in this paper are reasonable
for a particular application and we can estimate the vectors ,
then theorems 1-4 provide criteria by which to test whether the
system can operated in a manner that keeps expected inventory
levels uniformly bounded through time. The criteria of the the-
orems can be tested using simple algorithms. In theorems 1-3
it was required that the cone generated by nonnegative linear
combinations of by, ..., 0, be the whole of R™. This holds if and
only if 0,.....0,, span R™ and there exist v,..., v, such that
v > 1 for all & and 3-p w8, = 0. This can be checked by a
linear program in m variables. Theorem 4 required that —6} be
in the interior of Al. An algorithm to check this can be bhased
on the following ideas. Let @ = {a € R" : 2; =0 for i > r} and
define I as the set of those indices ¢ > 0 for which there exists
{ar > 0,k # 4} such that 0; + ¥ 4; arbi € Q. The condition of
theorem 4 is equivalent to requiring that the vectors {8;,t € I'}
span Q) and there exist {7; > 0,7 € I} such that Y, 70 = —bo.

There are at least two important questions outstanding.
Firstly, one would like to identify practical policies that achieve
stability. The policies described in the proofs of theorems 1-4
can be implemented by relatively simple calculations, but they
are wasteful in use of inventory space and certainly not rules-of-
thumb. or methods one would recommend in practice. Clearly,
it is important to minimize average inventory levels, not just to
ensure their expected values remain finite. One would really like
to find policies that stabilize the system and require minimum
average inventory levels to do so. Secondly, the maximum in-
ventory size is likely to be constrained. Interestingly, we can say
something about this sort of constraint when assumption A is
replaced by

Assumption C. For all £,:.5 and ¢
[Nals +1) = Nea(s) — 0] < g(t),

where g(t)/t — 0 as t — cc.

Under this assumption it is straightforward to modify the proofs
of theorems 1-14 to show stability in the sense that |x(t)| is
bounded by a constant uniformly in ¢.
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Another practical consideration may be constraints on the
rates at which some of the transition modes are used. For exam-
ple, we might pose the problem of stabilizing the system subject
to a constraint that a particular mode k be used at rate Aj.
This problem has been considered in {5] and similar results can
be obtained for the models in this paper.
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