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Incentives for Large Peer-to-Peer Systems
Costas Courcoubetis and Richard Weber

Abstract—We consider problems of provisioning an excludable
public good amongst potential members of a peer-to-peer system
who are able to communicate information about their private pref-
erences for the good. The cost of provisioning the good in quan-
tity depends on , and may also depend on , or on the final
number of participating peers . Our aim is to maximize the ex-
pected social welfare in a way that is incentive compatible, rational
and budget-balanced. Although it is unfortunately almost never
possible to calculate or implement a truely optimal mechanism de-
sign, we show that as the number of participants becomes large
the expected social welfare that can be obtained by the optimal de-
sign is at most a factor 1 + (1 ) or 1 + (1 ) greater
than that which can be obtained with a very simple scheme that
requires only payment of a fixed contribution from any agent who
joins the system as a participating peer. Our first application is to
a model of file sharing, in which the public good is content avail-
ability; the second concerns a problem of peering wireless local
area networks, in which the public good is the availability of con-
nectivity for roaming peers. In both problems, we can cope with
the requirement that the payments be made in kind, rather than in
cash.

Index Terms—File sharing, incentive mechanisms, mechanism
design (MD), peering, peer-to-peer (P2P), wireless local area net-
works (WLANs).

I. INTRODUCTION

THE design of a peer-to-peer (P2P) system poses many in-
teresting questions. If the quantity of the service it pro-

vides is , and this is a design parameter, what should be?
How should peers contribute to the cost of providing and
how can the “free-rider problem” be avoided? In this paper, we
consider how these questions might be answered for models of
two possible P2P systems. The first is a file sharing system, in
which is “the number of distinct files shared.” The second
is a system for sharing wireless local area networks (WLANs)
resources when peers roam in some geographic location away
from their home local area network (LAN). Now, is “the avail-
ability of connectivity for roaming peers.”

Let us think of the service offered by a P2P system as an
economic good, and imagine that the agents (or peers) know
their own differing preferences for the quantity (or quality) of
service that the system can provide. It is reasonable that a peer
who values the system more should make a greater contribution
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to its cost, or share more of his own resources. But how do we
force each peer to truthfully tell us how much he values the
system?

Each of the P2P systems that we consider in this paper has two
important characteristics. First, viewed as an economic good, it
is nonrivalrous, meaning that one agent’s consumption of the
good does not decrease its utility to another agent (at least to
a reasonable first approximation). For instance, content avail-
ability in a file sharing system is not reduced by peers down-
loading files. Similarly, the probability for obtaining wireless
connectivity by a roaming agent randomly located in an area
partially covered by WLANs is not affected by the fact that other
such agents request similar service. A second characteristic is
that the good is excludable, meaning that it is possible to pre-
vent particular agents from having access to the good (e.g., by
requiring a password to access the system). Economists often
call such goods “excludable public goods” or “club goods.” A
critical aspect in our modeling approach is that we adopt a public
good model for describing the value obtained by the peers from
using the system.

In economics, our problem is known as the mechanism design
(MD) problem. We need to elicit truthful information from the
agents, or peers, regarding their valuation of the service, choose

, and decide which peers are allowed to participate in using
the system, and how much each should contribute to covering
the cost of building the system at level . This is to be done to
produce the greatest possible expected social welfare. While the
full solution of this problem is extremely complex and not easily
solved in practice, we show in Section II that as the number of
agents becomes large, there is a good solution to this problem
that takes a very simple form. We merely require each agent to
pay the same fixed fee toward the total cost, and exclude agents
that are unwilling to do so. In the cases we consider, this fee need
not be paid in cash, but can be paid in kind, i.e., by contributing
resources to provide a fixed part of the overall service. Such
a simple contribution policy is easy to implement and requires
no centralized implementation. The only information which the
system designer needs to compute the fixed fee is the distribu-
tion of the agents’ valuations for the service.

Although there are prior results pointing to the fact that, in the
limit, optimal incentive payments reduce to fixed and equal con-
tributions by all peers, there are no result to say how such simple
policies perform as a function of the number of peers . We
prove results that allow one to obtain tight bounds. The positive
result is that the optimal policies obtain expected social welfare
that is only a multiplicative factor or
better than a very simple class of policies which are easy to com-
pute. These policies are simple: the system designer has only to
declare a fixed participation fee and the expected system size
to all participants. Each peer then makes a simple decision, to
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participate or not. One may think of more complex equal contri-
bution policies, where the system size and the fee may depend
on the number of final participants, requiring more complex cal-
culations both from the system designer and from the peers. Our
results show that the gain of using such policies is small and the
per capita gain tends to zero quickly. We also show how to ex-
tend the system to handle multiple constraints on how the cost of
providing should be covered, and also to reflect a dependence
on the number of final participants. We apply this to model file
sharing and peering WLANs, and, we derive the simple opti-
mization problems from which one can compute the optimal in-
centive policies. We also show that given an incentive compat-
ible mechanism that equates the expected cost of providing
with the expected total payments that peers make (the so-called
ex-ante budget balance constraint) there exists an equally good
mechanism under which the actual cost of providing is ex-
actly covered by the total payment that the participating peers
make (ex-post budget balance).

Our results must be taken with a degree of salt in designing a
practical system. In order to obtain an asymptotic solution to the
notoriously difficult MD problem, we have had to use a simple
model for our P2P systems, in which each peer’s valuation of
the service is identified by a single parameter. One can think of
it as the “first-order term” of a more detailed models that more
accurately take account of cost, utility, and peer interactions.
However, such more complex models are likely to lead to in-
tractable game design problems. Even in our simple setup, the
single parameter MD problem is not analytically solvable (al-
though, we have managed to solve it completely for a particular
case in Example 1). Hence, showing that such simple policies
are asymptotically optimal has great value by suggesting that
simple practical policies for incentives may suffice in practice.

The paper is organized as follows. In Section II, we describe
a model for an excludable public good and how to solve the
optimization problem of finding an expected social welfare
maximizing budget-balanced incentive compatible mechanism.
Section III presents our asymptotically optimal scheme and
states our main theorem concerning it. In Section III-B, we
work through a numerical example that illustrates the ideas.
In Section III-C, we discuss other schemes that also require
each participant to make the same payment, and Section III-D
presents an extension to a model in which there are “types”’
of peer, and constraints, which impose conditions that peers
of the same type must cover a certain aspect of the cost.
Sections IV and V contain our applications to P2P file sharing
systems and WLANS, respectively. Section VI looks at ques-
tions of stability and convergence when some information must
be learned. Our conclusions are in Section VII.

Some problem formulation and longer proofs are placed
in the appendix. Appendix I contains a derivation of the op-
timization problem of maximizing expected social welfare,
and Appendix II justifies the fact that it can be solve using
Lagrangian methods. Appendix III contains proof of a tech-
nical lemma. The proofs of our main theorems 1 and 2 are in
Appendix IV and V. Appendix VI contains Theorem 3, which
is a significant new theoretical result stating even when the
mechanism may use exclusions, the existence of an ex-ante
cost-covering incentive compatible mechanism implies the

existence of an equally good ex-post cost-covering incentive
compatible mechanism. Appendix VII contains detailed calcu-
lations for Section III-C.

A. Related Work

Our work has been motivated by that of Hellwig [1] and
Norman [2], who have also investigated asymptotic properties
of optimal solutions to the MD problem in the public goods con-
text. Our contribution is to focus on the form of the limiting so-
lution and obtain results by arguments that are simpler and also
permit some extensions. We show that, depending upon certain
assumptions regarding the forms of the utility and cost func-
tions, the system obtains expected social welfare such that an
optimal incentive mechanism could obtain no more than a mul-
tiplicative factor of or better. Previous
research did not obtain such exact bounds on the performance of
the limiting policy, nor was it able to handle multiple constraints.
Our proof technique is much simpler and focuses exactly on that
aspect. We also treat the case where the cost may depend on the
final number of participants (instead of the number of potential
participants). This type of congestion cost is in fact the basis of
our WLAN model in Section V.

Golle et al. [3] made a first effort to model the utilities and
costs associated with the participation in a P2P file sharing
system and using game theoretic analysis proposed the use
of micropayments for achieving the desirable equilibria.
Buragohain et al. [4] follow a game theoretic approach and
study the equilibria and corresponding efficiency achieved in
a P2P file sharing system, based on a similar utility and cost
model to ours, assuming that the system can enforce a level
of reciprocity. Other relevant modeling references are [5]–[7].
Antoniadis et al. [8] have attempted to compare different
incentive schemes, one of them being the simple contribution
scheme analyzed in this paper. Similarly, [9] and [10] contain
more elaborate applications to file sharing and WLANs using
our simple contribution scheme. Regarding the asymptotic
results, all this work referenced [11], an unpublished version
of this current paper where the proofs did not yet obtain the

bound on the performance of the asymptotic, which
we now know is tight.

From a practical perspective, a P2P system designer has to
deal with the fact that he is unable to rely on trusted software1 or
on central entities for monitoring and accounting. Thus, a signif-
icant part of the research literature in P2P economics studies the
game theoretic and implementation issues related to the effec-
tive accounting of peers’ transactions (by means of reputation,
credits, etc.) in such a fully distributed and untrusted environ-
ment, see for example [12]–[14]. Such approaches adhere to the
principle that peers should benefit from the system in proportion
to the extent that they contribute to actual downloads and up-
loads, and be able to identify and punish free riders by reducing
their reputation and restricting their downloads. The MMAPPS

1Kazaa is a characteristic example of a real world application that tried to
implement a reciprocative incentive mechanism by giving priority to peers that
contribute more by having less downloads than uploads, which failed due to a
hacked version of its software. This version, Kazaa-lite, was assigning by de-
fault the maximum of credits to its users to enhance their priority. Original Kazaa
users started blocking users with large amounts of credit considering them fraud-
ulent.
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Consortium [15] have discussed the difficulty in providing and
storing reliable accounting information for enforcing incentive
policies in P2P systems.

An interesting system that follows similar incentive policies
as the ones proposed in this paper is Direct Connect. This P2P
application relies on central control exercised by a special peer
subgroup enforcing specific minimum contribution rules, and
excluding peers that are found to contribute less based on their
IP addresses.

II. AN EXCLUDABLE PUBLIC GOOD MODEL

Consider an excludable public good as described in Section I.
Suppose that to provide the good in quantity costs .
Once it is provided, the net benefit to agent , if he is permitted
to use it, is

where is the payment he makes toward the cost of providing
the good. Here, is a vector of “preference pa-
rameters,” which are assumed to be independent and identically
distributed samples from a distribution on [0, 1] with distribu-
tion function . This distribution is known to all agents, but
the value of is known to agent alone. We suppose that
and are, respectively, concave and convex functions of

. Notice the simplicity of our model: the value agent obtains
is , where is common to all agents. Differentia-
tion is through a single parameter, . One can easily refine this
model to assume that agents are not of the same type (i.e., not
characterized by the same distribution ), but belong to some
finite number of types, each characterized by a different distri-
bution of its preference parameter. In such a model the type of
a peer is common information.

Knowing and , a social planner wishes to design
a mechanism which, as a function of the declared values

, sets , and determines which agents may
use the good and what fees they should pay if they do. These
fees must cover the cost . Knowing the mechanism the
planner will use, each agent declares to his best advantage.
The mechanism then sets and decides which agents may
use the good and which are to be excluded from using it. Let

be the probability with which the mechanism includes
agent given the announced preferences . If agent is excluded
from using the good, then . If he is allowed to use it,
then and he must pay a fee . If exclusion is not
an option for the planner, then we simply make the restriction

for all .
The mechanism that the social planner chooses to implement

defines a game among the agents, and given that the agents make
rational responses, it has a Nash equilibrium. The planner’s
problem is to design the mechanism so that this equilibrium
is a point of maximum economic efficiency, where efficiency
is measured by expected social welfare. Let us now put this in
mathematical terms. In (1) and (2) that follow the expectation
is taken over and in (3) and (4) it is taken over , where

this denotes all the preferences parameters apart from . The
problem is to maximize expected social welfare

(1)

subject to a “ex-ante cost-covering constraint,” which says that
the expected payments must at least cover the expected cost

(2)

an “individual rationality” constraints, which says each agent
can expect positive net benefit

(3)

and “incentive compatibility” constraints, such that each agent
does best by declaring his true rather than attempting some

sort of “free-riding” by declaring some other

(4)

It is the incentive compatibility constraint (4) that ensures
that the agents declare the true values of their preference pa-
rameters. This is assumed in (1)–(3). It is natural to ask whether
imposing (4) means that the expected social welfare cannot be
as great as if we optimized over all possible mechanisms, in-
cluding those that are not incentive compatible. However, there
is a well-known “revelation principle” in the theory of mecha-
nism design which states that any Nash equilibrium that can ob-
tained by some mechanism can also be obtained by an incentive
compatible mechanism. This justifies the restriction to incentive
compatible mechanisms and leads to the following simple and
useful analytic characterization.

We now consider the problem of maximizing expected social
welfare subject to the constraint that the mechanism is ex-ante
cost-covering, individually rational, and incentive compatible.2

Let us define

(5)

Using standard MD theory, it is shown in Appendix I that our
problem reduces to single constraint problem, namely of maxi-
mizing (1) subject to the constraint

(6)

2In fact, without loss in the value of the maximal expected social welfare, we
can strengthen constraint (2) by removing the expectation operator and requiring
that the cost must be covered for each ���, not just on the average. This gives an
“ex-post cost-covering constraint.” Crampton et al. [16] prove this fact under the
assumption that exclusions are not allowed. Their proof generalizes to circum-
stances in which exclusions are allowed, provided we may require payments
from excluded agents. However, that may be unreasonable or impossible. That
is why we express the total payment as � (���)p (���) rather than p (���).
It costs us nothing to do this, since, as we show in Appendix VI, the maximal
expected social welfare is just as great as it is when we are allowed to require
payments from excluded agents. We can also show that it is possible to ob-
tain just as much expected social welfare if one retains the expectation operator
in constraint (2), but strengthens both (3) and (4) to ex-post constraints by re-
moving the expection operators. This result will be published elsewhere.
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This is the same as a model of Norman [2], but he takes
.

In Appendix II, we show that this problem can be solved using
Lagrangian methods. That is, for some it can be solved
by maximizing a Lagrangian of

(7)
The maximization is carried out pointwise. That is, given , the
values of and are chosen to maximize

(8)

where

(9)

The fact that the coefficient should be maximized means
that we should take if and only if .
Now, it is intuitively reasonable that agents with greatest pref-
erence parameters should be the ones to be included. This is en-
sured if we impose a restriction on the shape of the distribution
function by assuming that is nondecreasing (which fol-
lows, for example, if the hazard rate, is nonde-
creasing). Assuming this, agent should be included if and only
if exceeds some , where . Note that

is increasing in , is decreasing in , and the
which maximizes (8) is decreasing in .

III. ASYMPTOTICALLY OPTIMAL MECHANISM

A. A Scheme of Equal Contributions

In general, the full solution of our problem is very complex.
However, in Appendix IV, we prove Theorem 1 below, which
states that, when is large, a nearly optimal solution can be
achieved with a simple MD. First, we make an assumption.

Assumption 1: Suppose that

(10)

(11)

where , , , , and .
We also consider the following weaker assumption.
Assumption 2: Suppose and

, where , , , and
. That is, there are positive constants , , , ,

and a function such that for all and

(12)

(13)

This assumption ensures that the growth rate of the optimal
value is bounded both from above and below, as we see in the
following lemma.

Lemma 1: Suppose Assumption 2 holds. Let
and define

(14)

Then, and the optimizing satisfies
. Moreover, .

The proof is in Appendix III. Our main result is the following.
Theorem 1: Suppose Assumptions 1 or 2 holds. Let be the

problem of maximizing (1) subject to (6), with optimal value
. Let and be the optimizing decision variables in the

problem , defined as

(15)

(16)

Let the optimal value be .
Suppose we take as a feasible solution to the decision vari-

ables and . Then, the ex-
pected social welfare under this (suboptimal) mechanism is ,
and this is asymptotically optimal, in the sense that

(under Assumption 1), or
(under Assumption 2).

Moreover, , , where .
The intuition for this result is as follows. For each ,

let be the set of all agents who have preference parameters
in the interval . Denote the size of this set by . Now,

, for all . Suppose we had the stronger
fact that , for all . Since, by the remarks
above, the optimal mechanism includes the set of agents with
preference parameters greater than some , we find (using inte-
gration by parts) that simplifies to . The planner includes
all agents in , for some , and then charges each of these
agents the same fixed fee . The mechanism is individually ra-
tional for all agents in provided . So using the
greatest charge consistent with this, namely, , the
total payment is and by (16) this covers
the cost of .

Now, return to the original problem . The weak law of large
numbers guarantees that is close to with
high probability when is large. So we may expect it to be
very nearly optimal to adopt the mechanism above, i.e., to take

and set a fixed fee of , thus including those
peers for which .

B. A Numerical Example

Suppose that the preference parameters are uniformly dis-
tributed on [0, 1] and that and .
Consider the so-called “first-best” value of maximized expected
social welfare that could be achieved if we were to have full
information about and were not restricted by con-
straints of ex-ante cost-covering, individual rationality and in-
centive compatibility. Given that take some value ,
the expected social welfare is and this is maxi-
mized by , to a value of . The expected social
welfare is thus
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Now, consider the solution of . For the uniform distribu-
tion, , so our problem is

The solution of this has , and an op-
timal fee of . The expected social welfare achieved is

. Thus, we satisfy the constraints
and obtain a value of expected social welfare which grows with

similar to the first-best, but which is asymptotically smaller by
a factor . The expected social
welfare is less, but we have satisfied the constraints (2) and (3).

Next, we compare the expected social welfare value that we
have found for (i.e., ) with the second-best
expected social welfare value that can be obtained for . Con-
sidering , we have that its solution by Lagrangian methods is

To compute this, we define and

Then, recalling if and only if

It turns out that is a quadratic in , and we can solve
recurrence relations for the coefficients, ultimately to give

Thus

The minimizing value of Lagrange multiplier is

(with , so in the limit excluding peers with
, which is consistent with what we

found for ). We find the equation shown at the bottom of the
page. So

Note that in this case, in which does not depend on
, the expected social welfare per capita increases with and

there is advantage in having more participants to share the cost.
The value of the welfare per capita is growing as for
the approximate to the second-best, this is only 7/348 less than
the welfare per capita under the optimal second-best. We find
numerically as shown below. This illustrates Theorem 1’s claim
that .

Finally, let us make a comparison with what happens if ex-
clusions are not allowed. Denote the second-best expected so-
cial welfare value in these circumstances by . This is easier to
compute than when finding , because the computations can
be made simply in terms of the facts that and

(Fig. 1). We find that in our ex-
ample that, when exclusions are not allowed

Note that the expected social welfare that can be obtained per
capita grows as , but is vanishingly small relative to the first-
best level of expected social welfare per capita, which grows
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Fig. 1. Plot of � =� against n.

linearly in . The fee structure and quality provision under the
optimal mechanism is

and

Note that , which is also
the value of .

There is no viable approximating second-best solution that
can be obtained from when one cannot make exclusions.

C. Other Equal-Contributions Schemes

A feature of our limiting mechanism is that all participating
peers pay the same fee. One can devise other mechanisms for
which this is true, of which two obvious ones are as follows. In
Mechanism 1, the planner announces that he shall provide the
good in quantity , and then share the cost amongst all
those who volunteer to participate. If out of choose to par-
ticipate, then each pays . Those who wish to participate
must make a commitment to do so, before knowing how many
others will participate. In our example, it turns out that the max-
imized expected social welfare using this scheme is

. So the imposition of the ex-post cost-covering
constraint occasions a loss compared to . Fur-
ther details of these calculations are in Appendix VII.

In Mechanism 2, we charge a fee of , and then build the
largest facility whose cost can be met by the number who
choose to participate, namely, such that . As be-
fore, peers must make a commitment to pay without knowing
how many others will also participate. The optimal value in
our example is . Compare this to

. This ex-post cost-covering
scheme does a bit better than a scheme in which is fixed a
priori, because although it provides the same on average it
provides more when more peers participate.

An even better ex-post cost-covering equal-contributions
scheme would be one in which, having learnt that peers wish
to participate, the planner builds a facility of size and
charges each participant . Potential participants
know the function . However, even such a mechanism
cannot be more than a factor better than the simple
one we propose.

D. An Extension to Multiple Constraints

Let us now consider a problem in which there are “types”
of peer and constraints, which impose conditions that peers
of the same type must cover a certain aspect of the cost. Let us
suppose that there are participants of type , where

. Think now that is a vector . Since
can be solved by Lagrangian methods (cf. Appendix II), we

know there exists multipliers such that

As in the proof in Appendix IV for the case of a single constraint,
we have as a bound that for any

(17)

The expectation is taken with respect to the , which are i.i.d.
for participants of the same type. (For simplicity we omit a
second subscript on which might have been used to denote
the type of peer.)

Let us suppose that type utility and cost functions depend
on different weighted sums of powers of . That is,
there are sets of weights and so that for type

and

This is obviously a restriction to our model, but it still includes
many interesting possibilities, such as , and

, , in which peers of



1040 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 5, MAY 2006

type are required to cover exactly th of the cost, perhaps
by making payments in kind.3 We now have from (17), and re-
defining

(18)

where

The line above (18) follows from bringing the sum on to
the outside, and then dividing and multiplying with by a factor

. We have

As in Appendix IV, we can bound (18) by making a Taylor ex-
pansion of around , and then use

Notice that the optimizing depend on ,
but not . The remaining details are as in Appendix IV. We find,
under these assumptions, that and

.

IV. APPLICATION TO FILE SHARING

We apply the above ideas to a problem of P2P file sharing.
Agents are now called peers. Suppose that peers make avail-
able various files to share with one another. What matters is the
number of distinctly different files that are shared, so we must
account for the possibility that more than one peer will make
the same file available. Suppose that the utility obtained by peer

3In fact, if we were to take more generally, something like u (Q) = Q
and c (Q) = Q , the expected social welfare will be �(n ), where 
 =
max f� =(� �� g and so it is only one component of Q that really matters
as n ! 1.

Fig. 2. n�(n;Q) against Q, when N = 1000 and n = 1, 2, 10,1.

when the expected number of distinctly shared files is is
, where is concave in . We start by analyzing a simple

model in which each peer provides the same number of files, say
, choosing these randomly from amongst a set of distinct file

names. Then, the expected number of distinct files that will be
available in the system is

(19)

and so to obtain each peer must supply a number of files

(20)

Suppose that each peer incurs a cost that is proportional to the
number of files he contributes. For simplicity, we let the constant
of proportionality be 1 (noting that we could always re-scale the
utility function). Thus, the total cost is ,
where is the total number of files shared by peers and
this is a convex increasing function of , due to the duplications.
Also, for any fixed , the cost rapidly increases with

to the asymptote of . This is greater than
, the total cost if there were no duplication in the files that the

peers supply.4

In Fig. 2, we take and plot against
for , 2, 10, . Note that for small to moderate values of

the cost is almost linear in , but then increases rapidly as
approaches . For example, for , we find

This justifies an approximation when is
reasonably small.

4An alternative would be that a peer’s cost is proportional to the rate at which
he serves upload requests. If files are equally popular, then the total cost incurred
by all the peers will be proportional to the product of the number participating
peers and the number of unique files, i.e., c(Q) = ( � )Q. If peers can only
access files held within a certain neighborhood of their location, this might be
better modeled as c(Q) = ( � ) Q, where 0 < � < 1. There is a problem
reproving Theorem 1 because the proof that Lagrangian methods work (proved
here in the Appendix II) no longer holds. This is for future research. We would
expect to be able to address a limiting problem in which u(Q) is concave in Q
and c(Q) = [n(1� F (� )] Q.
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In an alternative and slightly more sophisticated model, we
might imagine that the peers share different numbers of files.
Suppose of peers each share files, each of them choosing
his files randomly from amongst a set of files, where

and . Let be an upper bound on the number
of files that any one peer can share. The expected number of
distinct files supplied will be

(21)

Now, is the total number of files provided by the peers,
and we again assume that this is also the cost. As before, the
asymptote as is . If

is small, we again have
.

Both of the above lead to models that are covered by
Section II. The social planner wishes to design a mechanism
which maximizes expected social welfare, subject to its being
cost-covering, individually rational and incentive compatible.
Assuming satisfies Assumption 1 and ,
we can apply Theorem 1 and have an asymptotically optimal
mechanism by solving the problem

(22)

(23)

Let and be the maximizing values of the decision vari-
ables. Each peer who has a preference parameter of at least
is included and pays the same fixed fee of . Since the
cost is linear in this fee can be paid “in kind,” i.e., without
monetary payments: each included peer pays his fee by con-
tributing the same number of files: namely, .
(Note that although our theorems assume no bound on , in this
problem is bounded by . However, this is immaterial as we
expect the optimal system operates at a that is well away from
this upper bound.)

A remark on repeated rounds: In the limiting problem,
there is no reason that a peer should be other than truthful
in representing himself to the system. If he knows that the
expected number of unique files shared is and that the fee is

, then peer should join if . In the nonlimiting
version of the problem, addressed by the optimal MD of solving

in Section II, the individually rationality constraint (3) is
in terms of expected value, so for some it can be that

. When this happens, peer
might be tempted to defect and to not pay . However,
as file sharing system is intended to last for more than one time
step, we could operate a “tit-for-tat”-like protocol, that would

penalize such defection, for example, by threatening to exclude
peer at a later time when is such that his net benefit would
be positive. We are imagining that is not fixed, but varies over
time, when from time to time the peers’ preference parameters
are freshly sampled from . The effect of the threat to penalize
defection will be to make peer willing to participate on
occasions that he must accept a negative net benefit, knowing
that on average he will benefit, as is guaranteed by (1) and (3).
If every peer’s preferences parameter varies over time with
the distribution , each will obtain on average th of the
maximized expected social welfare.

V. APPLICATION TO WLANS

Now, we apply our ideas to WLANs. Access to the Internet is
still not as ubiquitous as access to the telephone network. This
greatly reduces the economic value of many new portable de-
vices, such as PDAs, tablet computers, and smart-phones run-
ning the IP protocol. The users of these devices would benefit
greatly from cost-effective Internet access that is wireless, al-
ways-on, ubiquitous and high-speed. However it a nontrivial
task to deploy infrastructure with wide enough coverage, espe-
cially from the business perspective.

WLANs are an important developing infrastructure. Specif-
ically, the IEEE 802.11 WLAN standard has grown steadily
in popularity since its inception and, at least in metropolitan
areas, is now well positioned to complement much more com-
plex and costly technologies such as 3G. This is already hap-
pening. WLAN signals of networks set up by individuals for
their own use already pervade many cities and such WLAN
“cells” frequently cover greater areas than were originally in-
tended at their installation. Given how easy it is to gain access
to a WLAN once a potential user is within its coverage area, and
leaving out the obvious security issues involved, one wonders if
individuals could share such infrastructure amongst themselves
to achieve ubiquitous Internet access. Sharing comes as a nat-
ural idea since WLANs provide large amounts of bandwidth
that is mostly underutilized by its local users. Also the pipe
that connects the local WLAN users to the Internet is usually
of a broadband nature (DSL) and may also be under-used over
large time periods. Existing technology allows WLAN admin-
istrators to control access to their networks and to limit the con-
sumption of network resources by remote (roaming) users. The
WLAN peering model we present next is motivated by these
observations.

Suppose that distinct WLANs are available in a given large
geographical location, such as a neighborhood or a part of a city
centre. The owners of the WLANs may arrange to peer with one
another, and thus agent , who is the owner of the th WLAN
can benefit when he roams in areas covered by other WLANs.
When agreeing to become a peer, a WLAN owner benefits, but
he also incurs some cost in providing resources to the commu-
nity. We seek a mechanism, defined in terms of certain rules, to
specify what quantities of resources peers must contribute and
what subsidies or payments they might have to make. Our aim is
that the incentives given by these rules should be such that when
peers act to maximize their own benefits, expected social wel-
fare is also maximized. To begin, we assume that there is some
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central authority, a “global planner,” who serves as an interme-
diary for implementing these rules. Then, we will show that as
the system gets large, the optimal rules can be approximated by
simple contribution policies, alleviating the need for a central
mechanism.

Let be the “coverage” available in the location, defined as
the probability that an agent can obtain roaming service when
away from his own WLAN. Assume that if agent peers, then
his WLAN accepts service requests from other roaming peers
(and himself) with probability . If he does not peer (is ex-
cluded), then . To express as a function of ,
let us suppose that the total area of the location is , the area
of coverage of a typical WLAN is , the WLANs of different
peers do not overlap and that roaming peers are positioned uni-
formly on . Then, we have .

If agent peers, then his cost that is proportional to the rate of
service requests that he accepts. This can be written as ,
where is dollars per rate of service requests accepted (which
we may take as ), is the rate of requests generated by
a typical agent, and is the number of agents who peer, i.e.,
the number of for which . This is a reasonable model
for cost since roaming customers consume bandwidth from the
WLAN.

We view coverage as a nonrivalrous public good. That is, each
roaming peer benefits by the amount of coverage available, and
does not reduce the probability with which other roaming peers
can obtain access. That is, he benefits from, but does not con-
sume, . The important issue is to provide incentives for to
grow, while balancing the resulting costs. It can grow by having
more agents participate in the peering arrangement and by in-
creasing the s offered by the agents. We can cast the MD
problem faced by the global planner in the formulation we used
earlier. We again have that the utility of agent is so that
the total utility is

and total cost is

where . The difference of this cost function with
the cost functions used earlier is that now there is a multiplica-
tive congestion factor which is proportional to the number of
peers who actually participate, , instead of the initial number
of potential peers . Thus, we need to extend our public good
model to make the cost function depend on instead of .

Let the total cost take the form , e.g., above we would
redefine . Our problem now becomes

(24)

(25)

Let us take , and .
Choose units so that

Let us solve (24), while disregarding (25). This gives

or, in general

where are the ordered values of .
In the limiting problem, we will admit all peers with prefer-

ence parameters of at least . The expected number of these is
and so the problem is

(26)

(27)

The constraint (27) says that the total payment must
cover the cost . The condition that the objective function
be stationary with respect to is

and this implies that (27) holds with equality. Thus, in this par-
ticular problem the constraint is redundant, and we may concen-
trate on solving the unconstrained problem. We have

(28)

or, in general

(29)

and the solution is at a such that

(30)

The left-hand side of (30) is increasing in , so (30) has a
unique solution if the right-hand side is decreasing in , i.e., if

has a distribution that is “new better than used in expectation”
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(NBUE). For example, when is the uniform distribution
. We now have something similar to

Theorem 1.
Assumption 3: Suppose that, given that peers are allowed

to use the system

(31)

(32)

where , , , , and .
Theorem 2: Suppose Assumption 3 holds and that the prefer-

ence parameters are distributed according to a distribution with
a density function bounded away from 0. Then

The proof is in Appendix V.

VI. STABILITY

Suppose that the social planner designs a mechanism on the
basis that there are peers. He expects that of them
will pay a fee of . Let us focus on the problem of file
sharing covered in Section IV. Since the fee is paid “in kind”
and equates to providing files, the total number of files that
are provided will be .

Suppose that there are indeed peers, but initially some of
them are dubious that will be as large as the planner claims.
Consequently, some do not participate and the number of files
that is initially provided is . Once the peers have ob-
served , those peers with will realize that it
is to their advantage to participate. The fees paid by these will
provide files, where

(33)

Write this as and imagine iterating
, . In general, there can be more than one

root to . For example, suppose ,
, , and is uniformly distributed on [0, 1]. Then

(34)

In this example, there are two roots, and
. One can easily prove that if exceeds the smaller

root, then tends to the larger root as tends to infinity. Oth-
erwise . For the expected social welfare is
10, whereas for it is 184.4. Thus, the greater , to
which the system converges, is also the root for which a greater
number of peers participate and the greater expected social wel-
fare is achieved. Similar properties hold for the more general
case of .

An interesting issue is how stability is affected by agents
departing and new agents arriving. Another issue is the optimal
choice of the fixed fee as a function of the system size for
quickly reaching the equilibrium. Finally, might like to analyze
the effect of errors in the estimation of the actual content .

VII. CONCLUSION

In this paper, we have formalized an interesting connection
between P2P systems, namely, file sharing and peering WLANs,
and public good theory. We have shown that simple incentive
policies of the form of fixed contributions can suffice to con-
trol the overall system to a nearly optimal size. Even though our
economic model is rather crude and abstracts many practical
aspects of the implementations, we have captured some “first-
order” properties of the large externalities that such system ex-
hibit. These externalites are one of the main reason that P2P
systems are being widely adopted.

There are many ways to extend this simple model. For in-
stance, we might personalize agents by more than a single pa-
rameter, e.g., adding a parameter that captures cost sensitivity.
However, the analysis of such extensions is probably too com-
plicated. One could perhaps model the utility or cost function
more carefully, by introducing a dependence on more detailed
congestion effects, and so try to capture performance aspects
encountered in specific network technologies. But it is not ob-
vious that making the problem more complex will provide more
insight. The results one obtains by such models are more quali-
tative than quantitative, showing the form of the optimal control
rather than computing its exact value.

It would be interesting to extend the file sharing model to one
in which files have different popularities and costs of uploading.
This might be done using results in Section III-D. We would
expect to find that the peers should be required to make equal
contributions, but that these contributions should be measured
in terms of total upload rates, rather than just as a number of
files. Note, however, that this could affect the peers’ choices as
to which files they make available for uploading, and hence the
equilibrium of the type of content that will be available in the
system.

It would be nice to extend the WLAN model so that instead of
assuming that roaming peers are uniformly distributed and that
they make requests for connectivity at a constant rate , the rate
of requests differs by geographic region. To do this, we might
again think along the lines of Section III-D, and say that peers
of the same type are those that are based in the same region.
We would expect an optimal mechanism to be one in which
peers based in the same region make equal contributions, but
where this contribution differs from region to region. However,
there is difficulty in continuing along the lines of Section III-D
since Lemma 3 does generalize to circumstances in which the
cost depends on the number of peers who actually participate,

, rather than on , the maximum number of peers who might
participate.

There are practical issues regarding the implementation of
our results. Even simple exclusion schemes may be hard to en-
force in a system with cheap pseudonyms. Making sure that
peers make available valid files (to avoid uploading from other
peers) may not always be an easy task in such a loosely designed
system. We are currently investigating several of the above im-
plementation aspects. An approach where peer contributions are
kept at a minimum possible implementable level (peers are re-
quired to share a fixed number of files only during the time they
download files) is in [17].
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APPENDIX I
DERIVATION OF THE PROBLEM

In this appendix, we show that the constraints of individual
rationality and incentive compatibility reduce to (6). We give a
streamlined explanation of some fairly standard arguments.

Suppose agent pays .5 Let us define

(35)

(36)

Thus, and are the expected utility and expected
payment of peer when his preference parameter is . We have
the following.

Lemma 2: (a) It is necessary and sufficient for incentive com-
patibility that (i) is nondecreasing in , and (ii)

(37)

(b) Given incentive compatibility, a necessary and sufficient
condition for individual rationality is .

Proof: The incentive compatibility condition says that
must maximize with respect to . This implies
that for , we must have

and so

This implies that (i), that must be nondecreasing in .
We also have

So, by integrating, we find a second condition, (ii)

(38)

Thus, (i) and (ii) are necessary for incentive compatibility. It is
also easy to check that they are sufficient.

Since the scheme is to be incentive compatible, we can de-
duce from (38) that the expected sum of the payments is given
by

(39)

5Since the agents are identical, apart from their labels, it is reasonable to sup-
pose that the social planner can maximizes welfare with a MD that does not treat
agents differently because of their labels. This would mean that V and P do
not depend on i. However, we will not make this simplification, and so that we
have a problem that is correct even if agents are not statistically identical.

(40)

Since the scheme is to be ex-ante cost-covering, we use (40) to
deduce that our problem is one of maximizing (1) subject to

(41)

The maximization is with respect to a choice of the function
and the constants . The individual ratio-

nality of (3) holds if and only if . So we must take
. These enter only through their sum, which may

therefore be taken to be zero. A way to understand the role of
the is the following. In the definition of the incentive pay-
ments (38), the last two terms represent the maximum incentive
compatible payment that can be extracted from agent when his
preference parameter is . Then, the first term on the right-hand
side of (41) is the maximum total incentive compatible payment
that can be collected from all the agents. If at the constrained
expected social welfare optimum, the right-hand side of (41) is
strictly positive, then we do not need to ask for the maximum
possible payment and can achieve the optimum with less. In this
case, the negative amount is the money we can give
back (after collecting the maximum amount) to the agents. It is
up to the system planner how to redistribute this money (or not
collect it in the first place).

We are to maximize (1) subject to (6) by pointwise choice
of . From this we can calculate , and then the pay-
ments from (38) and (36). Provided turns out to be non-
decreasing, we have then solved the problem of maximizing
expected social welfare subject to use of a cost-covering, indi-
vidually rational and incentive compatible scheme.

APPENDIX II
JUSTIFICATION FOR USE OF LAGRANGIAN METHODS

We prove that the problem (of finding the second best op-
timum) can be solved by Lagrangian methods. The special case

gives the result that we need in Sections II–V. The case
is used for Section III-D. For simplicity of notation, we

drop the from the cost , and simply write . We
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suppose that agents are of types. There are agents of type
, and their identical and independently disctributed preference

parameters are .
Lemma 3: Define as the problem

with respect to , , with and subject
to

Then, there exists a Lagrange multiplier such
that an optimal solution to can be found by maximizing the
Lagrangian

(42)

with respect to , , with .
Proof: Let us rewrite this as the problem of maximizing

(43)

with respect to , , subject to

(44)

(45)

and

(46)

Assuming that is concave and is convex in
, the objective function (43) is a concave function of the

decision variables, and (44)–(46) define a region that is convex
in the decision variables, , . These are sufficient
conditions for the problem to be solvable by maximizing a
Lagrangian. That is, there exist such that we can
solve the problem by maximizing

with respect to , and , subject to (45). This is equiv-
alent to maximizing (42) with respect to , , subject
to .

APPENDIX III
PROOF OF LEMMA 1

Proof: First, we can suppose (or we can absorb it
into the constants and ). Note that

for constants

where . Hence, .
Now, choose and such that for all , we have

. This is clearly possible, since
is a concave function of which is equal to 0 at

and approaches as . Then, if or
, we have

and so cannot be optimal. Hence, the optimizing , say ,
is .

Note that by differentiation through (14), we have
, and then
.

APPENDIX IV
PROOF OF THEOREM 1

Proof: Suppose , and for the moment
take . Let us first make the strong Assumption 1: that

and , where ,
(so and are concave and convex, respectively). Define the
function by

Note that this is just the definition of a real-valued function of
a variable (and has nothing to do with the ). It is a convex
function of . Let and choose units so that

Since can be solved by Lagrangian methods, we know
there exists a such that

Let , where

Note that the are independent identically distributed (i.i.d.)
random variables and that, since , it follows that
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. Let . Note that depends on , but
since

the optimizing does not depend on . Hence, does not
depend on .

Recall that for any , and so for this

We now have, since

Consider first . Then, by a Taylor expansion of
around , we have

for some depending on . The middle term on the right-hand
side is 0. Since lies between and , and so certainly

, we have . Hence

where is the variance of , which is some fixed quantity,
independent of . Using the fact that that ,
and does not depend on , we have

(47)

Now, consider . Pick such that and note
that since

Since , we can apply the result in the first part of the
proof and deduce that there is some such that

Thus, (47) holds in this case also.

Let us now turn to the result that holds under the weaker As-
sumption 2. The difference is that we cannot use a Taylor expan-
sion as far as second order, but must be content with a first-order
expansion

for some depending on , where we have and so
. Now, Assumption 2 implies Lemma 1 which

gives that and . Together with
this gives .

APPENDIX V
PROOF OF THEOREM 2

Proof: Let be points such that
. By a Taylor expansion around

, we have that for some , with
certainly bounded above by

and hence, because we are ignoring the cost-covering constraint

where the final line follows from (48). Note first that

Also, by definition of , we have .
So the first term on the right of (48) is bounded by

Finally, the second term on the right of (48) is . To see
this, we use the assumption in the theorem statement that the
density function is bounded below by some . (If we
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were to have in the interval ,
say, then in a sample of size the order
statistic cannot be arbitrarily close to its mean, which lies close
to . So the claim is not true.) But assuming such a
lower bound on , then for all

Now, if is a random variable with distribution function , then
has the uniform distribution on [0, 1]. This fact, combined

with the above, shows that it is sufficient to prove the result for
uniform random variables on [0, 1]. But the th largest of
samples of the uniform distribution has density

and so it is routine to calculate that

where the first inequality follows from the fact that for any
random variables

APPENDIX VI
STRENGTHING EX-ANTE COST-COVERING

TO EX-POST COST-COVERING

We take up the issue discussed in footnote 2 and prove a gen-
eralization of a result due to Crampton et al. in [16], and recently
reproved by Norman [18].

Theorem 3: The expected social welfare that can be obtained
under constaints of ex-post cost-covering, incentive compatible
and individually rationality is just as great as can be obtained
when the first constraint is weakened to ex-ante cost-covering.
Moreover, we need not take payments from excluded agents.

In [16] and [18], the first sentence of the theorem is proved for
a nonexcludable good. An ex-post cost-covering scheme with
equally great expected social welfare is constructed from an
ex-ante cost-covering scheme by a complicated reorganization
of the agents’ payments. This can end up with an agent, say ,
being paid by others and so his payment can be negative
for some ; this cannot be avoided. More disturbingly, if ex-
clusions are allowed, the result of such a construction can be a
scheme in which, for one or more and , we find ,
but is such that agent is to be excluded. This would require
taking payment from an agent who is excluded, which is usually
not a practical to do. Although we have not been able to find a
way to modify the proofs in [16] or [18] to avoid this, we now
show that it can indeed be avoided.

Proof: Suppose that is distributed with equal probabil-
ities over values . This assumption of a
uniform distribution is for convenience in exposition, and other
distributions can be handled by modifying the arguments below
to included weighting factors against the terms that appear,
or by simply thinking about repeating values, e.g.,

. This discrete distribution can ap-
proximate a continuous one with arbitrary accuracy. (In fact, the
following proof does not even require that be identi-
cally distributed, but we assume this for notational simplicity.)

Consider an ex-ante cost-covering incentive compatible
scheme, with payment functions . In a scheme
that uses exclusions, will be excluded for some small values
of , say for , and we will have for all

.
We will construct an ex-post cost-covering, incentive com-

patible scheme, with payment functions . This
will be such that

(i) ;
(ii) , for all ;
(iii) if .

Condition (ii) ensure that the scheme is incentive compatible.
Condition (iii) ensures we do not take payments from agents
who are excluded. Note that for agents who are included we
permit payments to be negative.

Modifications to obtain (i): Let us initially take ,
for all , giving an ex-ante cost-covering, incentive compatible
scheme which satisfies (ii) and

.

We will show how to modify the scheme to satisfy the ex-post
constraint (i). This might be done as in [16]. However, we will
do it by a new method, as the explanation is a good preparation
for understanding how we obtain (iii) later in the proof. For the
moment, we do not worry about (iii). Pick any where (i) is
violated because , and any , where
it is violated because of . Note
that implies that there must always be such a pair if (i) does
not hold for all . Consider two possibilities. If we can pick this
pair such that for either or , then we simply
make the following alterations, gradually increasing from 0
until we have (i) holding for one or both of and . The value
of does not change and the number of violations to
(i) decreases by at least one

Alternatively, if the above is not possible, we must have
and . Let be the vector that has a 1 in the th
component and all other components 0. Let

So is the state that is the same as except that the second
component is . We make the following adjustments to the
payments, gradually increasing from 0 until, by (a) or (d), we
have (i) holding for one or both of and . Note that alterations
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(b)–(d) ensure that the values of ,
and do not change

The number of violations to (i) has been decreased by at least
one, and this process can be continued until no such violations
are left. This shows that it is possible to have an ex-post cost-
covering incentive compatible scheme.6

So now suppose we have an ex-post cost-covering incentive
compatible scheme which satisfies (i) and (ii). We will modify it
to produce a ex-post cost-covering incentive compatible scheme
which also satisfies (iii).

Modifications to obtain (iii): Let .
This is the set of states where all agents are excluded and

. Suppose there is a and such that there is a violation
of (iii), i.e., and . Pick a such ;
note that this is always possible because cannot be such that
there is just one violation of (iii), since we have (i) and
for and this implies . Let

That is, states , , and , are constructed from by, respec-
tively, increasing the th, th, or both the th and th components
of to (for which an agent is definately not excluded). Let

. We now make further modifications to the payments,
choosing these carefully to preserve (i) and (ii), and remove the
violation to (iii) of

In detail

(a) removes the violation to (iii);

6This also shows that if all payments in the original scheme are nonnega-
tive, then there is a ex-post cost-covering scheme in which at most two agents
(namely, 1 and 2) might make negative payments in some states. The fact that
it may be impossible to avoid negative payments completely can be seen from
an example in which n = 2 and � 2 ft ; t g. Suppose we have

(c(t ; t )) =
6 7

7 8

((y (t ; t ); y (t ; t ))) =
(1; 1) (1;6)

(6;1) (6;6)
:

An ex-post cost-covering scheme that respects (ii), namely, E[x (���)j� ] =
E[y (���)j� ], is

((x (t ; t ); x (t ; t ))) =
(3; 3) (�1;8)

(8;�1) (4; 4)

but there is no ex-post cost-covering scheme with all payments nonnegative.

(b) makes ;
(c) puts back to its required value;
(d) makes ;
(e) puts back to its required value;
(f) makes ;
(g) puts back to its required value;
(h) makes and puts

back to its required value.
Unfortunately, this may create a new violations of (iii) if

and , or if and
. But even if this happens the number of vio-

lations within the set will have been reduced by at least 1,
since . So let us first make adjustments to violations
that occur within until none such are left.

Now, look for a violation of (iii) for . Suppose there
is one, say , with and . Since ,
there is a such that . Now, observe that there is at
least one other violation of (iii) for the same agent and , since

. Suppose this is at , where and
that, again since , there is a such that (where
may possibly be the same as ). Let

and make the following alterations, with the same motivations as
above, The effect is to retain (i) and (ii) and remove the violation
to (iii) at

This does not introduce any new violations to (iii) in the states
and because there is already a violation , and all

the other changes are to payments being made by agents and
who are not excluded. Thus, we may repeat this until the number
of violations of (iii) is zero.

APPENDIX VII
EX-POST COST-COVERING EQUAL-CONTRIBUTIONS

MECHANISMS

Here are details of the calculations referred to in
Section III-C, where we consider fixed contribution schemes
that satisfy ex-post cost-covering conditions.

A. Mechanism 1

Suppose that we build a facility of size and then share the
cost amongst all those who volunteer to participate. They
must make a commitment to do so, before knowing how many
will participate.

Let be the number of peers with preferences parameters of
at least . The marginal (i.e., such that a peer will indifferent
between participating and not participating) is given by
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The expected social welfare will be

So, for our example, we have the problem of maximizing with
respect to and

(48)

subject to

(49)

Now

Now, use (48) to solve for , making the approximation
. Substituting this in (48) and maxi-

mizing with respect to gives and a maximized value
of . Compare this to .

B. Mechanism 2

Suppose that we charge a fee of and then build the largest
facility whose cost can be covered by the fees. As before, peers
must make a commitment to pay their share of the cost without
knowing how many others will also participate. The marginal
is now given by

and the expected social welfare is

So we want to maximize with respect to and ,

(50)

subject to

(51)

Now

So ignoring terms that become small for large , we want to
maximize

(52)
subject to

(53)

Now, use (53) to find as a function of and substitute into (52).
The optimal tends to 1/4, as we would expect. The optimal
value is . Compare this to

and . The ex-post cost-
covering scheme does a bit better because although it provides
the same on average it provides more when more peers
participate. The explanation is that when the
term in the social welfare of is a convex
function of , so
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