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Abstract 

As a model for an ATM switch we consider the overflow frequency of a queue that 
is served at a constant rate and in which the arrival process is the superposition of N 
traffic streams. We consider an asymptotic as N --, oo in which the service rate Nc and 
buffer size Nb also increase linearly in N. In this regime, the frequency of buffer overflow 
is approximately exp( -NI(c, b)), where I(c, b) is given by the solution to an optimization 
problem posed in terms of time-dependent logarithmic moment generating functions. 
Experimental results for Gaussian and Markov modulated fluid source models show that 
this asymptotic provides a better estimate of the frequency of buffer overflow than ones 
based on large buffer asymptotics. 
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1. Switches handling many bursty sources 

In a high speed data communications network, such as one operating according to 
the ideas of ATM (asynchronous transfer mode), data is packaged into cells of fixed 
size which are transmitted between switches along high capacity links. The traffic sources 
are of various types, such as voice, video and file transfer, and they are bursty, in the 
sense that the rate at which cells are produced by a source is not constant, but fluctuates 
around a mean rate. Switches are buffered, as a safeguard against those occasions when 
the total rate at which cells enter the buffer from all sources that are routed through 
that switch exceeds the rate at which they can be served by the output links. Occasionally, 
the buffer will not be large enough and cell loss will occur. This should happen rarely. 
Since the number of sources that are routed through a switch is large, there is a statistical 
multiplexing which reduces the probability of buffer overflow. The idea is that when 
some sources are producing cells at above their average rates other sources will be 
producing cells at below their average rates. 
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A measure of Quality of Service (QoS) is the cell loss rate; this rate should be very 
small, typically of the order of 10-6 to 10-10. The cell loss rate is difficult to measure, 
but is important to estimate, both to decide questions of call acceptance and to identify 
paths in the network that are heavily or lightly loaded for the purpose of call routing. 
Except for very simple models it is impossible for a queueing theory analysis to evaluate 
the savings in bandwidth due to statistical multiplexing or to estimate the cell loss rate. 
For this reason researchers have focused their attention on analysis based on asymptotics 
and upon on-line measurements of the cell loss rate. One such asymptotic has been 
developed for systems with large buffers. In this paper we study an asymptotic for a 
large numbers of sources, and show that it can be used more successfully to estimate 
the cell loss rate. 

1.1. The model. The behavior of a switch in an ATM network can be modelled as 
a queue with a constant service rate and a buffer for B cells. We shall suppose that time 
is discretised into epochs, n = 1, 2,..-, and that during epoch n the cell service rate and 
arrival rate are both constant, and equal to C and X, cells per epoch respectively. The 
workload at the start of epoch n is denoted W, and 

Wn,+ =max{0, min[(W, + X,-C), B]}. 

The minimization in the above reflects the fact that cells are lost when the buffer is full, 
and the maximization ensures that the queue cannot become negative. We shall assume 
that {X,} is an ergodic process, and that E[X,]< C. This condition implies that { W,} 
is ergodic. 

Suppose that {X,J is the superposition of sources of M different types, with there 
being Np, sources of type i, i = 1,..., M. Thus the traffic is defined by the parameter p = 

(P ,"--, P) and the scaling parameter N. Let b and c denote respectively the amounts 
of buffer space and bandwidth per source, so that B= Nb and C = Nc. 

The cell loss rate can be expressed as L(c, b, N) = E[(W, + X, - C- B, 0)+], when W, 
and X, have their stationary values. A related measure is the proportion of time the 
buffer is full, which we denote F(c, b, N)= P(W,= B). Alternatively, we might suppose 
the buffer is infinite and study the proportion of time that the content is above level B, 
say Q(c, b, N). Note that L(c, b, N), F(c, b, N) and Q(c, b, N) are all functions of p, 
but to lighten the notation this dependence is not shown. 

1.2. The large N asymptotic. The large N asymptotic with which we are concerned 
takes the following form: 

(1) F(c, b, N) = exp(- NI(c, b) + g,(c, b, N)), 

where 
limN•~ 

g,(c, b, N)IN=O. Both I(c, b) and g,(c, b, N) depend on p but as we 
have done above this is suppressed to lighten the notation. The rate I(c, b) is found 
as the solution to an optimization problem posed in terms of time dependent logarithmic 
moment generating functions. Asymptotic (1) can be compared with a well-known 
asymptotic in B, 
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(2) ((c, b, N) = exp(- NbH(c) + g2(c, b, N)), 

where limb,, g2(c, b, N)/b= 0. This is an asymptotic that has been studied in a long 
series of papers, by Courcoubetis and Weber (1995), de Veciana and Walrand (1994), 
Elwalid and Mitra (1993), Kelly (1991), Kesidis et al. (1993) and Whitt (1993). Either 
(1) or (2) may be used to estimate (D, as exp(-NI(c, b)) or exp(-NbH(c)) respectively. 
In Section 2 we show that I(c, b)/b -+ H(c) as b --+ oo and so if the buffer space per 
source is large then either of these estimates might be used. 

However, we find that it is usually better to base an estimate of (F on (1) rather than 
(2). For one thing, to base an estimate upon the asymptotic for large N takes more 
account of what really happens in practice. In the output link of an actual ATM switch, 
the number of sources is of the order 103-104 and so it is correct to apply a result that 
assumes N is large. One cannot say the same for the approach that assumes the buffer 
is large; in many ATM switch designs, the total buffer space may be moderate, say 
100-200 cells. This means that in actuality there is a much smaller amount of buffering 
per source than is supposed by use of the estimate based on the large b asymptotic. 

The utilization of the switch by the bursty traffic also has an impact on the relative 
merits of the approaches. In an ATM network, some of the real-time traffic, such as 
voice and video, will be assigned high priority and some, such as file transfer and 
interactive traffic, can be delayed and subject to flow control. The real-time traffic will 
only utilize a proportion of the bandwidth. If we are concerned to model the high- 
priority traffic {X,J can be considered to be a model for this traffic alone. Simulations 
show that when the utilization of the switch is low, say X, =(2/3)C, the estimation of 
the overflow rate using the large N asymptotic remains accurate, whereas the estimate 
based on the large b asymptotic is very poor, overestimating the overflow rate by as 
much as 105. 

Section 2 begins with a proof of the large N asymptotic. We discuss the form of I(c, b) 
in cases when b is small or large, and the implications of expressing a quality of service 
constraint as the requirement that I(c, b) should exceed some target value. 

In Section 3 we calculate I(c, b) for a Markov modulated fluid model of a source and 
observe from some calculations with typical values that the large N asymptotic does a 
much better job of estimating the cell loss rate for this model than does the large b 
asymptotic. Our approach reproduces more easily some of the results of Weiss that were 
obtained by a more refined analysis. 

In Section 4 we consider a model of a source as an autoregressive Gaussian process. 
Again, the large N asymptotic does a better job of estimating the cell loss rate than 
does the large b asymptotic. In the special case where the parameters of the autoregressive 
process are chosen so that the source model becomes relatively unbursty then the large 
b asymptotic underestimates the cell loss rate, whereas the large N asymptotic continues 
to overestimate it and therefore leads to conservative decisions. The analysis in this 
section confirms and explains observations of Choudhury et al. (1994a), (1994b). 

Section 5 concludes with a discussion of on-line estimation and of asymptotics for 
traffic whose composition is unknown. 
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2. The large N asymptotic 

Both the large N and large b asymptotics are expressed in terms of logarithmic moment 
generating functions. Suppose { Y,, Y,. } denotes cells generated in epochs 1, 2,..., by 
a traffic source of type i, and define 

1M 
(P (0) = log E exp 10 Y' 

m nn=1 

It is well-known that (p (0) is a convex increasing function of 0. We shall also suppose 
that the asymptotic logarithmic moment generating function exists, defined as 

•• 
(0) = lim 9i (8). 

We write p9m (0) = ~, p, 9 , (0) and 9(0) = limmc. (o9 (0). 
The large b asymptotic of (2) has its rate given by 

(3) H(c) = sup[b : c 9 (p(6)/6]. 

Note that H(c) does not depend on N, but only on proportions of the different types 
of traffic. Since the sources are independent, and 9'(6)/6 is increasing in 6, 

(4) H(c) 
>_ 

c<- c p i 

and the quantity (p'(6)/6 is identified as the effective bandwidth of source type i. 
Exactly the same asymptotic holds for L(c, b, N), F(c, b, N) and Q(c, b, N). In effect, 

these quantities differ by approximately constant multiplicative factors, and these factors 
are absorbed by g2. Simulation results have shown that an approximation of L(c, b, N) 
by exp(-NbH(c)) can be good for large values of Nb. However, as mentioned above, 
the approximation is good only if b, the buffer per source, is quite large. For realistic 
specifications of an ATM switch, b may be very small, and the approximation can 
overestimate L(c, b, N) by several orders of magnitude. Equivalently, it overestimates 
the effective bandwidths. 

The large N asymptotic result is expressed in the following theorem. This result has 
also recently been proved independently by Duffield (1996) and by Simonian and Guilbert 
(1994) for the case of on-off Markov fluid sources. 

Theorem 1. For the model above and under appropriate assumptions, 

1 
lim log D(c, b, N)= -I(c, b), 

Nxoo N 

where 

(5) I(c, b) = inf sup [8(b + mc)- m(p (0)1. 
n 0 

For a fixed m the supremum over 0 in (5) calculates a large deviation coefficient 
(appropriate to an asymptotic in N) for the probability that the buffer overflows in m 
periods; the way in which this overflow occurs is by each of the N sources producing 
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mc + b cells, and so contributing an equal share to the total of mC+ B cells that causes 
the buffer to fill. The infimum fixes upon the m for which this probability is greatest. 

Proof of Theorem 1. Recall that the switch is modelled as a queue with a constant 
service rate of Nc. If the buffer is overflowing at epoch 0 then there must have 
been some epoch, -m, at which the buffer was last empty and since which at least 
N(mc + b) cells have been received. Thus F(c, b, N) ? P(Sm > Nmc + Nb for some m), 
where Sm = 1 X,,. Pick a 01 such that cO - q(01) > 2e. Then since (p(81) -+9(081), 
there must be an m, such that for all m >ml, both cO -p9m(08) >e and 01b+me > 

supo [Oc - 9p(O)]. A Chernoff bound is that for all 0 > 0, 

P(S, > Na) ? E exp(O(S, - Na)) = exp( - N[O8a- qp, (8)]). 

Using this, with a = mc + b, we have 

P(Sm > mNc + Nb for some m) 
00 

<E P(S, > N(b + mc)) 
nm= 1 

_ 

e exp -Nsup [O(b+mc)-m9m(O)] + I exp{-N[Ob+m{O8,c-(pm(81)}]} 
m=1 0 

m=mi 

< 
Z exp -Nsup [O(b+mc)-m9m(O)] + E 

exp{-N[Olb+m8]} m=1 
0 

m=mi 

< 
}exp{-N[Olb+ml8]} 

? (mi - 1)exp -Nmin sup [O(b + mc) -m9m, ()]N[ + O 

m,<m, 
0 1 -e 

Hence 
1 

lim log 0(c, b, N) - min sup [O(b + mc)-mn,9m(0)] 
N-oo 

N m<mi 0 

_ - inf sup [O(b + mc) - mp (0)]. m 0 

In the reverse direction, let us consider m consecutive epochs. The expected number of 
these epochs in which overflow occurs is at least as large as the probability that there 
is overflow during at least one of the epochs. Thus we have that, for all m, 

P(Sm > mNc + Nb) 
Q(c, b, N) 

= m 

Therefore, using Cramer's lower bound for the sum of N i.i.d. random variables 

lim log D(c, b, N) > -sup [0(b + mc) - mtp, (0) ]. 

N-oo 

N 0 

As this holds for all m, the proof is complete. 



Buffer overflow asymptotics for a buffer handling many traffic sources 891 

By observing from (5) that for any given 6, NI(c, b) ? Nbb if and only if for each m 
there exists a 0 such that 

O(b+mc)-mtpm(0)> 6b, we have the following equivalent 
expression for bandwidth requirement. 

Corollary 1.1. 

(6) I(c, b) 

> 

bb < c ! sup inf[ b(-1)+ 0)] 

The far right-hand side of Equation (6) specifies the least value that may be taken by 
c if the large deviation coefficient I is to exceed bb (a number related to maximum 
allowable cell loss rate). Alternatively, for fixed values of c and 6, it expresses in terms 
of the quantity 9pm(0) the constraint on the traffic that may be carried by the switch. 
Notice that there is no notion of effective bandwidth similar to that which occurs in 
Equation (4) for the large b asymptotic. 

The large N asymptotic may be interpreted in another way: it is as if in a system, 
indexed by N, a single source is replaced by the average of N identically distributed 
sources. The asymptotic is taken as N -+ co while the total buffer and total bandwith 
are held constant. This asymptotic has been considered by Weiss (1983), for identical 
sources that are Markov modulated fluids. His approach is more refined in that he uses 
a large deviation result for sample paths to find the most likely path by which a buffer 
will fill. We consider now some issues raised by the large N asymptotic. 

2.1. Discretization of time. We have assumed a discrete time model and it is illuminat- 
ing to consider how this affects the results. Suppose the length of an epoch is 
doubled. Then c must be replaced by 2c, and 9p,(0) by 92m (0). We get I(c, b)= 
inf, sup0 [O(b + m2c) - 2mp2,m(0)]. So it is as if we are now taking infm only over the even 
values of m. The answer will be greater. This is to be expected, since by taking an epoch 
to be longer there is some averaging of the traffic within each epoch. This dependence 
on the discretization is not seen in the analysis of the large b asymptotic. 

2.2. The case of no buffer. If there is no buffer then we have the following. 

Theorem 2. 

I(c, 0) = sup [Oc - p1(0)]. 
0 

Proof. We have 

(7) I(c, 0) = inf sup [Omc - mgp, (0)] 
m0 

and 

m•m(0) 
= log E Lexp (mO tI X)] 

? log E - exp(mOX,) 
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where the first inequality follows by convexity. Thus 

(8) I(c, 0) 
_ 

inf sup [Omc- 9pl(mm)] = sup [O'c- p (O')]. m 0 0' 

The final equality follows by letting 0'= mO. On the other hand, by choosing m= 1 
in the minimization of (7), the right-hand side in (8) is attained. Thus I(c, 0)= 
sup0 [Oc - 9p1(0) ]. 

Note that (7) is simply the large deviation asymptotic for the probability that the 
buffer should receive more than C cells in a single epoch. 

2.3. Large buffer asymptotics. The following theorem connects the asymptotics for 
large b and large N. 

Theorem 3. 

1 lim I(c, b) = H(c). b- oo b 

Proof. Recall that 6*=H(c) satisfies (p(6*)/6*=c. Let us take bm=m(qm'(6*)-c). 
Note that since 9p'(6*) -- 6p'(6*), as m --+ oo, we also have bm -- oo as m --+ co. Further- 

more, the growth in bm is approximately linear for large m. Thus for any m sufficiently 
large that 

b• 
> b, 

1 b. 1 
SI(c, b) < I(c, b"') b b bm 

bm 
< 

- 
sup [0 + (mlbm)(cO - p, (0))] b 

b, 
<m sup [0 + (m/bm)(c - • (6*)-(0- 6*)'(l(*))] b e 

b p (6*) - p(6 *)/6 * 

where the third inequality follows by convexity of Tp,(0). But by the fact that bm grows 
linearly in m for large m, we can let m -+ oo as b -* oo in such a manner that bm/b -+ 1. 
So from the above it follows that 

1 
lim I(c, b) < 6*. 

b-+c0 b 

To establish an inequality in the reverse direction, pick 6 <6*. Recall that p(6)/6 is 
increasing in 6 and 

limm.oo (pG(6)= p(6). Then there exists m0 such that for all m 
_nmo, 

c6 - q (6) > 0. So for all 
m_ 

mo we have [b + m(c6 - p,, (6))] > b and 

I(c, b) = inf sup [0(mc + b) - mqp (0)] 
m 

_ 
inf [b5 + m(c - 

p•m 
(6))] in 
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m 
min 

[min 
[bb + 

m(c6 
- T(6))1], 

bb 
m < mo 

= bb + min [m(c6 - pm ())-]. m <m0 

The second term on the right-hand side of the final expression is a constant and hence 

1 lim I(c, b) > >. 
b6:7 b 

Since this holds for all 6 < 6*, the proof is complete. 

Notice that in the case that {X,} is a sequence of i.i.d. variables, Tp (0)= Tp(0) and so 
we can take mo= 0. Thus I(c, b) ? bH(c) for all b. Moreover, for those b for which b = 

m(cp'(H(c))-c), m= 1, 2,--..., we have I(c, b)=bH(c). Also, from the first part of the 

proof we have an upper bound, and so in the i.i.d. case, 

I(c, b) 
bm 

m((p'(H(c))- c) (c) 
< 

+'(H(c))- 

c 
H(c). H(c) 6 = 

H + H(c). 
I b =b b b 

The following corollaries are worth noting. 

Corollary 3.1. As b -- oo the value of m that is optimal on the right-hand side of (5) 
also tends to infinity. 

Proof. Suppose the result is not true and that, for arbitrarily large b, the optimal m 
is less than some mo. Choose any 5. Then for arbitrarily large values of b, 

I(c, b) > b inf [6 + (mlb)(c6 - q,, (6))1. 
m <mo 

This implies limb b~c (1/b)I(c, b) > . For 6 > H(c) this contradicts Theorem 2. 

Corollary 3.2. 

g,(c, b, N)/b -- O as b -- oo. 

Proof. This follows from gl(c, b, N) = log F(c, b, N) + NI(c, b). For fixed N we have 
that as b -- oo both log F(c, b, N)/b - - H(c) by de Veciana and Walrand (1994), and 

I(c, b)/b -- H(c) by Theorem 3. Thus g,(c, b, N)/b -- 0. 

2.4. The shape of the acceptance region. Recall that there are Np, sources of type i. 
Thus the traffic is defined by the parameters N and p 

=(p,..., PM). Given a desired loss 
probability of less than exp(- 6Nb), we might define as acceptable those possible mixes 
of sources p E R, where R = {p : Nb4 <NI(c, b, p)}, or equivalently, 
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(9) c:>supinf [ -- + . 

Now we can see that in the case that the cells produced in each period are i.i.d. random 
variables, then modulo discreteness effects, the acceptance region is linear. For in this 
case, pm (0) = p(0), and 

I(c, b) = inf sup [O(b + mc) - mqp() ] m 0 

? inf sup [O(b + tc) - tp(O)] t>O 0 

= sup [Ob : p(0)/0 c] 

=sup Ob: 

EP'p'i(O)/O=c] 

. 

So I(c, b) 5bb if and only if p(5)/56 c; this is the same as (4) that holds for the large 
b asymptotic and shows that in this case the boundary to the acceptance region is linear 
in the pi. 

However, if we do not disregard discreteness effects, or the cells produced in successive 
periods are not i.i.d., the shape of the acceptance region can be more complicated. To 
show the effect introduced by the discreteness of m we can consider two sources in which 
the number of cells in successive epochs are i.i.d. Gaussian variables, with means 

#P 
= 

5/3, 92= 1 and variances 6i= 1/3, 6= 1. For a source of type i, (p'(0)=Opi +02ai/2. 
Hence the acceptance region defined in (9) becomes 

26bb 1i pi 
a? M 2b 2 bpps c?>~ Pi!i+sup m] 

i=- 
m m m 

The first term is linear in p, but the term within the supremum is concave in p. For the 
values above, and 6 = 2, b=1, c= 2, some values of p1, P2 that lie on the boundary of 
the acceptance region are shown in Table 1. 

TABLE 1 

pi 0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000 
P2 1.000 0.876 0.754 0.633 0.506 0.377 0.250 0.127 0.000 

These show that the boundary of the acceptance region is neither locally concave nor 
convex. 

We believe that it is not only because of discreteness of m that the shape of the 
acceptance boundary is not always either concave or convex. However, we have yet to 
give an example of this. 
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Of course we know that I(b, c)lb -+ H(c), as b -- oo and so the acceptance region 
defined as Nbb > NI has a boundary that is asymptotically the linear one defined in 
Equation (4) by c > E_ p, p'(6)/6. 

3. Markov modulated fluid sources 

The Markov modulated fluid model of a source is one in which the rate of the source 
alternates between 0 and a peak rate a according to the state of a continuous time 
Markov process. The off and on states have exponentially distributed holding times with 
parameters A and p respectively. The proportion of time the source in on is A/(A + 4), 
and so for sensible scenarios, we require 2a/(A + y) < c <a. 

Theorem 1 was proved under the assumption of a discrete time model, but it also 
clearly holds for the continuous-time setting here (cf. Duffield (1996) for a proof). To 
find I(c, b) for the Markov modulated fluid, we will compute the moment generating 
functions 

z,,t (0) = E[exp( 0 x(s)ds)1 , i = 0, 1, 

where x(t) is the fluid rate at time t and i = 0, 1 as the source is off or on initially. 
Now 

zo0, +a = (1 - Ab)zo,, + A)zI,, + 0 (6) 

z,,, +a = eoa [Pbzo,, + (1 - )z,,] + o (6). 

So 

l 

( Oa-- p• zi) 

and 

0.)2 
C1 

ZOt 
= 

(0 

ecwt e2t 
w)2 1 2 )1 

w=2-Oa Oa - 01 

Zl,t 

= ec' + e2', 
w)2 • 01 0)2 C )1 

where 

0= 2 

)2 = +2 

are the two roots of 2 + (2 + p- 20a)0)- 10a = 0. Hence 
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exact, 

N=50_.-. 
0.10 

? .--- 
- G-- exact, N=100 

A 

S0.05 Voice sources, 
utilization = 0.66 

bH(c) _ 

0.00 
0.00 0.05 0.10 

buffer/source (Kbits) b 

Figure 1. Markov modulated fluid sources 

z, (0) = E [exp( x(s)ds)1 

= o, (o0)+ zi,, (0) 

PW02 + 
,(2 

- 0a) -11-01 + 
(0a-- )1) e2t. 

(C02 -01)(A2•02- (01)(A 
+ 9) 

The problem which we wish to solve is I(c, b) = inf,>0 sup0 [O(b + tc)- log(z, (0))]. 
By Theorem 3, we know that I(c, b)/b -- H(c), and also that the t that is optimal in 

the right-hand side above tends to oo as b -- oo. Note that Tp(O) 
=lim,_, 

t-' log z, (0)= 
(02(0). The bandwidth requirement c ? w2(6)/6 * H(c) 6 is precisely that given in 
other papers, such as Gibbens and Hunt (1991). An alternative expression of this 
constraint is 

() + -)c- a 
H(c) = 

_ 
. 

c(a-c) - 

3.1. Numerical results. We have conducted a number of experiments to determine 
the effectiveness of estimating buffer overflow rates using the large N asymptotic. For 
a Markov modulated fluid model, Q(c, b, N) = P(W > Nb) can be obtained exactly using 
techniques of Anick et al. (1982). To model a voice source we use the parameters A = 

650ms, y= 353ms and a= 64kbps. The mean bandwidth is 22.48kbps. In Figure 1, we 
take c to be as 1.5 times the mean rate, i.e. 33.72kbps. We plot as functions of b graphs 
of I(c, b), bH(c) and the exact value of (1/N)log Q(c, b, N) as computed using the 
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formula of Anick et al. (1982) for N= 50, 100. Notice that the large N asymptotic is a 
much better estimator of Q(c, b, N) than is the large b asymptotic, and that it is more 
exact for larger N. For example, at b=0.05, -(1/N)log Q(c, b, N) is 0.10903 for N= 
50, 0.09758 for N= 100; these are well-estimated by I(c, b)= 0.07989, but not by bH(c) = 

0.00241. Both estimates are conservative in the sense that they both overestimate the 
true probability that the queue should exceed Nb. 

3.2. The shape of I(c, b) near b= 0. Our numerical results agree with the calculations 
of Weiss (1983) that for the Markov modulated fluid the behavior for small b is I(c, b) = 

C1 + C2 .. We have not been able to establish the b behavior from (5), but we can 
compute the constant C1 = I(c, 0). Following the ideas in Theorem 2, suppose s is very 
large. Then 

I(c, 0) = inf sup [Otc - tq, (0)] 
s>t>O 0 

2 inf sup [nO(tln)c-(tln)p,;, (nO)] 
s>t>O 0 

= inf sup [tc-tcp,(0)] 
sln>t>O 0 

2 lim sup [Otc - t, (0)] 
t--O 0 

= lim sup [Otc - log E[exp(0 [tX(O)+ o(t)])]] 
t--O 0 

=lim sup Oc -log 
+ 

+ +o(t)/t 
t-0 A+P 

= c' log (iP)+ (1- c')log 
-p 

where p=2/( + ) and c'= c/a. Clearly I(c, 0)<limt,o supo[Otc-t(q,(0)]. So this is in 
fact the value of I(c, 0), and it is just the asymptotic rate for the probability that the 
number of on sources exceeds cla. 

4. Gaussian sources 

4.1. Gaussian stationary sources. Suppose {X,} is the superposition of N Gaussian 
sources, each distributed as { Y,} with mean y, variance a2 and autocovariance function 
y(k). Then Tpm.(0)/= 0 + a02/2, where ma2 is given by 

m 
= var 

(1 Y)= m2 + 2[(m - 1)y(1) + (m - 2)y(2) + 

" " " 

+ y(m - 1)]. 

Notice that 
limm_. 

a==y, where y is the index of dispersion and equal to 1" y(k). 
Now 
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(b + mc - ma)2 I(c, b) = inf(b2 
m 2ma2 

with the optimum achieved by 0= (b + mc 
-m)/m0a. Also the bandwidth requirement (6) is 

c sup inf + ) sup 
+ 

m mO0 m L m m 

with the optimum achieved by 0= .2b.5/mc4. 

4.2. An autoregressive source. A simple autoregression has sometimes been used as 
a model for a videotelephone source. Let us take Y ,= Y,_,+(1-0a)P+eS, where {e,} 
is Gaussian white noise with variance r12. Then a2 

=,12/(1 
- 2), =(1 +a0o2/(1 

- x) and 

2a can be derived as follows: 

m2a = (mI -1)al2_i+ +2(a + cx2 + 
m. 
+ a"-I)a2 

1- a 
= (m- 1)a 2_ 

l•+ 20.22r2 
1--x 

(1-m a)+--+(1- 22 
= 2 +2a2 m) +( _ 

- )a2 

= - (m - 
2)02 

+ 

7-- 
m 1-- 

1-+ 
1+0 a-1"+a 

U22-+m+1 = m 2 -2 - 2 

1-a (1 -_)2 

=my-2 a2 
(1 a- )2 

It turns out that a 2 is a convex increasing function of m when a >0. Notice that 

= y -2 a 
o2 

< 
2 

= m(1 -2 a) 

if a >0. But a, > y for a <0. Now since Tp() is quadratic in 0, we can easily find that 

(b + mc - m)2 
sup [0(b+mc)-mp,(0)] = (1-m) 2 

2my-4 (1c2 
2 

For large b this is minimized by large m, and so assuming am is small this is minimized 
with respect to m by 
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b 
m c - + 1/y, 

c-li 
where 

=4 
-()2 

2 

The optimal value is 

2b(c - y) +(c - y)2 2b(c - y) 4a(c - y)2 
I(c, b) - + 2 + Y Y2 (1 + )22 

This can be compared with bH(c) = 2b(c - p)/y. One sees that bH(c) < I(c, b) when a > 0, 
but that the inequality is reversed when a <0. The case a > 0 corresponds to a relatively 
bursty source, while a < 0 corresponds to relatively smooth source, because of the negative 
first order autocorrelation. When a > 0 the use of the large b asymptotic to estimate 
L(c, b, N) leads to a larger estimate of cell loss rate than does the large N asymptotic: 
the experimental evidence is that both asymptotics lead to overestimates of the true cell 
loss rate but that the large N asymptotic is closer. When a <0 the large b asymptotic 
estimates a smaller loss rate than the estimate based on a large N asymptotic: the 
experimental evidence is that the large b asymptotic underestimates the true loss rate 
while the large N asymptotic overestimates it and is closer. In this case the large N 
asymptotic is clearly preferable. 

4.3. Numerical results. For an autoregressive Gaussian process with a= -0.5, u= 

18, 12 = 64 and c= 18.15, we plot exp(-NbI(b, c)) and exp(-bH(c)) against b, together 
with simulation results (over 2,000,000 epochs) for the probability Q(c, b, N)= 
P(W >Nb), for N= 1000 and five values of b, 1.0, 1.2, 1.4, 1.6, 1.8. The proportion of 
the time that the buffer is empty is 60.95%. Figure 2 shows that for these small amounts 
of buffer per source, the large N asymptotic overestimates the tail probability by a factor 
of about 2-3, while the large N asymptotic underestimates it by a factor of about 2-5. 
For example, at b= 1.2, the true value has a 95% confidence interval (92, 104) x 10-, 
and mean 98 x 10-'; the large N asymptotic gives 263 x 10-5 and the large b asymptotic 
gives 32 x 10-5. 

4.4. The sign of I(c, b) -bH(c). The above example is illuminating in considering 
the difference between the large N and large b asymptotics. Our results are consistent 
with the work of Choudhury et al. (1994a), (1994b), who discuss the fact that their 
numerical experience suggests that the large B asymptotic should be modified by prior 
multiplication by an exponential factor in N, so Q(c, b, N) ~ fle-NYe-"B. This can now 
be explained theoretically by writing 

Q(c, b, N) = exp{-NI(c, b)+g,(c, b, N)} 

= exp { -N[I(c, b) - bH(c)]-NbH(c) + g,(c, b, N)} 

= exp{- N[I(c, b)- bH(c) -gi(c, b, N)lN]}exp(-BH(c)). 

Of course 1 = H(c) and g1(c, b, N)/N -~ 0 as N - oo with b fixed. 
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10-3 

10- - estimated by simulation 
- --- using large B asymptotics 

using large N asymptotics 

A 10-9 

10-_ 

1.0 1.4 1.8 
buffer/source (Kbits) b 

Figure 2. Autoregressive Gaussian sources 

It is therefore clear that y has the sign of I(c, b) -bH(c) -g,(c, b, N)/N which for fixed 
b is determined by the sign of I(c, b)- bH(c) for large N. We have seen in the discussion 
above that I(c, b) >bH(c) when a > 0 and I(c, b) <bH(c) when a <0, and that these 
correspond to greater or less burstiness of the source, and give y > 0 and y < 0 respectively. 
Notice that I(c, b) > bH(c) if Pm (0) > p(0), for all m and 0. Note that if for two random 
variables, X and Y, E exp(OX) > E exp(0 Y) then X is more variable than Y. Similarly, 
an ordering of moment generating functions corresponds to an ordering of bustiness. 
This means that the quantity of cells arriving over a number of periods m is actually 
less bursty than is implicitly assumed when one uses p(O) in (3) to calculate H(c). 
Therefore exp(-bH(c)) tends to overestimate Q(c, b, N). 

In the cases we have considered it appears that Tpm(0) is monotone in m, and thus 
y >0 and 

T•m(0) 
<p(0) corresponds to the case in which Tp1(0) <Tpm(0), and in which 

we would say that the source is 'more bursty than Poisson', in the sense that for a Poisson 
source, or any which is i.i.d., we have Tp,(0)= pm(0). The same comments apply, with 
inequalities reversed, so y <0 occurs for sources that are 'less bursty than Poisson'. 

5. Open issues and remarks 

5.1. On-line estimation. An important issue in ATM networks is the accurate and 
timely estimation of the cell-loss probabilities that occur at various switches in the 
network, so that correct decisions can be made about whether or not to accept more 
traffic or how it should be routed. A generic problem that the network management 
system faces is that because the events of interest are rare, e.g. cell loss rates of the order 
of 10-6-10-10, any brute-force on-line estimation procedure would fail because of the 
large time that would be required to make an accurate estimate. Providing a reasonable 
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confidence interval for the estimator requires time of the order of magnitude of tens of 
minutes, which is impractical since decisions about accepting new traffic in the network 
must be done immediately, and because the composition of the traffic can change in 
such a large time interval. 

The large N asymptotic can be used to estimate in real-time the cell loss rate in the 
following manner. Suppose Np sources (comprising Npi sources of type i) are active in 
a switch with total bandwidth C and total buffer B. Suppose that we can make an on- 
line measurement to estimate the cell loss rate that would occur if Np/k sources were 
routed through a switch that has total bandwidth C/k and total buffer B/k. This can 
be done by a special device at the switch level which simulates a 'virtual' switch of 1lk 
the size of the actual one, operating on a representative sample of the actual input of 
size l/k. The device provides an estimator of the buffer overflow rate that occurs in the 
virtual system. The large N asymptotic suggests that the loss rate in the virtual system 
should be about p = exp(-NI(c, b)/k), hence it can be estimated accurately in a time 
that is orders of magnitude smaller than the time required to make an estimate of the 
buffer overflow rate in the original system, and we can extrapolate the actual loss rate 
to be pk. 

For example, suppose the channel is carrying 1000 sources, with a loss rate of about 
10-10. As we have already mentioned, such a small cell loss rate is difficult to measure 
directly. However, an on-line measurement of the loss rate for 200 sources in a virtual 
system with one-fifth the bandwidth and buffer space should measure a loss rate p of 
about 10-2. At this loss rate cell losses will be observed in a relatively short time and 
the loss rate can be measured satisfactorily. Then p' is an estimate of the actual cell loss 
rate. Of course there is the opportunity to make five independent estimates of p, using 
five groups of 200 sources. 

This idea can be refined further to provide a more accurate estimate of the 
cell-loss probability by computing the o(N) terms in (1). On can assume that 'D(N)= 
AN" exp(- NI) and estimate the values of A, 0i, I by measuring D in three virtual 

systems of size N/kl, N/k2, N/k3, where Nk, < Nk2 < Nk3 << N. Then F(N) is computed 
by substituting the corresponding values. This provides an alternative to the MINOS 
procedure described in Courcoubetis et al. (1995). Numerical work has validated the 
utility of this heuristic approach. 

5.2. Traffic of random composition. The class of traffic may not be known exactly. 
Suppose that in a certain class of traffic the sources are actually of k possible types, 
with each source having probability pi of being of type i. The probability of buffer 
overflow is maximized when the observed mix deviates from the expected mix in an 
appropriate way and sources produce cells at above their mean rates. The probability 
that N sources of such random mixture should have empirical distribution 

7n,. 
- -, rk is 

P(a)= exps-Nah 
t 

ablgte /p)+(N)), 

and thus taking the product of probabilities, 



902 COSTAS COURCOUBETIS AND RICHARD WEBER 

lim -log D(c, b)= -inf inf sup O(b+mc)- xi {qI(0)-log(r/p1)} . 
N-*oo N m _7i:aM 

=ii= 

1 0 i=1 

Assuming the optimization over 
7ni 

occurs at an interior point, the stationarity condition 
implies rni is proportional to pi exp(Tp (0)), and hence after some algebra, 

1 
I,(c, b) = lim log ((c, b) 

N-*ooN 

(10) = -inf sup 0(b+mc)-logE pE[exp(OS)] 
m 0 i=1 

= -inf sup 0(b+mc)-log p, exp(m(p(0))) 
m 0 i=1 

where Sm has the stationary distribution of the number of cells produced by a source 
of type i over m epochs. Note that the final term in (10) is, by convexity, 

log p, exp(mnp (0)) p 
pmq 

~ ((O)=mq(0), 
(i=1 i=1 

and thus the asymptotic overflow frequency, given by (10), is greater than when the mix 
is known exactly. Then as b -+ oo the optimal value of m tends to infinity and the sum 
in (10) is dominated by the maximal term, hence 

I,(c, b) lim = H,(c) =max{08: p?(0)/ < c, for all i} = min Hi(c), 
b-.? b i 

where Hi(c) is obtained for a source consisting only of type i. Similarly, H,(c) > 6 if 
and only if qi (6)/6 < c for all i, and so this analysis concludes that the effective bandwidth 
of the random mix is equal to the maximum of the effective bandwidths of the individual 
source types. This makes sense since the most likely way that a single source of unknown 
type will fill a large buffer is if the source type turns out to be the most bursty of the 
k possible types. 

5.3. Open problems. A number of further issues require study. These include: 
(a) the efficient numerical solution of the double optimization problem defining I(c, b); 
it is not clear that the function always has a saddle point, though this is the case in the 
examples we have studied; (b) further understanding of the properties of the solution 
and the implied acceptance region; and (c) the on-line estimate of the p (0), or the on- 
line estimation of I(c, b). 
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